

Searching for

high-frequency gravitational waves with axion detectors

Valerie Domcke CERN

Cosmic Whispers Online Seminar November 26, 2024

Based on work with Sebastian Ellis, Camilo Garcia-Cely, Joachim Kopp, Sung Mook Lee and Nick Rodd

high frequency (> kHz) GW sources

Cosmological

Astrophysical

- sourced by violent cosmological event in the early Universe
- stochastic GW background (SGWB): stationary, isotropic, broad spectrum
- GW frequency determined by Hubbe horizon at sourcing time
 → high frequency = early Universe
- observationally bounded by BBN and CMB (extra radiation)
- vanilla cosmology: SGWB from cosmic inflation & CGWB very small. But in many BSM models, saturating BBN bound is easy

high frequency (> kHz) GW sources

Cosmological

- sourced by violent cosmological event in the early Universe
- stochastic GW background (SGWB): stationary, isotropic, broad spectrum
- GW frequency determined by Hubbe horizon at sourcing time
 → high frequency = early Universe
- observationally bounded by BBN and CMB (extra radiation)
- vanilla cosmology: SGWB from cosmic inflation & CGWB very small. But in many BSM models, saturating BBN bound is easy

Astrophysical

- localized GW sources, both coherent and incoherent signals possible
- no known astrophysical objects emit (significantly) in UHF band
- eg mergers of light primordial black holes or exotic compact objects, superradiance
- large signals require near-by events
 → rare events with GW strain far above BBN bound are possible
- SGWB from unresolved sources, typically harder to detect

UHF GW searches are searches for new physics

High frequency GWs at axion detectors

challenges in UHF GW detection

CMB/BBN bound constrains energy

challenges in UHF GW detection

CMB/BBN bound constrains energy

experiments measure displacement

challenges in UHF GW detection

UHF GW initiative:

https://www.ctc.cam.ac.uk/activities/UHF-GW.php

update coming!

UHG GW initiative Living Review:

detection strategies

detection strategies

detection strategies

GW electrodynamics

Classical electrodynamics + linearized GR, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, $F_{\mu\nu} = \bar{F}_{\mu\nu} + F^h_{\mu\nu}$:

$$\partial_{\mu}(\sqrt{-g} g^{\mu\alpha} F_{\alpha\beta} g^{\beta\nu}) = 0$$

$$\rightarrow \partial_{\nu} F_{h}^{\mu\nu} = j_{\text{eff}}^{\mu} = (-\nabla \cdot \mathbf{P}, \, \nabla \times \mathbf{M} + \partial_{t} \mathbf{P})$$

with

$$P_{i} = -h_{ij}\bar{E}_{j} + \frac{1}{2}h\bar{E}_{i} + h_{00}\bar{E}_{i} - \epsilon_{ijk}h_{0j}\bar{B}_{k}, M_{i} = -h_{ij}\bar{B}_{j} - \frac{1}{2}h\bar{B}_{i} + h_{jj}\bar{B}_{i} + \epsilon_{ijk}h_{0j}\bar{E}_{k},$$

effective curent effective polarization vector effective magnetization vector

induced at linear order in h in presence of external E,B field

VD, Garcia-Cely, Rodd `22

Direct analogy with axion electrodynamics

$$\mathcal{L} \supset g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B} \rightarrow \mathbf{P} = g_{a\gamma\gamma} a \mathbf{B}, \quad \mathbf{M} = g_{a\gamma\gamma} a \mathbf{E}$$
 McAllister et al `18
Tobar, McAllister, Goryachev `19
Quellet, Bogorad `19

effective source terms in Maxwell's equation due to GW

High frequency GWs at axion detectors

5/26

Valerie Domcke - CERN

Maxwell equations:

$$\nabla \cdot \boldsymbol{E} = 0, \quad \nabla \times \boldsymbol{B} - \boldsymbol{\epsilon} \boldsymbol{\dot{E}} = \boldsymbol{\underline{j}}_{\text{eff}},$$
$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} + \boldsymbol{\dot{B}} = 0,$$

effective current induced by Gws dielectric constant

Maxwell equations:

$$\nabla \cdot \boldsymbol{E} = 0, \quad \nabla \times \boldsymbol{B} - \boldsymbol{\epsilon} \boldsymbol{\dot{E}} = \boldsymbol{j}_{\text{eff}},$$
$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} + \boldsymbol{\dot{B}} = 0,$$

effective current induced by Gws dielectric constant

particular solutions in medium and vacuum

$$\boldsymbol{E}_{m}^{p} = \frac{c_{\theta}B_{0}}{\epsilon - 1} \left(h_{\times} \boldsymbol{\hat{p}} + h_{+} \boldsymbol{\hat{s}} \right) e^{-i\omega(t - \boldsymbol{\hat{k}} \cdot \boldsymbol{x})} \sim hB_{0}$$
$$\boldsymbol{E}_{v}^{p} = -\frac{B_{0}}{2} \left[i\omega x (h_{\times} \boldsymbol{\hat{p}} + h_{+} \boldsymbol{\hat{s}}) + h_{\times} s_{\theta} \boldsymbol{\hat{k}} \right] e^{-i\omega(t - \boldsymbol{\hat{k}} \cdot \boldsymbol{x})} \sim hB_{0}\omega x$$

Maxwell equations:

$$\nabla \cdot \boldsymbol{E} = 0, \quad \nabla \times \boldsymbol{B} - \boldsymbol{\epsilon} \boldsymbol{\dot{E}} = \boldsymbol{j}_{\text{eff}},$$
$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} + \boldsymbol{\dot{B}} = 0,$$

effective current induced by Gws dielectric constant

particular solutions in medium and vacuum

$$\boldsymbol{E}_{m}^{p} = \frac{c_{\theta}B_{0}}{\epsilon - 1} \left(h_{\times} \boldsymbol{\hat{p}} + h_{+} \boldsymbol{\hat{s}} \right) e^{-i\omega(t - \boldsymbol{\hat{k}} \cdot \boldsymbol{x})} \sim hB_{0}$$
$$\boldsymbol{E}_{v}^{p} = -\frac{B_{0}}{2} \left[i\omega x (h_{\times} \boldsymbol{\hat{p}} + h_{+} \boldsymbol{\hat{s}}) + h_{\times} s_{\theta} \boldsymbol{\hat{k}} \right] e^{-i\omega(t - \boldsymbol{\hat{k}} \cdot \boldsymbol{x})} \sim hB_{0} \omega x$$

Maxwell equations:

$$\nabla \cdot \boldsymbol{E} = 0, \quad \nabla \times \boldsymbol{B} - \boldsymbol{\epsilon} \boldsymbol{\dot{E}} = \boldsymbol{j}_{\text{eff}},$$
$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} + \boldsymbol{\dot{B}} = 0,$$

effective current induced by Gws dielectric constant

particular solutions in medium and vacuum $E_{m}^{p} = \frac{c_{\theta}B_{0}}{\epsilon - 1} \left(h_{\times}\hat{p} + h_{+}\hat{s}\right) e^{-i\omega(t - \hat{k} \cdot x)} \sim hB_{0}$ $E_{v}^{p} = -\frac{B_{0}}{2} \left[i\omega x (h_{\times}\hat{p} + h_{+}\hat{s}) + h_{\times}s_{\theta}\hat{k}\right] e^{-i\omega(t - \hat{k} \cdot x)} \sim hB_{0}\omega x$ resonant conversion in vacuum

Boundary conditons at surface of dielectric medium

 $\rightarrow\,$ EM waves sourced at surfaces of dielectric disks

High frequency GWs at axion detectors

- MADMAX can be operated as GW detector
- Hybrid resonant / broadband mode particularly interesting

photon (re-)generation experiments

[Gertsenshtein `62, Boccaletti et al `70, Raffelt, Stodolsky `88]

analogous to axion to photon conversion

Light-shining-through-the-wall (LSW) experiments, helioscopes:

Ejilli et al `19

Microwave cavities: astro/cosmo environments:

Berlin et al `21, `23

Fujita et al `20, VD, Garcia-Cely `21, Feng et al `22, Liu e al `23, Ito et al `23, Ramazanov et al `23,...

high frequency gravitational waves

Valerie Domcke - CERN

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Lee, Rodd `22,`23

static magnetic field (i.e. rigid detector)

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Lee, Rodd `22, `23

static magnetic field (i.e. rigid detector) effective current $\sim h(\omega L)^2 B_0$

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Lee, Rodd `22, `23

static magnetic field (i.e. rigid detector) effective current $\sim h(\omega L)^2 B_0$

induced oscillating magnetic field

eg ABRACADABRA, SHAFT, DM Radio:

VD, Garcia-Cely, Lee, Rodd `22,`23

static magnetic field (i.e. rigid detector) effective current $\sim h(\omega L)^2 B_0$

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) :

$$\Phi_{\rm gw} = \frac{i e^{-i\omega t}}{16\sqrt{2}} h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$$
$$\sim (\omega L)^3 h B_0 L^2$$

eg ABRACADABRA, SHAFT, DM Radio:

match to axion induced flux to estimate sensitivity to GW signals

VD, Garcia-Cely, Lee, Rodd `22,`23

static magnetic field (i.e. rigid detector) effective current $\sim h(\omega L)^2 B_0$

induced oscillating magnetic field

measure magnetic flux (~ h) through pickup loop

at leading order in (ωR) :

$$\Phi_{\rm gw} = \frac{i e^{-i\omega t}}{16\sqrt{2}} h^{\times} \omega^3 B_0 \pi r^2 Ra(a+2R) s_{\theta_h}^2$$
$$\sim (\omega L)^3 h B_0 L^2$$

$$\Phi_a = e^{-i\omega t} g_{a\gamma\gamma} \sqrt{2\rho_{\rm DM}} B_0 \pi r^2 R \ln(1 + a/R)$$
$$\sim (\omega L) g_{a\gamma\gamma} a B_0 L^2$$

optimized pickup loop geometry

spin 2 structure of GW : angular modulation of induced B field

leading order $(\omega R)^2$ contribution captured by breaking cylindrical symmetry, e.g. using a figure-8 pickup loop

[VD, Garcia-Cely, Lee, Rodd `23] Symmetries and selection rules

$$\Phi_{\rm gw,8} = \frac{e^{-i\omega t}}{3\sqrt{2}} \omega^2 B_0 r^3 R \ln \left(1 + a/R\right) s_{\theta_h}$$
$$\times \left(h^{\times} s_{\phi_h} - h^+ c_{\theta_h} c_{\phi_h}\right)$$
$$\sim (\omega L)^2 h B_0 L^2$$

parametric improvement for modified pickup loop

Low mass haloscopes

still far away from BBN bound, but clear synergies of UHF GW and axion searches

mechanical coupling

response function may be suppressed by oscillation pattern

mechanical coupling

- mechanical coupling can be significantly more efficient
- challenge of transducing mechanical deformation to EM signal for quantum readout

Magnetic Weber Bar

VD, Ellis, Rodd `24

GW acts as a mechanical force on (current-carrying) wires:

Induced AC magnetic field ~ h B, read out with pickup loop + SQUID

High frequency GWs at axion detectors

Magnetic Weber Bar

VD, Ellis, Rodd `24

3 effects at O(h):

- deformation of magnet coil
- motion of pickup loop
- modulation of supercurrent

Noise contributions:

SQUID, thermal mechanical, seismic, thermal noise of resonant readout

Charting the GW landscape

UHG GW initiative Living Review: https://arxiv.org/abs/2011.12414

update coming!

High frequency GWs at axion detectors

Conclusions and Outlook

Synergies between axion and high-frequency GW searches

 $(g_{a\gamma\gamma}a)F_{\mu\nu}\tilde{F}^{\mu\nu} \quad \leftrightarrow \quad hF_{\mu\nu}F^{\mu\nu}$

Key differences to leverage:

pseudoscalar versus spin 2 : optimize geometry

massive axion versus relativistic GWs : different resonance conditions

mechanical coupling of GWs : powers of $\ \omega L\,, v_s/c$, can be missed by NDA

A lot of room for new ideas!

High frequency GWs at axion detectors

. . .

... and an advertisement:

CERN TH visitor program

https://theory.cern/visitor-info

short-term visits typically O(week)

long term visits (> 3 months, usually sabbaticals)

consider applying!

backup slides

astrophysical sources

astrophysical sources

see also Franciolini, Maharana, Muia ²² High frequency GWs at axion detectors

BBN bound

at BBN or CMB decoupling:

$$\rho_{GW}(T) < \Delta \rho_{rad}(T) \quad \Rightarrow \quad \left(\frac{\rho_{GW}}{\rho_{\gamma}}\right)_{T_{BBN,CMB}} \le \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{eff} \simeq 0.05$$

at BBN, CMB decoupling ~ 5 % GW energy density allowed

$$\frac{\rho_{GW}^0}{\rho_c^0} = \Omega_\gamma^0 \left(\frac{g_s^0}{g_s(T)}\right)^{4/3} \frac{\rho_{GW}(T)}{\rho_\gamma(T)} \le 10^{-5} \Delta N_{eff} \simeq 10^{-6}$$

note: constraint on *total* GW energy

today, energy fraction $< 10^{-6}$ (for GWs present at BBN / CMB decoupling)

warm-up: LIGO

warm-up: LIGO

particular solution along x-axis:

$$\Delta A_z^p(t,x) = -\sum_{\lambda=\pm} \lambda \frac{A_0 h_+}{4} \frac{\omega_\gamma}{\omega} (1+c_\theta) \cos[(\omega_\gamma + \lambda\omega)t - (\omega_\gamma + \lambda\omega c_\theta)x] + \mathcal{O}(\omega_\gamma/\omega)^0$$

warm-up: LIGO

particular solution along x-axis:

$$\Delta A_z^p(t,x) = -\sum_{\lambda=\pm} \lambda \frac{A_0 h_+}{4} \frac{\omega_\gamma}{\omega} (1+c_\theta) \cos[(\omega_\gamma + \lambda\omega)t - (\omega_\gamma + \lambda\omega c_\theta)x] + \mathcal{O}(\omega_\gamma/\omega)^0$$

Add plane waves with frequencies $\omega_{\gamma} \pm \omega$ to match boundary condition $\vec{A}(t,0) = \vec{A}_0(t,0)$

- \rightarrow full solution for EM wave propagating in GW background
- \rightarrow compute phase shift: $\Delta \phi = -\frac{1}{2}h_+\omega_\gamma L \sin^2 \theta$, $\Delta \phi_{\text{LIGO}} = h_+\omega_\gamma L \cos(2\theta)$
- \rightarrow at next order in ω/ω_{γ} : amplitude modulation, rotation of polarization

Interferometers revisited

 \boldsymbol{A}

$$= \bar{A} + \mathscr{A} = A_0 \cos[\omega_{\gamma}(t-x)]\hat{e}_z + \mathscr{A},$$
$$\mathscr{A}_i = a_i^- \cos_- + a_i^+ \cos^+$$
$$\cos_+ \equiv \cos[(\omega_{\gamma} + \omega_g)t - \omega_{\gamma}x - \hat{k}_g \cdot x]$$
$$\cos_- \equiv \cos[(\omega_{\gamma} - \omega_g)t - \omega_{\gamma}x + \hat{k}_g \cdot x]$$

$$a_{x}^{\pm} = A_{0}h_{+}s_{\vartheta}\frac{(\omega_{g} \pm \omega_{\gamma}(1-c_{\vartheta}))}{4(\omega_{g} \pm \omega_{\gamma})} = \frac{1}{4}A_{0}h^{+}s_{\vartheta}(1-c_{\vartheta}) + \mathcal{O}(\omega_{g}/\omega_{\gamma}), \quad \text{change in polarization}$$

$$a_{y}^{\pm} = \frac{1}{4}A_{0}h_{\times}, \quad a_{z}^{\pm} = -A_{0}h_{+}\frac{\omega_{\gamma}}{\omega_{g}}\left(8\omega_{\gamma}(\omega_{g} \pm \omega_{\gamma})\right)^{-1} \cdot \left(2c_{\vartheta}(\omega_{g}^{2} \pm \omega_{g}\omega_{\gamma} + \omega_{\gamma}^{2}) \pm \omega_{\gamma}(\omega_{g} \pm 2\omega_{\gamma} - \omega_{g}c_{2\vartheta})\right)$$

$$= \mp \frac{1}{4}A_{0}h^{+}\frac{\omega_{\gamma}}{\omega_{g}}(1+c_{\vartheta}) + \mathcal{O}[(\omega_{g}/\omega_{\gamma})^{0}].$$

High frequency GWs at axion detectors

electromagnetic HF GW detectors

VD, Moriond proceedings `23

exploit synergies with axion searches

tests of quantum gravity?

Carney, VD, Rodd `23

wave versus particle regime

energy density of GW:

$$\rho \sim h^2 \omega^2 M_{\rm pl}^2$$

number of GW `quanta' in de-Broglie volume:

$$n = \rho/\omega, \quad \lambda_{\rm dB} \sim 1/\omega \quad \Rightarrow \quad n \, \lambda_{\rm dB}^3 \sim h^2 M_{\rm pl}^2/\omega^2$$

single graviton limit:

$$N = n\lambda_{\rm dB}^3 < 1 \quad \Rightarrow \quad h \lesssim \omega/M_{\rm pl}$$

(at LIGO, $N \sim 10^{37} (h/10^{-22})^2$)

High frequency GWs at axion detectors

Valerie Domcke - CERN