

Entanglement and Bell Nonlocality with Bottom-Quark Pairs at Hadron Colliders

David Uzan

Based on work done in collaboration with:

<u>Y. Afik, Y. Kats, J. R. Muñoz de Nova, A. Soffer</u>

arXiv:2406.04402

Motivation

Entanglement between spins was measured in $pp \rightarrow t\bar{t}$ samples in both ATLAS and CMS.

ATLAS Collaboration, Nature 633 (2024) 542 CMS Collaboration, ROPP 87 (2024) 117801 CMS Collaboration, PRD 110 (2024) 112016

Motivation

Entanglement between spins was measured in $pp \rightarrow t\bar{t}$ samples in both ATLAS and CMS.

ATLAS Collaboration, Nature 633 (2024) 542 CMS Collaboration, ROPP 87 (2024) 117801 CMS Collaboration, PRD 110 (2024) 112016

> Can similar measurements be conducted in $pp \rightarrow b\overline{b}$ samples?

Motivation

Entanglement between spins was measured in $pp \rightarrow t\bar{t}$ samples in both ATLAS and CMS.

ATLAS Collaboration, Nature 633 (2024) 542 CMS Collaboration, ROPP 87 (2024) 117801 CMS Collaboration, PRD 110 (2024) 112016

- > Can similar measurements be conducted in $pp \rightarrow b\overline{b}$ samples?
 - The system is hadronizing.
 - Ultra-relativistic regime at low invariant mass $M_{b\bar{b}}$.
 - *b*-jets have high tagging efficiency.
 - Spin correlation is expected to be measurable in *b*-quark pairs at the LHC.

Y. Kats, D. Uzan, JHEP 03 (2024) 063

$b\overline{b}$ Spin Correlations Predictions

To measure entanglement and Bell nonlocality we need spin correlations.

- > We give predictions for the spin correlations.
 - Same as for $t\bar{t}$ predictions, with $m_t \rightarrow m_b$.
 - Some predictions are shown on the right.

Cross sections and expected number of events are calculated using NLO QCD simulations.

Polarization in Hadronization

> Polarization largely retained through hadronization:

$$\mu_b \propto rac{1}{m_b}, \ m_b \gg \Lambda_{QCD}$$

Falk and Peskin, PRD 49, 3320 (1994)

In the heavy quark limit, gluon radiation is not expected to affect the quark's spin. Matthias Neubert, arXiv:hep-ph/9610266

Estimated to affect the *b* quark polarization by about $\sim 3\%$.

Körner et al., Z.Phys. C63 (1994) 575-579

Polarization in Hadronization

The measurement can be performed on $b \rightarrow \Lambda_b$:

- ▶ Most common *b*-baryon $f(b \rightarrow \Lambda_b) \approx 7\%$.
- \succ ud form a spin and isospin singlet
 - *b*-quark carries the baryon spin.

Some polarization loss due to $\Sigma_b^{(*)} \rightarrow \Lambda_b \pi$, soft π .

Retention Factor

 \succ Can be quantified through the retention factors r_T and r_L :

$$0.4 \le r_L \le 0.8$$
, $0.5 \le r_T \le 0.8$

Falk and Peskin, PRD 49, 3320 (1994) Galanti et al., JHEP 11 (2015) 067

> Measured in LEP in Z boson decay $r_L = 0.47 \pm 0.14$.

ALEPH Collaboration, PLB 365, 437 (1996) OPAL Collaboration, PLB 444, 539 (1998) DELPHI Collaboration, PLB 474, 205 (2000)

 \succ r_L also measurable in ATLAS/CMS $t\bar{t}$ samples, even in Run 2 data.

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067

Measuring Polarization and Spin Correlations

We use the spin density matrix

$$\rho = \frac{I_4 + \sum_i (B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j}{4}$$
where $i, j = \{\hat{k}, \hat{n}, \hat{r}\}.$

\$\heta\$ - the proton beam axis
\$\heta\$ - the direction of \$b\$ in the \$b\overline b\$ rest frame
\$\heta\$ = \frac{\heta\$-\cos \Theta \keta\$}{\sin \Theta\$}, \cos \$\Theta\$ = \$\heta\$ \cdot \heta\$, \$\heta\$
\$\heta\$ = \$\heta\$ \cdot \keta\$, \$\heta\$
\$\heta\$ = \$\heta\$ \cdot \keta\$, \$\heta\$

 B^{\pm} are spin polarizations and C is the spin correlation matrix.

Baryon Decay Angular Distributions

Using θ_i , the decay product angle in relation to one of the axes of the helicity basis $\{\hat{k}, \hat{n}, \hat{r}\}$:

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_i^+ \cos\theta_j^-)} = \frac{1}{2} \left(1 + c_{ij} \cos\theta_i^+ \cos\theta_j^- \right) \ln \left(\frac{1}{|\cos\theta_i^+ \cos\theta_j^-|} \right)$$

$$c_{ij} = \alpha_+ \alpha_- r_i r_j f C_{ij}$$

$$f = \frac{N_{sig}}{N_{sig} + N_{bg}}$$
Spin analyzing power factor (r_T or r_L) Sample Purity

Methods for Measurements

 \succ We use the concurrence $\mathcal{C}[\rho]$: quantitative measurement of entanglement.

 $\succ 0 \leq C[\rho] \leq 1$, where $C[\rho] \neq 0$ iff the state is entangled.

Afik, Muñoz de Nova, EPJP 136 (2021) 907

Methods for Measurements

 \succ We use the concurrence $\mathcal{C}[\rho]$: quantitative measurement of entanglement.

 $\succ 0 \leq C[\rho] \leq 1$, where $C[\rho] \neq 0$ iff the state is entangled.

≻ At LO QCD: $C[\rho] = \max(\Delta, 0)$, where:

$$\Delta = \frac{-C_{nn} + |C_{rr} + C_{kk}| - 1}{2}.$$

 $\geq \Delta > 0$ is always a sufficient condition for entanglement.

Afik, Muñoz de Nova, EPJP 136 (2021) 907

Methods for Measurements

> To measure Bell Nonlocality, we look for CHSH violation:

$$\sqrt{\mu_1 + \mu_2} \ge 1$$

where μ_i are the two maximal eigenvalues of $C^T C$.

Clauser et al., PRL 23 (1969) 23 Horodecki, PLA 200 (1995) 340

> An indicator for Bell nonlocality:

$$\mathcal{V} = C_{kk}^2 + C_{rr}^2 - 1 \le \mu_1 + \mu_2 - 1.$$

 $\succ \mathcal{V} > 0$ is a sufficient condition to indicate the Bell nonlocality.

▶ In ultra-relativistic regime **C** is diagonal with C_{kk}^2 , $C_{rr}^2 > C_{nn}^2$.

Concurrence in Phase Space

- > Solid white line is $\Delta > 0$.
- > Dashed black line $\mathcal{V} > 0$.
- > Two regions with strong correlations:
 - $M_{bb} \simeq 2m_b$, spin-singlet.
 - Ultra-relativistic $M_{bb} \gg 2m_b$, spin-triplet.

Decay Channel

 \succ We will use $\Lambda_b \to X_c \ell^- \overline{\nu}_\ell$.

- ℓ is a μ in our case, BR $(\Lambda_b \to X_c \mu^- \bar{\nu}_{\mu}) \approx 11\%$.
- X_c is set of particles with at least one charmed hadron, usually Λ_c^+ .
- We require a reconstructed Λ_c^+ on one side, through fully charged hadronic decays, BR($\Lambda_c^+ \rightarrow$ reco.) $\approx 18\%$.

•
$$\alpha_{\nu} \simeq 1$$
, $\alpha_{\mu} \simeq -0.26$.

Galanti et al., JHEP 11 (2015) 067 Y. Kats, D. Uzan, JHEP 03 (2024) 063

- > ATLAS Selection:
 - **Dimuon Trigger:** $p_T^{\mu} > 15$ GeV and $|\eta| < 2.4$ without isolation for both.
 - $p_T^{\mu}/p_T^{\text{jet}} > 0.2$ for at least one muon.
 - At least one *b* tagged jet.
- \rightarrow planned to be updated in HL-LHC $p_T^{\mu} > 10$ GeV and $|\eta| < 2.5$.

ATLAS Collaboration, JINST 15 (2020), P09015

- > ATLAS Selection:
 - **Dimuon Trigger:** $p_T^{\mu} > 15$ GeV and $|\eta| < 2.4$ without isolation for both.
 - $p_T^{\mu}/p_T^{\text{jet}} > 0.2$ for at least one muon.
 - At least one *b* tagged jet.
- \rightarrow planned to be updated in HL-LHC $p_T^{\mu} > 10$ GeV and $|\eta| < 2.5$.

ATLAS Collaboration, JINST 15 (2020), P09015

> LHCb Selection:

- Trigger: $p_T^{\mu} > 1.8$ GeV, with $2 < \eta < 5$, 2-4 SV displaced tracks, LHCb Collaboration, JHEP 08 (2017), 055 charged particle with $p_T > 1.6$ GeV, not from PV.
- An additional muon with $p_T^{\mu} > 0.5$ GeV and $2 < \eta < 5$.
- At least one *b* tagged jet.
- $M_{b\bar{b}} > 20$ GeV.

> CMS *B* Parking Selection:

- Large amount of data (~ 42 fb⁻¹) recorded by CMS during Run 2, low trigger threshold, high statistics.
- Was processed when sufficient computational power became available.

Trigger:

CMS Collaboration, arXiv:2403.16134

- Single muon trigger.
- Lower specialized trigger p_T cuts, between 7 and 12 GeV with $|\eta| < 1.5$.
- Transverse impact parameter significance cut.

Additional cuts:

• We apply $p_T^{\mu} > 5$ GeV and $|\eta| < 2.4$ on an additional muon.

> For ATLAS and LHCb:

$$N = 2\sigma\epsilon_{\mu\mu}f^{2}(b \to \Lambda_{b})BR^{2}(\Lambda_{b} \to X_{c}\mu^{-}\bar{\nu}_{\mu})$$
$$\times BR(\Lambda_{c}^{+} \to \text{reco.})\epsilon_{\text{reco.}}\epsilon_{b,2}$$

 $\epsilon_{\text{reco.}} \approx 50\%$ the average Λ_c^+ decay reconstruction efficiency. $\epsilon_{b,2}$ at least one jet to be b-tagged.

> For ATLAS and LHCb:

$$N = 2\sigma\epsilon_{\mu\mu}f^{2}(b \to \Lambda_{b})BR^{2}(\Lambda_{b} \to X_{c}\mu^{-}\bar{\nu}_{\mu})$$
$$\times BR(\Lambda_{c}^{+} \to \text{reco.})\epsilon_{\text{reco.}}\epsilon_{b,2}$$

 $\epsilon_{\text{reco.}} \approx 50\%$ the average Λ_c^+ decay reconstruction efficiency. $\epsilon_{b,2}$ at least one jet to be b-tagged.

> For CMS *B* parking:

$$N = 2f^{2}(b \to \Lambda_{b})BR(\Lambda_{b} \to X_{c}\mu^{-}\bar{\nu}_{\mu})\epsilon_{\mu,2}$$
$$\times BR(\Lambda_{c}^{+} \to \text{reco.})\epsilon_{\text{reco.}}N_{0}$$

 $N_0 \approx 10^{10}$, total number of $b\overline{b}$ events is CMS *B* parking dataset. $\epsilon_{\mu,2} \approx 36\%$ selecting a muon on the non-triggering side.

Results

	$\sigma \epsilon_{\mu\mu}$ [pb]	$\mathcal{L} ~[\mathrm{fb}^{-1}]$	Ν	C_{kk}	C_{rr}	C_{nn}	Δ	v	r_L	$\sigma^{ m stat}_\Delta$	$\sigma_{\mathcal{V}}^{\mathrm{stat}}$	$\frac{\Delta}{\sigma^{\rm stat}_{\Delta}}$	$\frac{\mathcal{V}}{\sigma_{\mathcal{V}}^{\rm stat}}$	$\frac{\Delta}{\sigma_{\Delta}^{\rm tot}}$	$\frac{\mathcal{V}}{\sigma_{\mathcal{V}}^{\mathrm{tot}}}$
	Run 2, $\sqrt{s} = 13$ TeV														
ATLAS	S 1.0×10^4 140 2.7×10^4 0.04 0.57 -0.56 0.54 0	0.91	0.75	0.14	0.33	3.9	0.6	3.1	0.6						
	1.5 × 10	140	2.1 × 10	0.54	0.51	-0.50	0.04	4 0.21	0.45	0.23	0.78	2.3	0.3	2.1	0.3
LHCb $\Delta > 0.2$	3.9×10^{6}	57	1.8×10^{4}	0.55	0.67	-0.56	0.39 -0.5	39 - 0.24	0.75	0.17	0.34	2.2	-0.7	2.0	-0.7
L1100, ∆ > 0.2	5.3 × 10	0.1	1.0 × 10	0.00	0.01	0.50	0.05		0.45	0.29	0.62	1.3	-0.4	1.3	-0.4
CMS B parking $\Delta > 0.2$	7.9×10^{5}	41.6	1.8×10^{5}	0 76	0.63	3 -0 59 0 49 .	9 _0 03	0.75	0.055	0.120	8.9	-0.3	4.4	-0.3	
onio 2 parking, 1 > 0.2	1.0 \ 10	11.0	1.0 × 10	0.10	0.00 0.0	0.00	0.10	0.00	0.45	0.092	0.256	5.3	-0.1	3.6	-0.1
	HL-LHC , $\sqrt{s} = 14 \text{ TeV}$														
ATLAS $V > 0.3$	9.9×10^{4}	3000	1.0×10^{6}	0.91	0.85	-0.83	0.83.0.79.0.5	0.55	0.75	0.02	0.06	> 10	8.7	4.9	4.3
MILMO, V > 0.0	5.5 × 10	3000	1.0 × 10	0.51	0.00	0.00	0.15	10 0.00	0.45	0.04	0.13	> 10	4.3	4.9	3.3
LHCb. $\mathcal{V} > 0.3$	4.3×10^{6}	300	8.2×10^4	0.79	0.88	-0.81.0.74 0	0.43	0.75	0.080	0.215	9.2	2.0	4.4	1.8	
Li100, 7 7 0.0	4.0 × 10	000	0.2 \ 10	0.10	0.00	0.01	0.14	0.10	0.45	0.135	0.406	5.5	1.0	3.7	1.0
CMS B parking $V > 0.2$	rking, $\mathcal{V} > 0.2$ 8.4 × 10 ⁵ 800 1.2 × 10 ⁶ 0.83 0.82 -0.78 0.71	800	1.2×10^{6}	0.83	0.82	-0.78	0.71	0.35	0.75	0.021	0.055	> 10	6.4	4.9	3.9
\bigcirc D parking, $\nu > 0.2$		0.11	0.00	0.45	0.036	0.110	> 10	3.2	4.9	2.7					

We fix $r_T = 0.7$. On the right, we assumed 20% systematic uncertainty.

Results

	$\sigma \epsilon_{\mu\mu}$ [pb]	$\mathcal{L} \ [\mathrm{fb}^{-1}]$	Ν	C_{kk}	C_{rr}	C_{nn}	Δ	v	r_L	$\sigma^{\rm stat}_\Delta$	$\sigma_{\mathcal{V}}^{\mathrm{stat}}$	$\frac{\Delta}{\sigma^{\rm stat}_{\Delta}}$	$\frac{\mathcal{V}}{\sigma_{\mathcal{V}}^{\rm stat}}$	$\frac{\Delta}{\sigma_{\Delta}^{\rm tot}}$	$\frac{\mathcal{V}}{\sigma_{\mathcal{V}}^{\mathrm{tot}}}$
	Run 2, $\sqrt{s} = 13$ TeV														
ATLAS	TLAS 1.9×10^4 140 2.7×10^4 0.94 $0.57 - 0.56$ 0.54 0.57	0.21	0.75	0.14	0.33	3.9	0.6	3.1	0.6						
AT LAD	1.5 × 10	5×10 140 2.1×10 0.54 0.51 -0.50 0.54 0.	0.21	0.45	0.23	0.78	2.3	0.3	2.1	0.3					
LHCb. $\Delta > 0.2$	3.9×10^{6}	5.7	1.8×10^{4}	0.55	0.67	-0.56	6 0 39 -0	0.39 - 0.24	0.75	0.17	0.34	2.2	-0.7	2.0	-0.7
51100, 2 7 0.2	0.0 × 10		1.0 × 10	0.00	0.01	0.00	0.00		0.45	0.29	0.62	1.3	-0.4	1.3	-0.4
CMS B parking $\Lambda > 0.2$	> 0.2 79 × 10 ⁵ 41.6 1.8 × 10 ⁵ 0.76 0.63 -0.59 0.49 -	-0.03	0.75	0.055	0.120	8.9	-0.3	4.4	-0.3						
01110 D parallel, 1 > 012	1.0 / 10	11.0	1.0 / 10	0.10	0.00 0.00	0.10	0.00	0.45	0.092	0.256	5.3	-0.1	3.6	-0.1	
	HL-LHC , $\sqrt{s} = 14$ TeV														
ATLAS $\mathcal{V} > 0.3$	9.9×10^{4}	3000	10×10^6 0.91 0.85 -0.83 0.79 0	0.55	0.75	0.02	0.06	> 10	8.7	4.9	4.3				
	0.0 × 10	0000	1.0 × 10	0.01		0.00	0.45	0.04	0.13	> 10	4.3	4.9	3.3		
LHCb. $\mathcal{V} > 0.3$	4.3×10^{6}	300	8.2×10^{4}	0.79	9 0.88 -0.81 0.74	0.43	0.75	0.080	0.215	9.2	2.0	4.4	1.8		
	4.0 × 10	0 000	0.2 × 10	0.10		0.01	0.14	0.10	0.45	0.135	0.406	5.5	1.0	3.7	1.0
CMS B parking, $\mathcal{V} > 0.2$ 8.4 ×	8.4×10^5 8	800	1.2×10^{6}	0.83	0.82	-0.78	0.71	0.35	0.75	0.021	0.055	> 10	6.4	4.9	3.9
	0.1 / 10	. 10 000	1.2 \ 10			0.10			0.45	0.036	0.110	> 10	3.2	4.9	2.7

We fix $r_T = 0.7$. On the right, we assumed 20% systematic uncertainty.

Significance as a Function of Unknown r_T and r_L

> White dashed line: possible range of r_T and r_L .

We can use the non-entangled area in phase space to measure $r_{L/T}$ or use $t\bar{t}$ Run 2 samples for r_L .

Conclusions

- \succ We show that Entanglement and Bell nonlocality are possible to measure in $b\overline{b}$ pairs.
- A hadronizing system (almost explicitly rejected in previous works) and highly boosted at low invariant mass.
- Some new papers using QI methods to research hadronization.
- > The most promising channel, with currently available Run 2 data, is CMS B parking.
- Some experimental challenges:
 - Reconstruction of a difficult decay channel for Λ_b , especially the unmeasured neutrino.
 - Limited statistics due to FF, BR and efficiencies.

Thank you!

Λ_c^+ Reconstructible Channels

Relevant Decay Modes	Branching Ratio
$\Lambda_c^+ \to p K^- \pi^+$	6.3%
$\Lambda_c^+ \to \Lambda \pi^+ \to p \pi^- \pi^+$	0.8%
$\Lambda_c^+ \to pK_S \to p\pi^-\pi^+$	1.1%
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$	2.3%
$\Lambda_c^+ \to p K_S \pi^+ \pi^- \to p \pi^+ \pi^+ \pi^- \pi^-$	1.1%
$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$	4.5%
$\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$	1.9%
total	18%

Spin Retention

Spin is retained during hadronization:

$$B \propto \Lambda^2_{QCD}, \qquad t_{QCD} \propto \frac{1}{\Lambda_{QCD}}$$

Similar to electrodynamics:

$$\frac{d\vec{\mu}_q}{dt} = \gamma \vec{\mu}_q \times \vec{B}; \quad \vec{\mu} = \gamma \vec{S}, \gamma \propto \frac{g_s}{m_q}$$

$$\Delta S \propto \mu_q B t_{QCD} \propto \frac{\Lambda_{QCD}}{m_q} \ll 1$$

Due to $m_b \gg \Lambda_{QCD} \approx 0.2$ GeV.

Statistical Uncertainty of Polarization and Spin Correlations

$$\Delta B_{i} = \frac{A_{B}(B_{i})}{r_{i}\alpha\sqrt{fN_{sig}}}, A_{B}(0) = \sqrt{3}$$

$$\Delta C_{ii} = \frac{A_{C_{ii}}(C_{ii})}{r_{i}^{2}\alpha^{2}\sqrt{fN_{sig}}}, A_{C_{ii}}(0) = 3$$

$$\Delta C_{k(ij)} = \frac{A_{C_{ij}}(C_{ij})}{r_{i}r_{j}\alpha^{2}\sqrt{fN_{sig}}}, A_{C_{ij}}(0) = \frac{3\sqrt{2}}{2}$$

Spin Measurement Through Mesons

Mesons can't be used for spin measurements.

 $|\downarrow\rangle_b|\downarrow\rangle_{\bar{q}}, \qquad |\downarrow\rangle_b|\uparrow\rangle_{\bar{q}}$

For B^* meson, where $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1 = B \oplus B^*$:

$$P(\overline{B}^*(-1)) = \frac{1}{2}, \qquad P(\overline{B}^*(0)) = \frac{1}{4}, \qquad P(\overline{B}^*(1)) = 0, \qquad P(B(0)) = \frac{1}{4}$$
$$B^* \to B\gamma$$

We get uniform angular distribution, no information of the spin of the b quark.

Falk and Peskin, PRD 49, 3320 (1994)

Spin Measurement through Baryons

For the baryons the spin is retained:

$$\begin{split} \downarrow \rangle_{b} |\downarrow \rangle_{q} |\downarrow \rangle_{q'}, \qquad |\downarrow \rangle_{b} |\downarrow \rangle_{q} |\uparrow \rangle_{q'}, \qquad |\downarrow \rangle_{b} |\uparrow \rangle_{q} |\downarrow \rangle_{q'}, \qquad |\downarrow \rangle_{b} |\uparrow \rangle_{q} |\uparrow \rangle_{q'} \\ \left(\frac{1}{2}\right)_{b} \otimes \left(\frac{1}{2}\right)_{q} \otimes \left(\frac{1}{2}\right)_{q'} = \frac{1}{2} \otimes (1 \oplus 0) = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2} \\ \Lambda_{b} \quad \Sigma_{b} \quad \Sigma_{b}^{*} \end{split}$$

We lose polarization information in hadronization through indirect Λ_b production: $b \to \Sigma_b, \Sigma_b^*, \Lambda_b, \qquad \Sigma_b^{(*)} \to \Lambda_b \pi$

Falk and Peskin, PRD 49, 3320 (1994)

Energy and Momentum Reconstruction

Energy and momentum reconstruction:

$$E_{\Lambda_b} = \langle z \rangle E_b = E_{X_c \mu} + E_{\nu}$$

$$E_{X_{c}\mu} = \frac{3\langle z \rangle E_{jet}' - (1 - \langle z \rangle) E_{\nu}}{1 + 2\langle z \rangle} \approx \frac{3\langle z \rangle}{2\langle z \rangle + 1} E_{jet}'$$

The term E'_{jet} is the jet energy with subtraction from all tracks originating in the primary vertex.

Energy and Momentum Reconstruction

We want to also approximate $\vec{p}_{X_c\mu}$:

> The momentum \vec{p}_{μ} is easily measured.

> We estimate the direction of \vec{p}_{X_c} with all the tracks not from PV.

Assuming
$$m_{X_c} \approx m_{\Lambda_c^+}$$
, and using $E_{X_c} = E_{X_c \mu} - E_{\mu}$:

$$\left|\vec{p}_{X_{c}\mu}\right| = \sqrt{E_{X_{c}}^{2} - m_{X_{c}}^{2}}$$

Energy and Momentum Reconstruction

We can get the momentum of the neutrino through:

$$P_{\nu}^{\perp} = -P_{\perp}, \qquad P_{\nu}^{\parallel} = -a \pm \sqrt{b}$$

relative to the vector connecting PV and SV, where:

$$a = \frac{\left(m_{\Lambda_b}^2 - m^2 - 2P_{\perp}^2\right)P_{\parallel}}{2(P_{\parallel}^2 - E^2)}$$

$$b = \frac{\left(m_{\Lambda_b}^2 - m^2 - 2P_{\perp}^2\right)E^2}{4(P_{\parallel}^2 - E^2)} + \frac{E^2 P_{\perp}^2}{P_{\parallel}^2 - E^2}$$

Previous Use of Semi-leptonic Reconstruction

The reconstruction algorithm was used in LHCb to measure:

- $|V_{ub}|$ and $|V_{cb}|$ LHCb Collaboration, Nature Physics 10, (2015) 1038
- $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$ and the ratio $|V_{ub}|/|V_{cb}|$ LHCb Collaboration, PRL 126, 081804 (2021)

Distinguishing between the two ν solution via linear regression using:

$rac{1}{\sin heta}$, |F|

where θ is the polar angle of the flight vector and |F| its magnitude.

Ciezarek et al., JHEP 02 (2017) 021