

Measurements of Z+b-jets with the ATLAS experiment at the LHC

Giuseppina Santoro (g.santoro@cern.ch)

Measurements of Z+b-jets with the ATLAS experiment at the LHC

Outline

- Introduction
- ATLAS detector at LHC
- Z+ b-jets measurements:
 - Latest ATLAS published results
 - Ongoing analysis

Z + b-jets in SM

• The Standard Model theory describes EW and strong interaction between elementary particles

- Z + b-jets :
 - Z studied through decay in leptons
 - b quark identified as heavy flavour jet

Z+jets production

 Z + (inclusive) jets abundantly produced at the LHC and measured up to a large jet multiplicities and in extreme phase spaces

Z + b-jets more challenging to measure and to predict

Focus of this seminar

- Production of a Z boson in association with b-jets (<u>Eur. Phys. J. C 84 (2024)</u> 984, <u>CERN-THESIS-2024-256</u>)
- Production of a Z boson in association with 2 b-jets in the boosted regime (<u>on-going analysis</u>)

Full Run 2 ATLAS dataset at \sqrt{s} =13 TeV used

Z + b-jets measurements: motivations

The Z +jets originating from the hadronization of heavy particles is important because:

- important test of perturbative quantum chromodynamics (pQCD);
 - \circ ~ fixed order calculations up to NNLO ~
 - MCs with multileg NLO matrix elements (ME) + Parton Showers (PS)
 - various flavour schemes (FS) with different
 b-mass treatments

• sensitivity to PDFs.

Z + b-jets measurements: motivations

- Inputs to improve the background modelling in MCs for Higgs boson measurements and searches of New Physics
 - Z+ b-jets significant background for ZH (--> bb)

ATLAS at LHC

The Large Hadron Collider

pp collision	Run 1 (2010-2012)	Run 2 (2015-2018)	Run 3 (2022-ongoing)
Center of mass energy	7-8 TeV	13 TeV	13,6 TeV
Luminosity	20,3 fb ⁻¹	140 fb ⁻¹	300 fb ⁻¹ (expected)

Object detection and recognition at ATLAS

- ATLAS is a cylinder, 46m long, 25m in diameter.
- ATLAS sub-detectors: inner tracker,calorimeters (electromagnetic and hadronic) and muon spectrometer.

Flavour Tagging

ра	rameter, decay	topologies)	
	A*	D	L1
ϵ_b			Rejection
	Selection	c-jet	Light-flavour jet
60%	> 2.74	27	1300
70%	> 2.02	9.4	390
77%	> 1.45	4.9	130
85%	> 0.46	2.6	29

Flavour of the jets determined with DL1r algorithm

intermediate track and vertex algorithms

DL1r is an high level algorithm operating on outputs from

DL1r exploits b-quark properties (i.e. long lifetime and

(displaced tracks, secondary vertex, longitudinal impact

heavy mass) relying on track-based observables

Measurements of the production cross-section for a Z boson in association with b-jets in proton-proton collisions at 13 TeV with the ATLAS detector

- Eur. Phys. J. C 84 (2024) 984
- <u>CERN-THESIS-2024-256</u>

Analysis goal

Inclusive and differential cross-sections of $Z+\geq 1$ b-jet, $Z+\geq 2$ b-jets in a fiducial phase space with 140 fb⁻¹ at 13 TeV

- update of the paper at 36 fb⁻¹ (<u>IHEP 07 (2020) 044</u>)

$$\begin{array}{c|c} \mathbf{Z} + \geq 1b - jet \\ \hline \mathbf{Z} \text{ boson } p_T \\ \hline \text{Lead b-jet } p_T \\ \hline \Delta R_{Zb} \end{array}$$

- Eur. Phys. J. C 84 (2024) 984
- <u>CERN-THESIS-2024-256</u>

$$\begin{array}{r} \mathbf{Z} + \geq 2b - jets \\ \hline \mathbf{Z} \text{ boson } p_T \\ \hline \mathbf{Z} \text{ boson } |Y| \\ \hline \mathbf{Z} \text{ boson } |Y| \\ \hline \mathbf{L}ead \text{ b-jet } p_T \\ \hline \mathbf{L}ead \text{ b-jet } p_T \\ \hline \mathbf{L}ead \text{ b-jet } |Y| \\ \hline \mathbf{D}ibjets \ \Delta \Phi_{bb} \\ \hline \mathbf{D}ibjets \ \Delta Y_{bb} \\ \hline \mathbf{D}ibjets \ \Delta R_{bb} \\ \hline \mathbf{D}ibjets \ M_{bb} \\ \end{array}$$

Analysis Strategy

Event selection

	N Leptons
	Exactly 2 leptons (2 muons or 2 electrons) with same flavour, opposite charge, and isolated
Muons:	Single muon Trigger, Medium, $p_T > 27$ GeV, $ \eta < 2.5$
Electrons:	Single electron Trigger, Tight, $p_T > 27$ GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.47$
	Z mass window
	$76{\rm GeV} < m_{\ell\ell} < 106{\rm GeV}$
	Missing Transverse energy
	$E_T^{\text{miss}} < 60 \text{ GeV} \text{ if } p_T^Z < 150 \text{ GeV}$
	$Z + \geq 1$ b-jet (Z+b)
Events with	a Z-boson candidate, ≥ 1 b-tagged (85 % WP) jets (Anti- k_T with $R = 0.4$) with $p_T > 20$ GeV, $ y < 2.5$, $\Delta R(\text{jet}, l) > 0.4$
	$\mathbf{Z} + \geq 2$ b-jets (Z+bb)
Events with	a Z-boson candidate, ≥ 2 b-tagged (85 % WP) jets (Anti- k_T with $R = 0.4$) with $p_T > 20$ GeV, $ y < 2.5$, $\Delta R(\text{jet}, l) > 0.4$

Signal predictions

The Z + b-jets signal predictions are derived in:

- 4-flavour number scheme (4FNS): in the 4FNS, b-quarks do not contribute to the parton distribution functions (PDFs) of the proton and, in QCD, they only appear in a massive final state due to gluon splitting g→ bb.
- 5-flavour number scheme (5FNS). In the 5FNS b-quarks contribute to the parton distribution functions of the proton.

Only in **5FNS**

	Generator/settings	Flav. scheme
Ş	MGaMC+PY8 FxFx Sherpa 2.2.11	$5\mathrm{FS}$ $5\mathrm{FS}$
MCs	MGaMC+PY8 MGaMC+PY8 Zbb	$5\mathrm{FS}$ $4\mathrm{FS}$
Fixed order calc.	NLO NNLO	$5\mathrm{FS}$ $5\mathrm{FS}$

Both in 5FNS and 4FNS

- MGaMC+PY8 FxFx and Sherpa 2.2.11 fully simulated
- MGaMC+PY8 FxFx up to 3p NLO in ME
- Sherpa 2.2.11 up to 2p NLO and up to 5p LO in ME

Monte Carlo simulation

Process	Generator	Order of pQCD in ME (FS)
$Z o \ell \ell$	MGAMC+Py8 FxFx	0-3p NLO (5FS)
	Sherpa 2.2.11	0-2p NLO, 3-5p LO (5FS)
$t\overline{t}$	NNLO+NNLL	NLO
	Powheg+Py8	NLO
single top $(s/t/Wt$ -channel)		NLO
	Powheg+Py8	NLO
$qg/q\bar{q} \rightarrow VV \rightarrow \ell\ell/\nu\nu + q\bar{q}$	Sherpa 2.2.1	1p NLO, 2-3p LO
$qq \rightarrow ZH \rightarrow \ell\ell/\nu\nu + b\bar{b}$	Powheg+Py8	NLO
$gg \rightarrow ZH \rightarrow \ell \ell / \nu \nu + b \bar{b}$	Powheg+Py8	NLO

The background processes are: Diboson, single top

production, production of H in association with Z, tt.

Background estimation

- **ttbar events** are estimated via data driven techniques
- Minor backgrounds (Diboson processes, Single top quark production, Higgs boson in association with a Z boson) are estimated via Monte Carlo simulations
- **Z+light or c-jets** dominant in Z+ b-jets events

Signal Z	$L + \ge 1 b$ -jet
Z + b, Z + bb	34%
Back	grounds
Z + c	29%
Z + l	35% 04%
Тор	2%
Others	1%
Total predicted	4294900 ± 2100
D	1115160
Signal Z + bb	4 145 168 + $\geq 2 b$ -jets 46%
Signal Z $+ bb$	4 145 168 + $\geq 2 b$ -jets 46%
Data Signal Z \overline{Z} Z + bb Backy	$4 145 168$ $+ \ge 2 b \text{-jets}$ 46% grounds
Data Signal Z - Z + bb Backg Z + b	$4 145 168$ $+ \ge 2 b \text{-jets}$ 46% grounds 11%
Data Signal Z - Z + bb Backs Z + b Z + c	4 145 168 + $\geq 2 b$ -jets 46% grounds 11% 23% 4 1 0/
Data Signal Z - Z + bb Backy Z + b Z + c Z + l	$4 145 168$ $+ \ge 2 b \text{-jets} \\ 46\%$ grounds $11\% \\ 23\% \\ 7\% \qquad 41\%$
Data Signal Z - Z + bb Backy Z + b Z + c Z + l Top	$4 145 168$ $+ \ge 2 b \text{-jets} \\ 46\% \\ \text{grounds} \\ 11\% \\ 23\% \\ 7\% \\ 12\% \\ 41\% \\ 41\% \\ 41\% \\ 12\% \\ 41\% \\ 41\% \\ 12\% \\ 41\% \\ 12\% \\ 41\% \\ 12\%$
Data Signal Z - Z + bb Backy Z + b Z + c Z + l Top Others	$4 145 168$ $+ \ge 2 b \text{-jets} \\ 46\%$ grounds $11\% \\ 23\% \\ 7\% \\ 12\% \\ 2\%$ $4 1 9/7$
Data Signal Z - Z + bb Back Z + b Z + c Z + l Top Others Total predicted	$4 145 168$ $+ \ge 2 b \text{-jets} \\ 46\%$ grounds $11\% \\ 23\% \\ 7\% \\ 12\% \\ 2\%$ $325 300 \pm 600$

Data-driven techniques for ttbar simulation

- **ttbar events** are the second largest background, simulated with data-driven techniques
- Events with opposite flavor leptons (eµ) are selected to define the control region (CR).
- The small background contributions in CR are subtracted from data
- The events in the signal region are obtained from the ratio between the distribution of the given observable in the signal region and in the CR.

$$\bar{t}^{SR} = t\bar{t}_{\text{Data}}^{CR} \cdot TF^{CR \to SR} \qquad TF^{CR \to SR} = \frac{t\bar{t}_{MC}^{SR}(ee/\mu\mu)}{t\bar{t}_{MC}^{CR}(e\mu)}$$

Cocococo a cococo a cococo

Flavor fit

- Z+jets background from a fit to data of a flavour sensitive variable, templates from MC, fit performed in individual bins of each observable.
- For $Z + \ge 1$ b-jet the DL1r b-tagging discriminant output is used.
- For $Z + \ge 2$ b-jets two DL1r discriminant outputs are combined.

Detector level comparison (Z + ≥ 1 b-jet)

Detector level comparison (Z + ≥ 2 b-jets)

Fiducial phase space for the cross-section measurements

• In this analysis the fiducial phase-space is very close to the detector-level ones, this implies that the unfolding procedure relies at minimum on MC-based acceptance corrections and therefore the modeling uncertainties related to this corrections are small.

Object Selection	Acceptance cuts		
$Z o \mu \mu$	2 OS μ with $p_T > 27 \text{GeV}, \eta < 2.5, m_{\mu\mu} = 91 \text{GeV} \pm 15 \text{GeV}$		
$Z \rightarrow ee$	2 OS e with $p_T > 27 \text{GeV}, \eta < 2.5, m_{ee} = 91 \text{GeV} \pm 15 \text{GeV}$		
bjet	$p_T > 20 \text{GeV} \text{ and } y < 2.5, \Delta R(\text{bjet}, \ell) > 0.4$		

Unfolding

• (Data-Bkg) corrected for selection efficiency, resolution effects and small differences between detector level and fiducial phase spaces

$$\frac{d\sigma_i}{dX_i} = \frac{M_{ij}^{-1}(N_j^{\text{obs}} - B_j)f_j}{\epsilon_i L \Delta X_i}$$

- where M_{ii} is the migration matrix
- f corrects for events that pass the reco selection but fail the truth one
- ϵ_i corrects for events that pass the truth selection but fail the reco one
- Iterative Bayesian unfolding method as implemented in RooUnfold
- For prior (the initial approximation of the cross section), migration matrix, efficiency and fake factor \rightarrow MG+FxFx
- To estimate the systematic uncertainties on the unfolding method \rightarrow Sherpa

Uncertainty on the differential cross-section

- The uncertainties at detector level (i.e. Lepton, b-tagging, jets, etc.), uncertainties on the backgrounds are propagated to the unfolding procedure.
- Uncertainty on the unfolding procedure also accounted for.
- The total uncertainty for $Z + \ge 1$ b-jet ranges between 5 % and 10 %.
- The total uncertainty for Z + ≥ 2 b-jets ranges between 10 % and 15 % in most of the variables

26

Inclusive fiducial cross sections

 σ (Z+≥1 b-jet) = 10.49 ± 0.02 (stat.) ± 0.59 (syst.) pb σ (Z+≥2 b-jets) = 1.39 ± 0.01 (stat.) ± 0.13 (syst.) pb

Uncertainty on the measurement: ∞ 6% (Z+ ≥ 1 b-jet), ∞ 10% (Z+ ≥ 2 b- jets) - 5FS NLO ME+PS MCs (MGaMC+Py8 FxFx and Sherpa) describe Z+b and Z+bb, while 4FS Zbb NLO (MGaMC+Py8 Zbb) describes only Z+bb largely underestimating Z+b

Important for test pQCD and for background prediction for other processes

4FS ME+PS MC largely underestimate data

Fixed-order calculations show discrepancy with data in the high pT (Z) region

- Sensitive to additional radiation
- Good description for 5FS
- Mismodelling of 4FS for collinear and large $\Delta R(Z,b)$

- Interesting for pQCD and MC modeling.
- Data slightly harder than predictions.
- MG+Py8 FxFx demonstrates the best agreement with data.

- Sensitive to PDFs in addition to probing pQCD.
- Good agreement between data and predictions.
- Sherpa describes very well the shape of the data.

- Characterize soft and hard radiation
- MG+Py8 FxFx and Sherpa describe the data.
 - MG+Py8 (4FS) slightly underestimate small and large values.

- Sensitive to PDFs.
- MG+Py8 FxFx and Sherpa describe the data shape well

Differential cross section measurements

- Sherpa and MG+Py8 FxFx agree with data within the uncertainty.
- Sherpa describe the shape of this observable quite well.
- MG+Py8 FxFx shows some difference in shape.

- Important observable ZH ($H \rightarrow bb$) production.
- They are still in agreement with data within the uncertainties.
- None of the predictions describe the shape of the data.

Study of the production of a Z boson in association with 2 b-jets in the boosted regime exploring also Jet Substructures

On-going analysis

Z+bb JSS analysis : motivations and strategy

- The radiation pattern around b-quarks largely unknown
- JSS observables never observed on HF jets
- Explore JSS sensitive to the color structure of the final state.
- High-momentum regime is particularly sensitive to modifications to SM dynamics by new physics.

- 2 kinematic regions (resolved and boosted) x 2 signals (Z+light jets, Z + b-jets):
 - Z + light jets measurements in resolved and boosted regions
 - Z + b-jets measurements in resolved and boosted regions

Proposed observables

Paper at 13 TeV with 36 fb⁻¹ : Phys. Rev. D 108 (2023) 1, 012022

- Lund Plane measured both for Z + light jets and Z+ b-jets
- JSS under study (Color ring, ECFs)

Lund Jet Plane

A jet can be considered as a constitute by softs emissions (b and c) around a hard core (a, the originating q/g)

 $\Delta^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2 = angle \text{ of the emission wrt hard core}$

 $k_{t} = p_{Tb}\Delta$ = transverse momentum of the emission w.r.t the jet axis

- Take anti-k, clustered jet
- Re-cluster with Cambridge-Aachen
- "De-cluster" C/A jets (undo the last clustering step) and record the kinematics of the splitting.
- LP obtained by iterating the procedure, always following the hardest branch in each splitting

Event selection

N Leptons			
Exactly 2 leptons (2 muons or 2 electrons) with same flavour, opposite charge and isolated			
Leptons	$p_T > 27 { m GeV}, \eta < 2.5$		

Z mass window

 $76 \text{ GeV} < m_{\ell\ell} < 106 \text{ GeV}$

Resolved Topology

 ≥2 b-tagged (70 % WP) jets (Anti-kt with R=0.4) with p_T> 20 GeV and |η| < 2.5

Boosted Topology

- ≥1 large R jet (R=1.0) with and p_⊤> 200 GeV and |η| < 1.5
- ≥2 b-tag (70 % WP) jets matched to a fatjet

Detector level plots (resolved region)

Very Preliminary

- Low background contamination (difference in WP)
- Good agreement with data

Detector level plots (boosted region)

Very Preliminary

- Distribution doesn't fully agree with data
- Low statistics (plan to move the η cut)

Conclusions

- Z+b-jets measurements provide essential inputs for the improvement of MCs modeling, allowing a better understanding of pQCD and useful inputs for PDFs fits.
- Latest ATLAS Z+b-jets measurement with 140 fb⁻¹ at 13 TeV in resolved regime:
 - 4 FS MCs underestimate Z+b data
 - 5 FS MCs describe better the data, but discrepancies for some observables in specific phase phases observed (MG FxFx describes better pT observables, Sherpa describes better angular variables in Z+bb topology)
- New high profiled measurements in this sector are coming through:
 - the investigation of the boosted regime and jets substructure observables in Z+bb (on-going)
 - W+bb (not yet started), ratio measurements (not yet started)

Thanks for the attention!

BACK-UP SLIDES

Sequential Algorithm k_T

For each pair of particles i, j the distance is defined as:

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{R^2}$$

and for each particle the distance with respect to the beam is defined as

$$d_{iB} = p_{ti}^2$$

- Looking for small distances:
 - Ο
 - If is d_{ij} two particles are combined in a new one If it is d_{iB} declare i as jet and remove it from the particle list 0
- The procedure is repeated until there are no more unexamined particles

Uncertainties

Source of uncertainty	$\left Z(\to \ell \ell) + \ge 1 \text{ b-jet} \right $	$Z(\rightarrow \ell \ell) + \geq 2 b$ -jets	$Z(\to \ell\ell) + \ge 1 c\text{-jet}$
	[%]	[%]	
Flavour tagging	3.6	5.7	10.3
Jet	2.4	4.3	6.5
Lepton	0.3	0.3	0.4
$E_{\rm T}^{\rm miss}$	0.4	0.5	0.3
Z+jets background	0.6	1.5	1.6
Top background	0.1	0.3	< 0.1
Other backgrounds	< 0.1	0.2	0.1
Pile-up	0.6	0.6	0.2
Unfolding	3.3	5.8	5.0
Luminosity	0.8	0.9	0.7
Total [%]	5.6	9.4	13.2

Fake corrections

- Corrections are applied for fake events, so events that fall outside the considered phase space at the particle level but migrate into the studied region at the detector level.
- It is the ratio between the number of reconstructed events that are matched to a truth event (i.e., events that pass both the reconstruction and truth-level selections) to the total number of reconstructed events (i.e. events that pass the reconstruction regardless the truth-level selection).

Reconstruction efficiencies

• It is the ratio between the number of reconstructed events that are matched to a truth event (i.e., events that pass both the reconstruction and truth-level selections) to the total number of truth events.

Bayesian iterative procedure

• In the Bayesian iterative procedure, the relation between the distribution of an observable α at particle level T(α) and at detector level R(α) is:

$$R(\alpha_i) = \sum_{j=1}^{N_T} M_{ij} T(\alpha_j) = \sum_{j=1}^{N_T} M(R(\alpha_i)|T(\alpha_j)) T(\alpha_j)$$

- To produce the unfolding matrix a MC simulation is chosen as a priori, so the probability set of the hypothesis T(α).
- For the first iteration the prior is taken from the particle-level prediction, for the second iteration from the unfolded distribution of the previous iteration.

Unfolding

Different unfolding strategies:

- IBU
- Multifold with DNN
- Omnifold with LundNet GNN

Flavour tagging calibration and algorithm

Two level algorithms:

- Low Level Algorithm: inputs \rightarrow impact parameters and traces
- High Level Algorithms: inputs → outputs of the low level algorithm, outputs → probability that a jet derives from the adronization of a specific quark. The most common are: MV2c10 and DL1r.

Calibrations techniques correct for efficiency differences between data and simulations and this is done through a scale factor

$$SF^{f} = \frac{\varepsilon_{data}^{f}}{\varepsilon_{MC}^{f}}$$
 $\varepsilon^{f} = \frac{N_{pass}^{f}}{N_{all}^{f}}$

Muons and electrons identification efficiency

- The electrons are reconstructed matching the tracks in the inner detector and the energy deposit in the electromagnetic calorimeter.
- Electrons are identified using a likelihood (LH) method. The LH identification method distinguishes between signal and background by calculating likelihoods for both signal (LS) and background (LB).
- Three operating points ordered in decreasing identification efficiency with an inversely proportional increase in electron signal purity : LooseLH, MediumLH and TightLH
- Muons are charged particles that leave tracks in the inner detector (ID), muon spectrometer (MS) and occasionally small energy deposits in the calorimeters.
- Similar to electron identification, muons are identified using certain discriminating variables with four identification working points: Loose, Medium, Tight and High-p_T.

$$L_{S(B)}(x) = \prod_{i=1}^{n} P_{S(B),i}(x_i)$$

$$d_L = \frac{L_S}{L_S + L_B}$$

JES and JER

- Jet Energy Scale (JES) uncertainties are measured by calibrating jet energies using in-situ techniques and comparing data to Monte Carlo simulations.
- Jet Energy Resolution (JER) uncertainties are determined by evaluating the resolution in data using similar techniques and applying smearing corrections to match Monte Carlo truth-level predictions.
- Both JES and JER uncertainties depend on factors like jet p_T , η , pile-up, calorimeter response, and modeling differences between data and simulations.
- These uncertainties are systematically propagated to analyses, ensuring their impact on key observables and reconstructed objects is well accounted for.