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I    GR AND MEASUREMENTS 

General Relativity in a Nutshell

Gµν = 8πTµνinertia “here” energy 
“everywhere”



I    GR AND MEASUREMENTS

From Covariance to Local Frames

General Covariance requires that physics laws are expressed 
by means of tensorial equations in a pseudo-Riemannian 
manifold, which is the (mathematical model of the) four-
dimensional space-time.

 there are no privileged frames

 within a frame, there are no privileged coordinate sets



I    GR AND MEASUREMENTS

Operational definition of measurements

According to the mathematical model underlying GR (but 
also “metric theories of gravity”) in order to operationally 
define measurements performed in a laboratory we need to

 define the reference frame of the laboratory

 define the, space-time metric in this reference frame



I    GR AND MEASUREMENTS

Example: Laboratories in Free Fall
Ring Laser Measurements in GR

Measurements in Space-Time

Space-Time Splitting along the observer’s world-line u
Gravitoelectromagnetic (GEM) fields can be introduced whenever one
applies splitting techniques: the field equations of general relativity and
geodesics equation can be recast in a 3+1 space+time form, in which
they are analogous to Maxwell’s equations and Lorentz force law
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Physics is simple when 
analyzed locally!
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Example: Laboratories in Free Fall

X

Y
Z Extending the reference 

frame (along the geodesic 
wor ld l ine) cur vature 
effects occur! 



I    GR AND MEASUREMENTS 

Laboratories in arbitrary motion

To define the results of measurements in four-dimensional 
space-time it is necessary to focus on laboratories where 
measurements are carried out, i.e. on the observers that 
perform measurements:

 observers possess their own space-time, in the vicinity of 
their world-lines

 covariant physics laws are then projected onto local space 
and time 

 predictions for the outcome of measurements  in the 
locally Minkowskian spacetime of the observers are obtained
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I    LOCAL REFERENCE FRAMES

Space-time metric in the laboratory

Up to linear displacements from the observer worldline the 
space-time metric is: 

Ring Laser Measurements in GR

Physics is simple only when analyzed locally: the laboratory frame

Up to linear displacements from the observer’s world-line
The space-time metric in the laboratory is

ds2 = (1+ 2A · x)dt2 − dx · dx − 2 (Ω ∧ x) · dxdt +O(|x |2)

A is the spatial projection of the observer’s four-acceleration→
failure of free fall
Ω is the precession rate of the local tetrad with respect to a
Fermi-Walker transported tetrad→ rotation of the gyroscopes with
respect to the observer’s tetrad
the observer’s frame is non rotating when its axes are
Fermi-Walker transported, so Ω measures the rotation rate of the
frame
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Minkowski spacetime iff A=0 and Ω=0



I    LOCAL REFERENCE FRAMES

Gravitomagnetic field in a terrestrial 
laboratory

The space-time metric in a terrestrial laboratory is

Ω is the rotation rate of the laboratory and can be measured by 
very accurate rotation sensors: ring lasers!

The output of the ring laser is
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Definition of the local rotation rate
Ring Laser Measurements in GR

Laboratory on the Earth

In order to define Ω, we have to consider that
the laboratory is fixed on the Earth surface
the space-time of the rotating Earth can be described by the
post-Newtonian metric

ds2 = (1− 2U(R))dT 2 − (1+ 2γU(R)) δijdX idX j +

2
[

(1+ γ + α1/4)
R3 (J⊕ × R)i − α1U(R)Wi

]

dX idT ,

where γ = 1,α1 = 0 in GR; U(R) is the gravitational potential of
the Earth, J⊕ is its angular momentum,Wi measures preferred
frames effect.
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I    LOCAL REFERENCE FRAMES

Rotation of a terrestrial laboratory
The rotation rate measured in a terrestrial laboratory is

where Ω0 is the terrestrial rotation rate and 

where 
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Gravitomagnetic field in a terrestrial 
laboratory

The space-time metric in a terrestrial laboratory is

Motion in inertial fields Motion in GEM fields

Analogy
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I    GENARAL RELATIVITY AND BEYOND

Was Einstein Right?

 General Relativity (GR)  has passed with flying colors many 
tests in the solar system and in binary pulsar systems

 GR weak field and Newtonian gravity are accurately tested

 Post-Newtonian Parameters (metric theories of gravity) 
are constrained and in good agreement with GR predictions



I    GENARAL RELATIVITY AND BEYOND

PPN status report

Current Limits on PPN parameters [Will 2006]

slide 3

Parameter Effect Limit Remarks
γ − 1 time delay 2.3 × 10−5 Cassini tracking

light deflection 4 × 10−4 VLBI
β − 1 perihelion shift 3 × 10−3 J2 = 10−7 from helioseismology

Nordtvedt effect 2.3 × 10−4 ηN = 4β − γ − 3 assumed
ξ Earth tides 10−3 gravimeter data
α1 orbital polarization 10−4 Lunar laser ranging

2 × 10−4 PSR J2317+1439
α2 spin precession 4 × 10−7 solar alignment with ecliptic
α3 pulsar acceleration 4 × 10−20 pulsar Ṗ statistics
ηN Nordtvedt effect 9 × 10−4 lunar laser ranging
ζ1 – 2 × 10−2 combined PPN bounds
ζ2 binary acceleration 4 × 10−5 P̈p for PSR 1913+16
ζ3 Newton’s 3rd law 10−8 Lunar acceleration
ζ4 – – not independent

Constrained by ring-lasers



I    GENARAL RELATIVITY AND BEYOND

But... is still Einstein Right?

 Data coming from the observation of galactic rotation 
curves   cannot be explained with Newtonian gravity or GR: 
dark matter  is needed

Light curves of the IaSN and CMB state that the Universe is 
now undergoing a phase of accelerated expansion, which 
cannot be accounted for in GR, unless requiring the existence 
dark energy (cosmic fluid with exotic properties)

A quantum theory of gravity?



I    GENARAL RELATIVITY AND BEYOND

The Fall of GR...?

 The query for dark matter and dark energy perhaps 
suggests the failure of GR to deal with gravitational 
interactions on galactic, intergalactic and cosmological scales

  This led to the introduction of several modified theories of 
gravity which are extension of or alternative to GR



ALTERNATIVES TO 
GENERAL RELATIVITY



I    ALTERNATIVES TO GR

Scalar-Tensor Theories

Class. Quantum Grav. 27 (2010) 125006 M Capone and M L Ruggiero

By varying it with respect to the metric tensor, we get the equations of motion:

Gµν = 1
f ′(φ)

{
1
2
gµν[f (φ) − φf ′(φ)] + f ′(φ),µ;ν − gµν!f ′(φ)

}
+

8πGN

f ′(φ)
Tµν, (6)

whereas a variation with respect to the scalar field, φ, gives the equation

[R − φ]f ′′(φ) = 0. (7)

As a consequence, it is easy to realize that, for a given function f , provided that f ′′(φ) #= 0,
equations (6) coincide with equations (3) on shell, i.e. on the solutions of the last equation (7),
so when

R = φ, (8)

this correspondence on shell can be demonstrated to apply also in N dimensions and with a
more general higher-order Lagrangian, i.e. for (2n + 4)th-order gravity [6, 13, 14] (see also
[16] for a representation of the higher order Lagrangian density when also negative powers of
the Dalambertian operator are present).

Now, it is interesting to point out that the action (5) can be transformed into a general ST
action:

SST = 1
16πGN

∫
d4x

√
−g[F(ϕ)R − Z(ϕ)gµν∇µϕ∇νϕ − 2V (ϕ)] + Sm, (9)

by setting in the latter the identifications

F(ϕ) = f ′(φ), Z(ϕ) = 0, 2V (ϕ) = φf ′(φ) − f (φ). (10)

Consequently, by varying the action (9) with respect to both the components of the metric and
the scalar field we obtain the following equations of motion:

Gµν = 1
F(ϕ)

{
Z(ϕ)

[
∇µϕ∇νϕ − 1

2
gµν∇σ ϕ∇σ ϕ

]

+ F(ϕ),µ;ν − gµν!F(ϕ) − gµνV (ϕ)

}
+

8πGN

F(ϕ)
Tµν (11)

and

!ϕ +
1

2Z(ϕ)

{
R

dF

dϕ
+ ∇σ ϕ∇σ ϕ

dZ

dϕ
− 2

dV

dϕ

}
= 0, (12)

respectively.
As it is well known [17], the action integral (9) reduces to the generalized Brans–Dicke

one by simply substituting

F(ϕ) = ϕ, Z(ϕ) = ω

ϕ
. (13)

So, by taking into account equations (10) and (13), we see that f (R) theories can be suitably
transformed into a BD theory with ω = 0.

In table 1 a synopsis of the key steps for going from a generalized scalar–tensor Lagrangian
to an f (R) one is described.

Remark. According to what has been stated above, metric f (R) gravity is nothing but a
different representation of the Brans–Dicke theory with null BD parameter, ω = 0: as a
consequence, metric f (R) gravity has one extra degree of freedom with respect to general
relativity. Actually, this extra degree of freedom is dynamic, as one can easily deduce from the
equation of motion for the ϕ field, obtained from equation (12) with the substitutions (13), in

3

 Tensor (     ) + Scalar field (    )
 Hints: inflation, strings, higher order...

Negligible mass of the scalar field
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PPN Parameter γ and Solar System Constraints of Massive Brans-Dicke Theories

L. Perivolaropoulos
Department of Physics, University of Ioannina, Greece

(Dated: January 19, 2010)

Previous solar system constraints of the Brans-Dicke (BD) parameter ω have either ignored the
effects of the scalar field potential (mass terms) or assumed a highly massive scalar field. Here, we
interpolate between the above two assumptions and derive the solar system constraints on the BD
parameter ω for any field mass. We show that for ω = O(1) the solar system constraints relax for a

field mass m
>
∼ 20×mAU = 20× 10−27

GeV .

Scalar-Tensor (ST) theories [1] constitute a fairly
generic extension of General Relativity (GR) where the

gravitational constant is promoted to a field whose dy-
namics is determined by the following action [1, 2]

S =
1

16πG

∫

d4x
√
−g

(

F (Φ) R− Z(Φ) gµν∂µΦ∂νΦ− 2U(Φ)
)

+ Sm[ψm; gµν ] . (1)

where G is the bare gravitational constant, R is the
scalar curvature of the metric gµν and Sm is the action
of matter fields. The variation of the dimensionless func-
tion F (Φ) describes the variation of the effective grav-
itational constant. This variation (spatial or temporal)
is severely constrained by solar system experiments [3–
5]. The GR limit of ST theories is obtained either by
fixing F (Φ) = Φ0 # 1 (Φ0 is a constant) or by freezing
the dynamics of Φ using the function Z(Φ) or the poten-
tial U(Φ). For example a large and steep Z(Φ) makes it
very costly energetically for Φ to develop a kinetic term
while a steep U(Φ) (massive Φ) can make it very costly
energetically for Φ to develop potential energy. In both
cases we have an effective freezing of the dynamics which
reduces the ST theory to GR.
ST theories have attracted significant attention re-

cently as a potentially physical mechanism[2, 6, 7] for
generating the observed accelerating expansion of the
universe (see Ref. [8, 9] and references therein). A sig-
nificant advantage of this mechanism is that it can natu-
rally generate an accelerating expansion rate correspond-
ing to an effective equation of state parameter weff that
crosses the phantom divide line w = −1 [6, 10, 11]. Such
a crossing is consistent with cosmological observations
and is difficult to obtain in the context of GR [12]. In
addition ST theories naturally emerge in the context of
string theories[13] and in Kaluza-Klein[14] theories with
compact extra dimensions[15].
A special case of ST theories is the Brans-Dicke (BD)

theory[16] where

F (Φ) = Φ (2)

Z(Φ) =
ω

Φ
(3)

For a massive BD theory we also assume a potential of
the form

U(Φ) =
1

2
m2(Φ− Φ0)

2 (4)

Clearly, the spatial dynamics of Φ can freeze for ω $ 1
or for m $ r−1 where r is the scale of the experiment
or observation testing the dynamics of Φ. For solar sys-
tem scale observations, the relevant scale is the Astro-
nomical Unit (AU # 108km) corresponding to a mass
scale mAU # 10−27GeV . Even though this scale is small
for particle physics considerations, it is still much larger
than the Hubble mass scale mH0 # 10−42GeV required
for non-trivial cosmological evolution of Φ[7, 17].
Current solar system constraints[4, 18] of the BD pa-

rameter ω have been obtained under one of the following
assumptions:

• Negligible mass of the field Φ (m % mAU):
In this case the relation between the observable
Post-Newtonian parameter γ (measuring how much
space curvature is produced by a unit rest mass)[18]
and ω is of the form [4, 19, 20]

γ(ω) =
1 + ω

2 + ω
(5)

This relation combined with the solar system con-
straints of the Cassini mission [5]

γobs − 1 = (2.1± 2.3)× 10−5 (6)

which constrain γ close to its GR value γ = 1, leads
to the constraint on ω

ω > 4× 104 (7)
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tial U(Φ). For example a large and steep Z(Φ) makes it
very costly energetically for Φ to develop a kinetic term
while a steep U(Φ) (massive Φ) can make it very costly
energetically for Φ to develop potential energy. In both
cases we have an effective freezing of the dynamics which
reduces the ST theory to GR.
ST theories have attracted significant attention re-

cently as a potentially physical mechanism[2, 6, 7] for
generating the observed accelerating expansion of the
universe (see Ref. [8, 9] and references therein). A sig-
nificant advantage of this mechanism is that it can natu-
rally generate an accelerating expansion rate correspond-
ing to an effective equation of state parameter weff that
crosses the phantom divide line w = −1 [6, 10, 11]. Such
a crossing is consistent with cosmological observations
and is difficult to obtain in the context of GR [12]. In
addition ST theories naturally emerge in the context of
string theories[13] and in Kaluza-Klein[14] theories with
compact extra dimensions[15].
A special case of ST theories is the Brans-Dicke (BD)

theory[16] where

F (Φ) = Φ (2)

Z(Φ) =
ω

Φ
(3)

For a massive BD theory we also assume a potential of
the form

U(Φ) =
1

2
m2(Φ− Φ0)

2 (4)

Clearly, the spatial dynamics of Φ can freeze for ω $ 1
or for m $ r−1 where r is the scale of the experiment
or observation testing the dynamics of Φ. For solar sys-
tem scale observations, the relevant scale is the Astro-
nomical Unit (AU # 108km) corresponding to a mass
scale mAU # 10−27GeV . Even though this scale is small
for particle physics considerations, it is still much larger
than the Hubble mass scale mH0 # 10−42GeV required
for non-trivial cosmological evolution of Φ[7, 17].
Current solar system constraints[4, 18] of the BD pa-

rameter ω have been obtained under one of the following
assumptions:

• Negligible mass of the field Φ (m % mAU):
In this case the relation between the observable
Post-Newtonian parameter γ (measuring how much
space curvature is produced by a unit rest mass)[18]
and ω is of the form [4, 19, 20]

γ(ω) =
1 + ω

2 + ω
(5)

This relation combined with the solar system con-
straints of the Cassini mission [5]

γobs − 1 = (2.1± 2.3)× 10−5 (6)

which constrain γ close to its GR value γ = 1, leads
to the constraint on ω

ω > 4× 104 (7)
Very massive scalar field

dynamics of the scalar field is frozen on the given scale
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By varying it with respect to the metric tensor, we get the equations of motion:

Gµν = 1
f ′(φ)

{
1
2
gµν[f (φ) − φf ′(φ)] + f ′(φ),µ;ν − gµν!f ′(φ)

}
+

8πGN

f ′(φ)
Tµν, (6)

whereas a variation with respect to the scalar field, φ, gives the equation

[R − φ]f ′′(φ) = 0. (7)

As a consequence, it is easy to realize that, for a given function f , provided that f ′′(φ) #= 0,
equations (6) coincide with equations (3) on shell, i.e. on the solutions of the last equation (7),
so when

R = φ, (8)

this correspondence on shell can be demonstrated to apply also in N dimensions and with a
more general higher-order Lagrangian, i.e. for (2n + 4)th-order gravity [6, 13, 14] (see also
[16] for a representation of the higher order Lagrangian density when also negative powers of
the Dalambertian operator are present).

Now, it is interesting to point out that the action (5) can be transformed into a general ST
action:

SST = 1
16πGN

∫
d4x

√
−g[F(ϕ)R − Z(ϕ)gµν∇µϕ∇νϕ − 2V (ϕ)] + Sm, (9)

by setting in the latter the identifications

F(ϕ) = f ′(φ), Z(ϕ) = 0, 2V (ϕ) = φf ′(φ) − f (φ). (10)

Consequently, by varying the action (9) with respect to both the components of the metric and
the scalar field we obtain the following equations of motion:

Gµν = 1
F(ϕ)

{
Z(ϕ)

[
∇µϕ∇νϕ − 1

2
gµν∇σ ϕ∇σ ϕ

]

+ F(ϕ),µ;ν − gµν!F(ϕ) − gµνV (ϕ)

}
+

8πGN

F(ϕ)
Tµν (11)

and

!ϕ +
1

2Z(ϕ)

{
R

dF

dϕ
+ ∇σ ϕ∇σ ϕ

dZ

dϕ
− 2

dV

dϕ

}
= 0, (12)

respectively.
As it is well known [17], the action integral (9) reduces to the generalized Brans–Dicke

one by simply substituting

F(ϕ) = ϕ, Z(ϕ) = ω

ϕ
. (13)

So, by taking into account equations (10) and (13), we see that f (R) theories can be suitably
transformed into a BD theory with ω = 0.

In table 1 a synopsis of the key steps for going from a generalized scalar–tensor Lagrangian
to an f (R) one is described.

Remark. According to what has been stated above, metric f (R) gravity is nothing but a
different representation of the Brans–Dicke theory with null BD parameter, ω = 0: as a
consequence, metric f (R) gravity has one extra degree of freedom with respect to general
relativity. Actually, this extra degree of freedom is dynamic, as one can easily deduce from the
equation of motion for the ϕ field, obtained from equation (12) with the substitutions (13), in

3

 Tensor (     ) + Scalar field (    )
 Hints: inflation, strings, higher order...

Intermediate case

Measuring γ allows to set contraints on ω at the given scale  
Olmo 2005

Perivolaraoupolos 2009
Capone, MLR 2010
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two theories are said to be dynamically equivalent (limiting ourselves to the classical point
of view) when it is possible to make their field equations (or actions) coincide by means
of suitable redefinitions of the fields (gravitational and matter). In particular, the dynamical
equivalence between f (R) and the BD theory (see e.g. [2] and references therein) suggests
us to use the results known for the latter to directly obtain, after suitable manipulations, those
corresponding to the former. This could be very fruitful especially for those results directly
related to observations or experiments: for instance, post-Newtonian parameters (see [9] for
the original works, [10] for a detailed description of the framework and [11] for a recent review)
can be used to constrain f (R) theories. The issue of the post-Newtonian parameters for metric
f (R) theories has been previously dealt with in the literature, following the approach described
in [12]. However, the choice of the starting parameters and a too peculiar selection for the
transformation between f (R) and the corresponding BD theory have led to, at least, misleading
results.

In this paper, after reviewing the dynamical equivalence between f (R) and ST theories,
we focus on the post-Newtonian parameters issue. In particular, in the framework of metric
f (R) gravity, we discuss how post-Newtonian parameters are obtained, by exploiting the
dynamical equivalence with ST theories, and we suggest that those obtained in [12] are not
correct. Then we deduce the post-Newtonian parameters γ and β for a metric f (R) theory
and, furthermore, we give the expressions of these two parameters in terms of the mass of the
scalar field, both for a general scalar–tensor theory and for an f (R) theory.

2. General correspondences between f (R) gravity and scalar–tensor theories

We discuss the dynamical equivalence between f (R) and ST theories, focusing on the simplest
case of a fourth-order Lagrangian (see [6, 13, 14] for the extension to theories of order higher
than the fourth, i.e., of the type f (R,!nR), with n " 1).

By varying the action integral of f (R) gravity4

SHO = 1
16πGN

∫
d4x

√
−gf (R) + Sm, (1)

where

Sm =
∫

d4x
√

−gLm (2)

is the matter action and Lm is the matter Lagrangian, with respect to the components of the
metric tensor, the following fourth-order equations of motion are obtained [15]:

Gµν = 1
f ′(R)

{
1
2
gµν[f (R) − Rf ′(R)] + f ′(R),µ;ν − gµν!f ′(R)

}
+

8πGN

f ′(R)
Tµν, (3)

where Gµν represents the Einstein tensor and

Tµν
.= − 2

√−g

δLm

δgµν
(4)

are the components of the matter/energy fields stress–energy tensor.
Now, let us consider the scalar–tensor action integral

Sφ = 1
16πGN

∫
d4x

√
−g[f (φ) + (R − φ)f ′(φ)] + Sm. (5)

4 We use units such that c = 1.

2

 Higher order theories (richer geometry!) 
 Hints: speculation but also...inflation, cosmology 

Analogy with scalar-tensor gravity

Class. Quantum Grav. 27 (2010) 125006 M Capone and M L Ruggiero

Now, the effective mass is obtained by expanding the potential term around the present value
of ϕ, ϕ0, as follows:

dVeff(ϕ)

dϕ
! dVeff(ϕ)

dϕ

∣∣∣∣
0

+
d2Veff(ϕ)

dϕ2

∣∣∣∣
0
ϕ = m2(ϕ0)ϕ, (44)

where the last equality has been attained supposing Veff to have a minimum at ϕ0.
Equation (43) admits the usual Yukawa-like solution ϕ(r) ∝ exp[−m(ϕ0)r]/r with the mass
determined by definition (41). It then appears clear that the right definition of the mass (and,
consequently, the proper range for the scalar field) to be singled out and consequently used in
the analysis of post-Newtonian parameters is equation (41) [24].

Eventually, note that from the same definition, on taking into account equations (15), (29),
one gets the mass for the case of a generic f (R) theory,

m2
HO =

[
f ′ − Rf ′′

3f ′′

]
, (45)

provided that f ′′ %= 0, where primes mean derivative with respect to R. This result is in
agreement with that found in [24] as well as in other contests, such as studies of stability [26],
perturbations [27] and propagator calculations for f (R) [28], etc [29].

For example, if we consider a Lagrangian that can be expressed as a power series of the
Ricci scalar around the asymptotic value R = 0, we may write, in general,

f (R) = c0 + c1R + c2R
2 + · · · + cnR

n, (46)

where ci are constant coefficients. Then, from (45), after evaluating around R = 0, we obtain

m2
HO = c1

6c2
(47)

so that the mass is directly related to the parameters of the Lagrangian.
We are now able to write the post-Newtonian parameters in terms of the effective mass

(41) of the scalar field, ϕ, and the shape of the potential, V (ϕ). In fact, as we pointed out above,
this is a crucial point that should be considered in order to translate the PPN parameters from a
scalar–tensor to an f (R) theory. As effectively stated in [30] and in [31], for a massive scalar
field like the case we are discussing (where none of the two extreme conditions m(ϕ)r & 1
and m(ϕ)r ' 1, with r that indicates the scale of the experiment or observation testing the
dynamics of the field, is in principle required), the correct expression of γ is

γ = 3 + 2ω − e−m0r

3 + 2ω + e−m0r
, (48)

where m0 = m(ϕ0) is the background value of the mass, that is,

m2
0 = 2

3 + 2ω
(ϕV ′′ − V ′)

∣∣∣∣
0
. (49)

Remark. Expression (48) should be interpreted as an effective value of the post-Newtonian
parameter γ , because of the dependence on the scale of the experiment r; as shown in
[30, 31], this is due to a Yukawa-like correction to the Newtonian potential10. In particular,
it can be used to exploit the known bounds on γ to constrain the allowed values of m0

and ω, on the experimental scale r such that m0r ! 1, so that these constraints are scale
dependent11. As for the f (R) case, this fact implies that it is possible to constrain the
10 It is interesting to point out that Yukawa-like corrections arise in f (R) gravity also without making use of the
analogy with scalar–tensor gravity (see e.g. [32, 33]).
11 We point out that our approach cannot be applied in principle to experiments that develop at very different scales,
such as gravitational lensing; in these cases, a generalized parametrized post-Newtonian formalism should be applied
that takes into account extra terms arising in f (R) gravity (see e.g. [32]).

9

Solutions of the tricky field equations

perturbation of the Newtonian potential
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Calculations analogous to those performed in Section 4 lead to 

eT =a'/b, e2T = e a t  = 0 (6.11) 

for transport synchronization and 

ao 
eE = b(1 - v2) ' e2E = eaE = 0 (6.12) 

for the Einstein procedure, while external synchronization with the help of  
clocks in the ether system leads to 

eExt = e2Ext = eaExt = 0 (6.13) 

The arguments given above can be summarized in an abbreviated manner as 
follows: I f  no preferred directions exist in space (only a preferred rest system ~, 
the ether system), then the transformation between ~ and S has to be of  the 
general form 

t = a T +  ~ ex  

x = d X +  ~ - ~  v(vx) - bvT (6.14) 

since only v can be used to construct the transformation coefficient. (6.14) 
contains the functions a(v), b(v), d(v)  (physics) and ~(v) = (e, e2, ea) 
(synchronization). 

Neither transport synchronization nor Einstein synchronization introduce 
preferred directions into (6.14) so that in these cases e c~ v, as we have seen be- 
fore. This leaves us with (6.10), with e2 = e3 = 0. 

Finally we turn to the expression for the velocity of  light in the system S. 
The velocity of  a light ray propagating in an angle 0 with respect to the x axis 
is given by 

c(O) = {cos 0 eb (1 - 0 2) + va cos 0 + e2(1 - v 2) b sin 0 

- a [cos 2 0 + b2d2(1 - v 2) sin 2 0] 1/2 } [c0s 2 0 (e2b 
(6.15) 

- e2bv 2 - a2/b + 2eva) + sin 2 0 (e~b - v2e~b - d2ba 2) 

+ 2 sin 0 cos 0 X e2(eb - v2eb + va)]-I 

This rather lengthy expression is obtained by transforming the light cone 
X 2 - T 2 = 0 into S [for simplicity we have assumed 6 2 = e a in (6.1 5)]. Various 
special cases are contained in (6.15): 

(A) First order effects result if transport synchronization o f  clocks is used. 
In this case we expand 

a = l + a v 2 +  ' ' ' ,  b " d ~ l ,  e = e T = a ' / b = 2 a v ,  e 2 = O  

 Test theory of special relativity

 Role of simultaneity and syncrhonziation between frames

 Existence of a privleged frame (“ether frame”, e.g. SSB, 
CMB...) where light propagate isotropically

 Test of anisotropy of light propagation

Generalization of Lorentz 
transformations
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and obtain 

c(O) = 1 - v(1 + 2a) cos 0 (6.16) 

The one-way velocity of  light is a measurable quantity in this case and is direc- 
tion dependent if c~ v~ -  89 

(B) In'the case of Einstein synchronization we obtain (in all orders in v) 

b ( 1 -  0 2) c(O) = ( 6 . 1 7 )  a [cos 2 0 + b2d2(1 - v 2) sin 2 0] 1/2 

Here e(0 + rr) = c(O) so that the velocity of light does not depend on the sense in 
which the light ray moves. No first-order effects exist in this case and for the 
second-order effects we obtain 

l /e(0)  = 1 +( /3+6 - •  2 sin 2 0 +(o~-/3+ 1)v 2 (6.18) 2 

where/3 and 6 are the coefficients in the expansions 

b = 1 +/302 + " ' ,  d= 1 +6v 2 + " "  (6.19) 

The term cc/3 + 6 -  89 is tested by the Michelson-Morley experiment, while the 
Kennedy-Thorndike experiment measures c~ -/?, + 1 (see Paper III, [31 ] ). 

w Conclusion 

In order to arrive at a test theory of special relativity a class of rival theories 
has to be chosen, with which the theory is to be compared. In this series of  
papers we consider theories where a privileged system of reference ("ether") 
exists. This ether system is defined by the requirements that the Einstein and 
the transport synchronization of clocks agree and that, furthermore, light 
propagation is isotropic in the ether system. 

The synchronization of clocks in other systems will then in general be de- 
fined by a synchronization function f ( x ,  v) such that t = a(v)T + f ( x ,  v). While 
f c a n  in principle be nonlinear in x, only linear functions f ( x ,  v) = e(v)x turn 
out to be of practical importance. The three synchronization coefficients ~ = 
(e, e2, e3) are characteristic for the synchronization method considered. 

The possible methods of synchronization can be divided into two classes: 
External synchronization sets the clocks in S by comparing C(S) with C(N), 

the set of clocks in the ether system N. 
Internal synchronization does not require that ~ be known and makes use 

only of operations defined in S. Einstein and transport synchronization are in- 
ternal synchronization procedures. 

Anisotropy of light propagation

Use an accurate sensor (ring laser) to test anisotropy
of light propagation w.r.t.  some “inertial frame” and set
constraints on the theory parameters
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Standard Model Extension (SME)

 More fundamental theories required to include a quantum 
description of the gravitational field 

 Investigation of the ultimate structure of  space and time, 
and interplay with matter

  Breaking of CPT and Lorentz symmetries?

5

vacuum with varying scalar

small size of scalar

large size of scalar

FIG. 2: Lorentz breakdown through spacetime-dependent scalars. The background shading of gray measures the size of the
scalar: the lighter regions correspond to smaller values of the scalar. The black arrows represent the gradient, which selects a
preferred direction in the vacuum. It follows that Lorentz symmetry is broken.

IV. THE STANDARD-MODEL EXTENSION

In order to establish the low-energy phenomenology of Lorentz and CPT breaking and to identify relevant exper-
imental signals for these effects, a suitable test framework is desirable. A number of Lorentz-symmetry tests are
motivated and analyzed in purely kinematical models that describe small deviations from Lorentz invariance, such as
Robertson’s framework and its Mansouri–Sexl extension, the c2 model, and phenomenologically constructed modified
one-particle dispersion relations. However, the CPT properties of these test models lack clarity, and the absence of
dynamical features greatly restricts their scope. To circumvent these issues, the SME, already mentioned in the intro-
duction, has been developed. The present section contains a brief review of the philosophy behind the construction
of the SME.

Let us first argue in favor of a dynamical rather than a purely kinematical test model. When the kinematical rules
are fixed, there is certainly some residual freedom in introducing corresponding dynamical features. However, the
dynamics is constrained by the requirement that established physics must be recovered in certain limits. Moreover, it
seems complicated and may not even be possible to construct an effective theory that contains the Standard Model
with dynamics considerably different from that of the SME. We also mention that kinematical investigations are
limited to only a subset of potential Lorentz-violation signals emerging from fundamental physics. From this point of
view, it appears to be desirable to implement explicitly dynamical features of sufficient generality into test frameworks
for Lorentz and CPT invariance.

The generality of the SME. In order to recognize the generality of the SME, we review the main ingredients of
its construction [10, 11]. Starting from the conventional Standard-Model and general-relativity Lagrangians LSM and
Lgr, respectively, Lorentz-violating corrections δL are added:

LSME = LSM + Lgr + δL . (6)

Here, LSME denotes the SME Lagrangian. The correction terms δL are formed by contracting Standard-Model and
gravitational fields of any mass dimensionality with Lorentz-breaking tensorial coefficients that describe a nontrivial
vacuum with background vectors or tensors. This background is presumed to originate from effects in the underlying
theory, such as those discussed in the previous section. To ensure coordinate independence, these contractions must
yield coordinate Lorentz scalars. We remark that in a curved-background context involving gravity, this procedure
is most easily implemented employing the vierbein. It thus becomes clear that all possible contributions to δL
determine the most general effective dynamical description of first-order Lorentz violation at the level of observer
Lorentz-invariant unitary effective field theory.

Other potential features of underlying physics, such as non-pointlike elementary particles or a discrete spacetime
structure at the Planck length, are not likely to invalidate this effective-field-theory approach at presently attainable
energies. On the contrary, the phenomenologically successful Standard Model and general relativity are widely believed
to be effective-field-theory limits of more fundamental physics. If underlying physics indeed leads to minuscule Lorentz-
breaking effects, it would appear somewhat artificial to consider low-energy effective models outside the framework
of effective quantum field theory. We finally note that the requirement for a low-energy description beyond effective
field theory is also unlikely to arise within the context of underlying physics with novel Lorentz-symmetric features,
such as additional particles, new symmetries, or large extra dimensions. Note in particular that Lorentz-invariant
modifications can therefore easily be implemented into the SME, should it become necessary [12].

Advantages of the SME. The SME allows the identification and direct comparison of virtually all presently
feasible experiments that search for deviations from Lorentz and CPT symmetry. Moreover, certain limits of the
SME correspond to classical kinematics test models of relativity theory (such as the previously mentioned frame-
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series in the curvature, torsion, covariant derivative, and
possibly other fields:

LLV = e(kT )λµνTλµν + e(kR)κλµνRκλµν

+e(kTT )αβγλµνTαβγTλµν

+e(kDT )κλµνDκTλµν + . . . , (2)

where e is the determinant of the vierbein e a
µ . The

coefficients for Lorentz violation (kT )λµν , (kR)κλµν ,
(kTT )αβγλµν , (kDT )κλµν can vary with spacetime posi-
tion. Since particle local Lorentz violation is always ac-
companied by particle diffeomorphism violation [28], the
coefficients for Lorentz violation also control diffeomor-
phism violation in the theory.

In the present work, we focus on the Riemann-
spacetime limit of the SME, so the torsion is taken to
vanish. We suppose that the Lorentz-invariant piece of
the theory is the Einstein-Hilbert action, and we also
restrict attention to the leading-order Lorentz-violating
terms. The gravitational terms that remain in this limit
form part of the minimal SME. The basic features of the
resulting theory are discussed in Ref. [4], and those rele-
vant for our purposes are summarized in this subsection.

The effective action of the minimal SME in this limit
can be written as

S = SEH + SLV + S′. (3)

The first term in (3) is the Einstein-Hilbert action of
general relativity. It is given by

SEH =
1

2κ

∫
d4xe(R − 2Λ), (4)

where R is the Ricci scalar, Λ is the cosmological con-
stant, and κ = 8πG. As usual, in the present context of a
Riemann spacetime, the independent degrees of freedom
of the gravitational field are contained in the metric gµν .
Since we are ultimately focusing on the post-newtonian
limit of (3), in which the effects of Λ are known to be
negligible, we set Λ = 0 for the remainder of this work.

The second term in Eq. (3) contains the leading
Lorentz-violating gravitational couplings. They can be
written as

SLV =
1

2κ

∫
d4xe(−uR + sµνRT

µν + tκλµνCκλµν). (5)

In this equation, RT
µν is the trace-free Ricci tensor and

Cκλµν is the Weyl conformal tensor. The coefficients for
Lorentz violation sµν and tκλµν inherit the symmetries
of the Ricci tensor and the Riemann curvature tensor,
respectively. The structure of Eq. (5) implies that sµν

can be taken traceless and that the various traces of tκλµν

can all be taken to vanish. It follows that Eq. (5) contains
20 independent coefficients, of which one is in u, 9 are in
sµν , and 10 are in tκλµν .

The coefficients u, sµν , and tκλµν typically depend on
spacetime position. Their nature depends in part on the

origin of the Lorentz violation. As mentioned in the
introduction, explicit Lorentz violation is incompatible
with Riemann spacetime [4]. We therefore limit attention
in this work to spontaneous Lorentz violation in Riemann
spacetime, for which the coefficients u, sµν , tκλµν are dy-
namical fields. Note that spontaneous local Lorentz vi-
olation is accompanied by spontaneous diffeomorphism
violation, so as many as 10 symmetry generators can be
broken through the dynamics, with a variety of interest-
ing attendant phenomena [28]. Note also that u, sµν ,
tκλµν may be composites of fields in the underlying the-
ory. Examples for this situation are discussed in Sec. IV.

The third term in Eq. (3) is the general matter action
S′. In addition to determining the dynamics of ordinary
matter, it includes contributions from the coefficients u,
sµν , tκλµν , which for our purposes must be considered in
some detail. The action S′ could also be taken to include
the SME terms describing Lorentz violation in the matter
sector. These terms, given in Ref. [4], include Lorentz-
violating matter-gravity couplings with potentially ob-
servable consequences, but addressing these effects lies
beyond the scope of the present work. Here, we focus
instead on effects from the gravitational and matter cou-
plings of the coefficients u, sµν , tκλµν in Eq. (5).

Variation with respect to the metric gµν while holding
u, sµν , and tκλµν fixed yields the field equations

Gµν − (T Rstu)µν = κ(Tg)
µν . (6)

In this expression,

(T Rstu)µν ≡ − 1
2DµDνu − 1

2DνDµu + gµνD2u + uGµν

+ 1
2sαβRαβgµν + 1

2DαDµsαν + 1
2DαDνsαµ

− 1
2D2sµν − 1

2gµνDαDβsαβ + 1
2 tαβγµR ν

αβγ

+ 1
2 tαβγνR µ

αβγ + 1
2 tαβγδRαβγδg

µν

−DαDβtµανβ − DαDβtναµβ , (7)

while the general matter energy-momentum tensor is de-
fined as usual by

1
2e(Tg)

µν ≡ δL′/δgµν , (8)

where L′ is the Lagrange density of the general matter
action S′.

B. Linearization

One of the central goals of this work is to use the SME
to obtain the newtonian and leading post-newtonian cor-
rections to general relativity induced by Lorentz viola-
tions. For this purpose, it suffices to work at linear order
in metric fluctuations about a Minkowski background.
We can therefore adopt the usual asymptotically inertial
coordinates and write

gµν = ηµν + hµν . (9)

In this subsection, we derive the effective linearized field
equations for hµν in the presence of Lorentz violation.
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where

 corrections parallels to terrestrial rotation rate
 corrections to the geodetic term



CONCLUSIONS



What we aim at doing with G-GranSasso?

 Testing GR and metric theories of gravity in the 
laboratory

 Constraining PPN parameters

What we could aim at doing with G-GranSasso?

 Use the ring laser as an accurate sensor to set 
constraints on theories/models that go beyond the PPN 
scheme in a terrestrial environment
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