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Classical

ML Algorithms

Quantum  
ML Algorithms

1. an adaptable complex system that allows approximating a complicated function

2. the calculation of a loss function used to define the task the method

3. a way to update 1. while minimising the loss function

quantum: annealing

hybrid: classical opti.

ground state 
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After training of NN

NN output is score for for 
event to look like signal (1) or 

background (0)
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Expressivity and generalisability
crucial for optimal decision boundaries

-> inference (apply NN to test samples)

defining factors are: 

• Width

• Depth

• Activation functions

• Loss function

http://playground.tensorflow.org/
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Classical data processed via 
quantum algorithms on 

quantum devices
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Most interesting case for QML applications in collider experiments



Encoding

Data State of a 
quantum system

data encoding in different parts of 
the state and operator description
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angle encoding for  
and  (feature)

HA ∈ {X, Y, Z}
t = x



Quantum Machine Learning 

with a Variational Quantum Circuit
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U(w)

Linear Unitary 
OperationEncoding step

Measurement with 
respect to  

operator, e.g. σzrealises 
entanglement etc

Ports data into 
quantum state expectation value 

of operator <-> 
many shotsdifference to classical NN - 

expressibility relies on encoding step
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with a Variational Quantum Circuit

state preparation

e.g. angle encoding

n corresponds 
to # features
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Quantum Machine Learning 

with a Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 75

Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

2-layer Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 73

unitary gate

Ry(◊) =

Q

cca
cos(◊/2) ≠sin(◊/2)

sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„

Q

cca
ei—cos(–) ei“sin(–)

≠e≠i“sin(–) e≠i—cos(–)

R

ddb . (3.2.6)

We can neglect ei„ as it only gives rise to a global phase that has no measurable

e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .
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model circuit trainable 
parameters

prepared 
state

quantum system which can be parametrised by

| i = ↵|0i + �|1i = cos
✓

2
|0i + ei'sin

✓

2
|1i =

✓
cos ✓2

sin ✓
2e

i�

◆
. (2.2)

The state of Eq. (2.2) can be visualised as a vector on the Bloch sphere. By performing op-

erations on a qubit one rotates the vector on the Bloch sphere. Circuits can be constructed

to act on numerous qubits, where a 2-qubit state can be described as a tensor product of

two 1-qubit states

| i = ↵00|00i + ↵01|01i + ↵10|10i + ↵11|11i . (2.3)

The model circuit is constructed from gates that evolve the input state. The circuit

is based on unitary operations and depends on external parameters which will be adjusted

during training.

Finally, the postprocessing step measures the state. Traditionally, we measure the

output of the first qubit. This step will also include any classical postprocessing we may

wish to include.

2.1 State Preparation

Before applying the model circuit of our classifier, we use a state preparation circuit Sx to

encode the input data into a quantum state. Sx acts on the initial state |�i

x 7! Sx|�i = Sx|0i⌦n = |xi , (2.4)

where |�i = |0i⌦n. The number of qubits n is defined by the number of features in our

dataset.

The parametrisation of the encoding can a↵ect the decision boundaries of the classifier

and can therefore be chosen in a form that suits the problem at hand [44]. Here, we use

the so-called angle encoding

|xi =
nO

i=1

cos(xi)|0i + sin(xi)|1i , (2.5)

where x = (x0, ...xN )T . Practically, this amounts to using the input data, x, as angles in

a unitary quantum gate. We take the state preparation circuit as the unitary gate

Ry(✓) =

 
cos(✓/2) -sin(✓/2)

sin(✓/2) cos(✓/2)

!
. (2.6)
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U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (2.7)
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Expressibility of model and encoding

5.2 Which Functions Do Variational Quantum Models Express? 187

Fig. 5.7 Quantum models as sum of trigonometric functions. If data features are encoded via
gates of the form e−i xi G , quantummodels are linear combinations of functions e−i xiω with frequen-
cies ω ∈ Ω determined by the generator G. Since quantum models have real-valued outputs, these
functions can be expressed as linear combinations of sine and cosine functions cos(ωxi ), sin(ωxi ).
The sketch above shows a quantum model that takes a single feature, and whose model function is
a sum of sine functions of three different frequencies

up with very limited model classes that variational circuits can express, and therefore
learn, even if the variational circuit is arbitrarily deep and wide.

This insight is important for the theoretical study of quantum models, because
it opens up the world of Fourier analysis to quantum machine learning. It also has
important practical implications, for example, that the encoding controls the expres-
sivity of quantum models, or that we have to be mindful of their periodicity when
pre-scaling the data. Finally, it may hint at applications that quantum models might
be particularly suited for.

5.2.1 Quantum Models as Linear Combinations of Periodic
Functions

Wewill first state the main result as a general theorem (based on [13]), and then draw
several conclusions as well as analyse a practical example. For the sake of generality,
we consider circuits that alternate encoding gates and parametrised unitaries

U (x, θ) = WN+1(θ)
N∏

i=1

Si (xi )Wi (θi ). (5.20)

This can be interpreted as a more general version of the circuit shown in Fig.5.2,
where the gates T1, . . . , TN+1 are made trainable.

The feature-encoding gates Si (xi ) have the form

Si (xi ) = e−i xi Gi , i = 1, . . . , N , (5.21)

where we assume without loss of generality that Gi is a diagonal operator
diag(λi

1, . . . ,λ
i
d), where d is the dimension of the Hilbert space. If this is not the

•  Most encodings result in sum of trigonometric functions, 
e.g. angle encoding, time evolution encoding

• Fourier series is universal approximator, but for many encoding strategies 
quantum models are linear combinations of functions composed of few 
frequencies
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trigonometric structure from 
data encoding

A, B, C coefficients from 
parametrised circuit W

fθ(x) = ⟨ℳ⟩x,θ = A + B cos(x) − C sin(x)

• Data reuploading can increase 
expressivity

• Pendant to activation functions in 
the encoding step. 

• Encoding + W operator give 
functional form
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• Entangled state shares information across qubits

74 Chapter 3. Classification Using a Variational Quantum Classifier

to both qubits in our system. This gate is designed to rotate our state based on a

set of learnable parameters w = (–, —, “)

R(–, —, “) = RZ(“)RY (—)RZ(–)

=

Q

cca
e≠i(–+“)cos(—/2) ≠e≠i(–≠“)sin(—/2)

e≠i(–≠“)sin(—/2) ei(–+“)cos(—/2)

R

ddb

(3.2.7)

The angles of Eq. (3.2.7) are a subset of all trainable parameters of the model and

make up the parameters in the weight vector w œ Rn◊3◊l, where n is the number

of qubits and l is the number of layers in our network. This object, w, will contain

some of the parameters that will be learned during training time. While the number

of qubits will mirror the number of features in our dataset, the number of layers in

the network, l, is a hyperparameter we can tune. In the circuit centric design we are

using, the number of qubits is held constant, however, the model could be extended

for a more flexible network design [94].

Each layer in our model contains two CNOT gates - a standard 2-qubit gate in

quantum computing with no learnable parameters. These gates flip the state of

a qubit based on the value of another control bit. Each gate in the layer uses a

di�erent qubit as the control bit.

3.2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this

by applying the Pauli Z operator on the first qubit and taking the expectation value

E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)

where Ô = ‡z ¢ I¢(n≠1). To obtain an estimate, we run the circuit repeatedly. The

number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before

returning a final classifier output. Like in a classical neural network approach, the

74 Chapter 3. Classification Using a Variational Quantum Classifier
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E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)
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for

• Evaluate expectation value of qubits to construct loss

for supervised S vs B classification one qubit sufficient
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Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

• Quantum network output:

• Changing operator and loss => VQE, VQT, … (simulate QFT)
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Simple example:

5.1 How to Interpret a Quantum Circuit as a Model 183

〈x | (|ψ(θ)〉〈ψ(θ)|) |x〉 with basis encoding and a measurement M = |ψ(θ)〉〈ψ(θ)|.
Hence, a lot of the insights from one design apply to the other as well.

Unsupervised probabilistic quantum models are also known as Born machines
[11]. The name stems on the one hand from the Born rule that links quantum states
to probabilities, and on the other hand from Boltzmann machines introduced in
Sect. 2.5.2.4.

As a last remark, note that probabilistic quantum models are naturally generative
models (see Sect. 2.2.2) since their implementation on a quantum computer produces
samples. It may in fact not be easy to compute explicit probabilities for a data sample
on paper, or to estimate it on a quantum computer—the number of measurement
samples to estimate probabilities grows in general exponentially with the number of
qubits. This is whywhat we defined as probabilistic quantummodels is often directly
referred to as “generative models” in the quantum machine learning literature.

5.1.3 An Example: Variational Quantum Classifier

As an illustration, we will now interpret a simple single-qubit variational quantum
circuit as a deterministic quantum classifier that maps a scalar input x ∈ R to a scalar
output.Wewill explicitly compute themodel function fθ(x) that the circuit gives rise
to, an exercise that can be rather instructive to understand that a variational quantum
model is just a specific kind of function family.

The circuit we consider consist of a Pauli-X rotation to encode the input x , a gen-
eral single-qubit rotation Rot(θ1, θ2, θ3) parametrised by the three trainable angles
θ1, θ2, θ3, as well as a Pauli-Z measurement:

|0〉 Rx (x) Rot(θ1, θ2, θ3) σz . (5.12)

The resulting quantum machine learning model is given by

fθ(x) = 〈0|Rx (x)†Rot(θ1, θ2, θ3)†σzRot(θ1, θ2, θ3)Rx (x)|0〉. (5.13)

Let us first consider the data encoding (see also Fig. 5.4). The Pauli-X rotation
maps x ∈ R to the state |φ(x)〉 ∈ H, where H is the two-dimensional Hilbert space
of a single qubit. Using the definition of a Pauli-X rotation, the resulting amplitude
vector in computational basis is given by

|φ(x)〉 = Rx (x)|0〉 =
(

cos( x2 ) −i sin( x2 )
−i sin( x2 ) cos( x2 )

) (
1
0

)
=

(
cos( x2 )

−i sin( x2 )

)
. (5.14)

Applying the general rotation defined in Eq. (3.48) to this state yields
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Applying the general rotation defined in Eq. (3.48) to this state yields

gives the model output
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Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
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the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
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metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
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model output

What happens on the Bloch-Sphere

data encoding
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y =
{
1 if fθ(x) > 0
−1 else

. (5.16)

Furthermore, one could define the numeric value of the probability of measuring
the qubit in state |0〉or |1〉 itself as themodel output,making it a probabilistic classifier
that we called a “density estimator” in Sect. 2.2.2. The probability is directly related
to the expectation of the Pauli-Z observable,

p(1) = fθ(x)+ 1
2

, p0 = 1 − p1, (5.17)

and can be computed by merely shifting and rescaling the result.

5.1.4 An Example: Variational Generator

The second example demonstrates a simple implementation of an unsupervised prob-
abilistic quantummodel inspired byBoltzmannmachines (see, for example,Ref. [4]).
Consider the bars and stripes dataset of black-and-white 2 × 2 images as shown in
Fig. 5.6. The image can be encoded into the computational basis states of 4 qubits
via basis encoding. For example, a 2 × 2 image with pixels (w,w, b, b) can be rep-
resented by the basis state |0011〉. These four qubits form the “visible layer”. We
use another 3 qubits which are “hidden”, which means that they remain unmeasured.
Hence, there is an injective mapping between computational basis state of the full 7
qubits and the images.

The quantum circuit of the generativemodel starts in state |0000000〉 and applies a
variational unitaryW (θ) on all qubits to get final state |ψ(θ)〉 = W (θ)|0000000〉. (If
we want to implement a quantummodel inspired by a restrictiveBoltzmannmachine
we could impose additional restrictions on W to only entangle hidden and visible
qubits). We then measure the state of the first four qubits using four Pauli-Z mea-
surements. A single measurement results in four eigenvalues in {−1, 1}, one for each
qubit. For example, we may measure the result (1, 1,−1,−1), which corresponds
to the computational basis state |0011〉, and hence to the image (w,w, b, b) from
above. Overall, the variational quantum circuit implements the probabilistic model

p(x) = |〈x |ψ(θ)〉|2, x ∈ {0, 1}⊗4. (5.18)

The hidden qubits add computational power to the model by increasing the degrees
of freedom in W (θ).

For this small example we can easily construct the state which maximises the
uniform probability of observing a bars-or-stripes image. If there were no hidden
units at all, this would be the state

for binary classifier define e.g.

for probabilistic classifier  
(density estimator) 
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for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
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that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
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the expressivity and trainability of the model in later sections
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Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of
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model output for fix angles decision boundary for fix input
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• Each particle defined by 

3 features (ϕ, η, pT)

• LHC events consist of 

 particles𝒪(500)

• Fat jets have  subjets𝒪(10)

Efficient data encoding 
crucial for realistic data 
analysis on quantum device
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1P1Q Encoding

(pT, η, ϕ) → ψ⟩ = RX(φ)RY(θ) 0⟩

[Bal, Klute, Maier, 
Oughton, Pezone, MS ’25]



GGI Workshop                 Florence      Michael Spannowsky         07.04.2025                   16

1P1Q Encoding

•  Representation of specific event as 1P1Q encoded on qubits

•  Each finalstate particle in event correponds to one vector on bloch sphere
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Supervised-Learning with Variational Quantum Circuit

•  VQC supervised learning algorithm

• Train on labelled data,  
signal = boosted top quarks 
bkg = QCD fat jets

U(Θ)
• Use the JetClass dataset first 
introduced by authors of Particle 
Transformer (ParT)

• Train only on 3 basic kinematic 
featrues  with appropraite 
sclaing and normalization

(pT, η, ϕ)

Assign one particle to one qubit
Jet represented by N qubits (N hardest constits)

• Avoid jet bias  
-> flat  in [500,1000] GeVpT



[Bal, Klute, Maier, 
Oughton, Pezone, MS ’25]

• Input are 10 hardest 
subjects of fat jet

• Tiny VQC performs 
comparably to state-of-the-
art Particle Transformer

• Drastically reduced model parameters:  
VQC (32) vs Transformer (2.14 Millions)
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better

Results for VQC 
with 1P1Q Encoding
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Unsupervised learning with Quantum Autoencoders

Fidelity

Classical Autoencoder (CAE) Quantum Autoencoder (QAE)

• Freature input is encoded into information bottleneck, i.e. latent space with 
smaller dimension that feature space

• Latent space decoded into reconstructed output, which is then compared with 
input via loss-function (often MSE)  
-> Encoder+Decoder trained together to produce output similar to input

• Quantum AE needs to work with unitary gate operations. 
Thus, need trash states to realise information bottleneck

[Kingma, Welling ’13] [Ngairangbam, MS, 
Takeuchi ’21]
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• Fidelity for QAE 
obtained from 
CMS data

• Very good data - 
simulation agreement

• Signals and bkgs flat in 
pT in [500, 1000] GeV

• Signals: 
H → cc̄, H → gg
W → qq̄, Z → qq̄, t → bqq̄



Performance QAE for different signals

Comparison with CAE

CAE: 30-20-16-12-6

latent space
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Results: Training size dependence

[Ngairangbam, MS, Takeuchi ’21]
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Figure 6: ROC curve between signal acceptance vs background rejection for Quantum Autoen-
coder(QAE) and Classical Autoencoder(CAE) for various values of mH and di↵erent latent dimen-
sions for a training datasize of 10k samples. The trend across latent dimensions is same for both
QAE and CAE with QAEs performing better in all cases.

5.3 Anomaly detection

We now explore the performance of the autoencoders for a search scenario of for di↵erent

signal strengths.

– 12 –

Much faster training and better performance for Quantum autoencoder

better

In our test cases QAE > CAE for much larger classical networks

[Ngairangbam, MS, Takeuchi ’21]
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• Encoding integral part of Quantum Neural Networks  
-> expressivity of the network 
-> resource saving and fast

Summary

• 1P1Q data encoding ideally suited for HEP 
events and final states on qubit devices

• Astonishing results for QNN, i.e. VQC and QAE, in 
comparison to classical neural networks

requires better understanding


