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➢ Entanglement between spins was measured in 𝑝𝑝 → 𝑡 ҧ𝑡 samples in both ATLAS and 

CMS.
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➢ Entanglement between spins was measured in 𝑝𝑝 → 𝑡 ҧ𝑡 samples in both ATLAS and 

CMS.

➢ Can similar measurements be conducted in 𝑝𝑝 → 𝑏 ത𝑏 samples?
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➢ Entanglement between spins was measured in 𝑝𝑝 → 𝑡 ҧ𝑡 samples in both ATLAS and 

CMS.

➢ Can similar measurements be conducted in 𝑝𝑝 → 𝑏 ത𝑏 samples?

• The system is hadronizing.

• Ultra-relativistic regime at low invariant mass 𝑀𝑏 ത𝑏.

• 𝑏-jets have high tagging efficiency.

• Spin correlation is expected to be measurable in 𝑏-quark pairs at the LHC.
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Motivation

Y. Kats, D. Uzan, JHEP 03 (2024) 063 

ATLAS Collaboration, Nature 633 (2024) 542

CMS Collaboration, ROPP 87 (2024) 117801

CMS Collaboration, PRD 110 (2024) 112016



To measure entanglement and Bell nonlocality we need spin correlations.

➢ We give predictions for the spin correlations.

• Same as for 𝑡 ҧ𝑡 predictions, with 𝑚𝑡 → 𝑚𝑏.

• Some predictions are shown on the right.

➢ Cross sections and expected number of events are calculated using NLO QCD 

simulations.
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𝒃ഥ𝒃 Spin Correlations Predictions



➢ Polarization largely retained through hadronization:

𝜇𝑏 ∝
1

𝑚𝑏
,  𝑚𝑏 ≫ Λ𝑄𝐶𝐷

In the heavy quark limit, gluon radiation is not expected to affect the quark’s spin.

Estimated to affect the 𝑏 quark polarization by about ∼ 3%.
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Polarization in Hadronization

Falk and Peskin, PRD 49, 3320 (1994)

Körner et al., Z.Phys. C63 (1994) 575-579

Matthias Neubert, arXiv:hep-ph/9610266



The measurement can be performed on 𝒃 → 𝚲𝒃:

➢ Most common 𝑏-baryon 𝑓 𝑏 → Λ𝑏 ≈ 7%.

➢ 𝑢𝑑 form a spin and isospin singlet

• 𝑏-quark carries the baryon spin. 

Some polarization loss due to Σ𝑏
(∗)

→ Λ𝑏𝜋, soft 𝜋.
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Polarization in Hadronization
1/2 0

𝒒𝒒𝒃𝚲𝒃 =



➢ Can be quantified through the retention factors 𝑟𝑇  and 𝑟𝐿:

𝑟𝑇/𝐿 =
𝒫𝑇/𝐿 Λ𝑞

𝒫𝑇/𝐿 𝑞

0.4 ≤ 𝑟𝐿 ≤ 0.8, 0.5 ≤ 𝑟𝑇 ≤ 0.8

➢ Measured in LEP in 𝑍 boson decay 𝑟𝐿 = 0.47 ± 0.14.

➢ 𝑟𝐿 also measurable in ATLAS/CMS 𝑡 ҧ𝑡 samples, even in Run 2 data.
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Retention Factor
1/2 0

𝒒𝒒𝒃𝚲𝒃 =

1/2 1

𝒒𝒒𝒃𝚺𝒃
(∗)

 =
Falk and Peskin, PRD 49, 3320 (1994) 
Galanti et al., JHEP 11 (2015) 067

ALEPH Collaboration, PLB 365, 437 (1996) 
OPAL Collaboration, PLB 444, 539 (1998)
DELPHI Collaboration, PLB 474, 205 (2000)

Galanti, Giammanco, Grossman, Kats, Stamou, Zupan, JHEP 11 (2015) 067



We use the spin density matrix

𝜌 =
𝐼4 + σ𝑖 𝐵𝑖

+𝜎𝑖 ⊗ 𝐼2 + 𝐵𝑖
−𝐼2 ⊗ 𝜎𝑖 + σ𝑖,𝑗 𝐶𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗  

4
where 𝑖, 𝑗 = 𝑘, ො𝑛, Ƹ𝑟 . 

➢ Ƹ𝑝 - the proton beam axis

➢ 𝑘 - the direction of 𝑏 in the 𝑏 ത𝑏 rest frame

➢ Ƹ𝑟 =
ො𝑝−cos Θ𝑘

sin Θ
, cos Θ = 𝑘 ⋅ Ƹ𝑝

➢ ො𝑛 = Ƹ𝑟 × 𝑘 

𝑩± are spin polarizations and 𝑪 is the spin correlation matrix.
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Measuring Polarization and Spin Correlations



Using 𝜃𝑖, the decay product angle in relation to one of the axes of the helicity basis
𝑘, ො𝑛, Ƹ𝑟 :

1

𝜎

𝑑𝜎

𝑑 (cos 𝜃𝑖
+cos 𝜃𝑗

−)
=

1

2
1 + 𝑐𝑖𝑗cos 𝜃𝑖

+cos 𝜃𝑗
− ln

1

cos 𝜃𝑖
+ cos 𝜃𝑗

−
 

𝑐𝑖𝑗 = 𝛼+𝛼−𝑟𝑖𝑟𝑗𝑓𝐶𝑖𝑗
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Baryon Decay Angular Distributions

𝑓 =
𝑁𝑠𝑖𝑔

𝑁𝑠𝑖𝑔 + 𝑁𝑏𝑔

Sample Purity

Spin analyzing 
power

Polarization retention 
factor 

(𝑟𝑇 or 𝑟𝐿)



➢ We use the concurrence 𝒞 𝜌 : quantitative measurement of entanglement.

➢ 0 ≤ 𝒞 𝜌 ≤ 1, where 𝒞 𝜌 ≠ 0 iff the state is entangled.
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Methods for Measurements

Afik, Muñoz de Nova, EPJP 136 (2021) 907



➢ We use the concurrence 𝒞 𝜌 : quantitative measurement of entanglement.

➢ 0 ≤ 𝒞 𝜌 ≤ 1, where 𝒞 𝜌 ≠ 0 iff the state is entangled.

➢ At LO QCD: 𝒞 𝜌 = max(Δ, 0), where:

Δ =
−𝐶𝑛𝑛 + 𝐶𝑟𝑟 + 𝐶𝑘𝑘 − 1

2
.

➢ Δ > 0 is always a sufficient condition for entanglement. 
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Methods for Measurements

Afik, Muñoz de Nova, EPJP 136 (2021) 907



➢ To measure Bell Nonlocality, we look for CHSH violation:  

𝜇1 + 𝜇2 ≥ 1

where 𝜇𝑖 are the two maximal eigenvalues of 𝑪𝑻𝑪.

➢ An indicator for Bell nonlocality:

𝒱 = 𝐶𝑘𝑘
2 + 𝐶𝑟𝑟

2 − 1 ≤ 𝜇1 + 𝜇2 − 1.

➢ 𝒱 > 0 is a sufficient condition to indicate the Bell nonlocality.

➢ In ultra-relativistic regime 𝑪 is diagonal with 𝐶𝑘𝑘
2 , 𝐶𝑟𝑟

2 > 𝐶𝑛𝑛
2 .
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Methods for Measurements

Clauser et al., PRL 23 (1969) 23

Horodecki, PLA 200 (1995) 340



Concurrence in Phase Space
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➢ Solid white line is Δ > 0.

➢ Dashed black line 𝒱 > 0.

➢ Two regions with strong correlations:

• 𝑀𝑏𝑏 ≃ 2𝑚𝑏, spin-singlet.

• Ultra-relativistic 𝑀𝑏𝑏 ≫ 2𝑚𝑏, 

     spin-triplet.



Decay Channel
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➢ We will use 𝚲𝒃 → 𝑿𝒄ℓ−ഥ𝝂ℓ.

• ℓ is a 𝜇 in our case, BR Λ𝑏 → 𝑋𝑐𝜇− ҧ𝜈𝜇 ≈ 11%.

• 𝑋𝑐 is set of particles with at least one charmed hadron, usually Λ𝑐
+. 

• We require a reconstructed Λ𝑐
+ on one side, through fully charged 

hadronic decays, BR Λ𝑐
+ → reco. ≈ 18%.

• 𝛼𝜈 ≃ 1, 𝛼𝜇 ≃ −0.26.

Galanti et al., JHEP 11 (2015) 067 
Y. Kats, D. Uzan, JHEP 03 (2024) 063 



Feasibility Study 

➢ ATLAS Selection:

• Dimuon Trigger: 𝑝𝑇
𝜇

> 15 GeV and 𝜂 < 2.4 without isolation for both.

• 𝑝𝑇
𝜇

/𝑝𝑇
jet

> 0.2 for at least one muon.
• At least one 𝑏 tagged jet.

→ planned to be updated in HL-LHC 𝑝𝑇
𝜇

> 10 GeV and 𝜂 < 2.5.
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ATLAS Collaboration, JINST 15 (2020), P09015



Feasibility Study 

➢ ATLAS Selection:

• Dimuon Trigger: 𝑝𝑇
𝜇

> 15 GeV and 𝜂 < 2.4 without isolation for both.

• 𝑝𝑇
𝜇

/𝑝𝑇
jet

> 0.2 for at least one muon.
• At least one 𝑏 tagged jet.

→ planned to be updated in HL-LHC 𝑝𝑇
𝜇

> 10 GeV and 𝜂 < 2.5.

➢ LHCb Selection:

• Trigger: 𝑝𝑇
𝜇

> 1.8 GeV, with 2 < 𝜂 < 5,
2-4 SV displaced tracks,
charged particle with 𝑝𝑇 > 1.6 GeV, not from PV.

• An additional muon with 𝑝𝑇
𝜇

> 0.5 GeV and 2 < 𝜂 < 5.
• At least one 𝑏 tagged jet.
• 𝑀𝑏 ത𝑏 > 20 GeV.
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LHCb Collaboration, JHEP 08 (2017), 055

ATLAS Collaboration, JINST 15 (2020), P09015



Feasibility Study 

➢ CMS 𝑩 Parking Selection: 
• Large amount of data (~ 42 fb−1) recorded by CMS during Run 2, low trigger 

threshold, high statistics.
• Was processed when sufficient computational power became available.

Trigger:
• Single muon trigger.
• Lower specialized trigger 𝑝𝑇 cuts, between 7 and 12 GeV with 𝜂 < 1.5.
• Transverse impact parameter significance cut.

Additional cuts:

• We apply 𝑝𝑇
𝜇

> 5 GeV and 𝜂 < 2.4 on an additional muon.
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CMS Collaboration, arXiv:2403.16134



Feasibility Study 
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➢ For ATLAS and LHCb:

𝑁 = 2𝜎𝜖𝜇𝜇𝑓2 𝑏 → Λ𝑏 𝐵𝑅2 Λ𝑏 → 𝑋𝑐𝜇− ҧ𝜈𝜇

× 𝐵𝑅 Λ𝑐
+ → reco. 𝜖reco.𝜖𝑏,2

𝜖reco. ≈ 50% the average Λ𝑐
+ decay reconstruction efficiency.

𝜖𝑏,2 at least one jet to be b-tagged.



Feasibility Study 

➢ For ATLAS and LHCb:

𝑁 = 2𝜎𝜖𝜇𝜇𝑓2 𝑏 → Λ𝑏 𝐵𝑅2 Λ𝑏 → 𝑋𝑐𝜇− ҧ𝜈𝜇

× 𝐵𝑅 Λ𝑐
+ → reco. 𝜖reco.𝜖𝑏,2

𝜖reco. ≈ 50% the average Λ𝑐
+ decay reconstruction efficiency.

𝜖𝑏,2 at least one jet to be b-tagged.

➢ For CMS 𝑩 parking:

𝑁 = 2𝑓2 𝑏 → Λ𝑏 𝐵𝑅 Λ𝑏 → 𝑋𝑐𝜇− ҧ𝜈𝜇 𝜖𝜇,2

× 𝐵𝑅 Λ𝑐
+ → reco. 𝜖reco.𝑁0

𝑁0 ≈ 1010, total number of 𝑏 ത𝑏 events is CMS 𝐵 parking dataset.
𝜖𝜇,2 ≈ 36% selecting a muon on the non-triggering side.
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Results
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We fix 𝑟𝑇 = 0.7.
On the right, we assumed 20% systematic uncertainty.



Results

07/04/2025 QUANTUM OBSERVABLES FOR COLLIDER PHYSICS 2025 22

We fix 𝑟𝑇 = 0.7.
On the right, we assumed 20% systematic uncertainty.



Significance as a Function of Unknown 𝒓𝑻 and 𝒓𝑳 
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➢ White dashed line: possible range of 𝑟𝑇 and 𝑟𝐿.

We can use the non-entangled area in phase space to measure 𝑟𝐿/𝑇 or use 𝑡 ҧ𝑡 Run 2 

samples for 𝑟𝐿.

 CMS B parking Run 2 ATLAS 𝒱 > 0.3 HL-LHC

LEP LEP



Conclusions

➢ We show that Entanglement and Bell nonlocality are possible to measure in 𝑏 ത𝑏 pairs. 

➢ A hadronizing system (almost explicitly rejected in previous works) and highly 
boosted at low invariant mass. 

➢ Some new papers using QI methods to research hadronization.

➢ The most promising channel, with currently available Run 2 data, is CMS 𝐵 parking.

➢ Some experimental challenges:
• Reconstruction of a difficult decay channel for Λ𝑏, especially the unmeasured 

neutrino.
• Limited statistics due to FF, BR and efficiencies.
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Thank you!



𝚲𝒄
+ Reconstructible Channels 
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Spin Retention

Spin is retained during hadronization:

𝐵 ∝ Λ𝑄𝐶𝐷
2 , 𝑡𝑄𝐶𝐷 ∝

1

Λ𝑄𝐶𝐷

Similar to electrodynamics:
𝑑 Ԧ𝜇𝑞

𝑑𝑡
= 𝛾 Ԧ𝜇𝑞 × 𝐵; Ԧ𝜇 = 𝛾 Ԧ𝑆, 𝛾 ∝

𝑔𝑠

𝑚𝑞
 

Δ𝑆 ∝ 𝜇𝑞𝐵𝑡𝑄𝐶𝐷 ∝
Λ𝑄𝐶𝐷

𝑚𝑞
≪ 1

Due to 𝑚𝑏 ≫ Λ𝑄𝐶𝐷 ≈ 0.2 GeV.
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Δ𝐵𝑖 =
𝐴𝐵 𝐵𝑖

𝑟𝑖𝛼 𝑓𝑁𝑠𝑖𝑔
, 𝐴𝐵 0 = 3 

 Δ𝐶𝑖𝑖 =
𝐴𝐶𝑖𝑖

𝐶𝑖𝑖

𝑟𝑖
2𝛼2 𝑓𝑁𝑠𝑖𝑔

, 𝐴𝐶𝑖𝑖
0 = 3

Δ𝐶𝑘(𝑖𝑗) =
𝐴𝐶𝑖𝑗

𝐶𝑖𝑗

𝑟𝑖𝑟𝑗𝛼2 𝑓𝑁𝑠𝑖𝑔
, 𝐴𝐶𝑖𝑗

0 =
3 2

2
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Statistical Uncertainty of Polarization and Spin Correlations



Mesons can’t be used for spin measurements.

↓ 𝑏 ↓ ത𝑞 , ↓ 𝑏 ↑ ത𝑞

For 𝐵∗ meson, where
1

2
⊗

1

2
= 0 ⊕ 1 = B ⊕ B∗:

𝑃 ത𝐵∗ −1 =
1

2
, 𝑃 ത𝐵∗ 0 =

1

4
, 𝑃 ത𝐵∗ 1 = 0, 𝑃 𝐵 0 =

1

4

𝐵∗ → 𝐵𝛾

We get uniform angular distribution, no information of the spin of the b quark. 

07/04/2025 QUANTUM OBSERVABLES FOR COLLIDER PHYSICS 2025 29

Spin Measurement Through Mesons

Falk and Peskin, PRD 49, 3320 (1994)



For the baryons the spin is retained:

↓ 𝑏 ↓ 𝑞 ↓ 𝑞′ , ↓ 𝑏 ↓ 𝑞 ↑ 𝑞′ , ↓ 𝑏 ↑ 𝑞 ↓ 𝑞′ , ↓ 𝑏 ↑ 𝑞 ↑ 𝑞′

1

2
𝑏

⊗
1

2
𝑞

⊗
1

2
𝑞′

=
1

2
⊗ 1 ⊕ 0 =

1

2
⊕

1

2
⊕

3

2
 

We lose polarization information in hadronization through indirect Λ𝑏 production:

𝑏 → Σ𝑏, Σ𝑏
∗ , Λ𝑏, Σ𝑏

(∗)
→ Λ𝑏𝜋

𝚲𝒃 𝚺𝒃 𝚺𝒃
∗
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Spin Measurement through Baryons

Falk and Peskin, PRD 49, 3320 (1994)



Energy and momentum reconstruction:

𝐸Λ𝑏
= 𝑧 𝐸𝑏 = 𝐸𝑋𝑐𝜇 + 𝐸𝜈

𝐸𝑋𝑐𝜇 =
3 𝑧 𝐸𝑗𝑒𝑡

′ − 1 − 𝑧 𝐸𝜈

1 + 2〈𝑧〉
≈

3〈𝑧〉

2〈𝑧〉 + 1
𝐸𝑗𝑒𝑡

′

The term 𝐸′𝑗𝑒𝑡 is the jet energy with subtraction from all tracks originating in the 

primary vertex.

Energy and Momentum Reconstruction
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We want to also approximate Ԧ𝑝𝑋𝑐𝜇:

➢ The momentum Ԧ𝑝𝜇 is easily measured.

➢ We estimate the direction of Ԧ𝑝𝑋𝑐
 with all the tracks not from PV.

➢ Assuming 𝑚𝑋𝑐
≈ 𝑚Λ𝑐

+, and using 𝐸𝑋𝑐
= 𝐸𝑋𝑐𝜇 − 𝐸𝜇:

Ԧ𝑝𝑋𝑐𝜇 = 𝐸𝑋𝑐

2 − 𝑚𝑋𝑐

2

Energy and Momentum Reconstruction
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We can get the momentum of the neutrino through:

𝑃𝜈
⊥ = −𝑃⊥,  𝑃𝜈

∥ = −𝑎 ± 𝑏

relative to the vector connecting PV and SV, where:

𝑎 =
𝑚Λ𝑏

2 − 𝑚2 − 2𝑃⊥
2 𝑃∥

2(𝑃∥
2 − 𝐸2)

𝑏 =
𝑚Λ𝑏

2 − 𝑚2 − 2𝑃⊥
2 𝐸2

4(𝑃∥
2 − 𝐸2)

+
𝐸2𝑃⊥

2 

𝑃∥
2 − 𝐸2
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Energy and Momentum Reconstruction



The reconstruction algorithm was used in LHCb to measure:

• 𝑉𝑢𝑏  and 𝑉𝑐𝑏

• 𝐵𝑠
0 → 𝐾−𝜇+𝜈𝜇 and the ratio 𝑉𝑢𝑏 / 𝑉𝑐𝑏

Distinguishing between the two 𝜈 solution via linear regression using:
1

sin 𝜃
, |𝐹| 

where 𝜃 is the polar angle of the flight vector and |𝐹| its magnitude.

Previous Use of Semi-leptonic Reconstruction
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LHCb Collaboration, Nature Physics 10, (2015) 1038

LHCb Collaboration, PRL 126, 081804 (2021)

Ciezarek et al., JHEP 02 (2017) 021
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