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GENERAL RELATIVITY
AND MEASUREMENTS




General Relativity in a Nutshell

A

Albert Einstein
(1879 - 1955)

inertia “here” == G, = 871, ~<mu energy

‘“everywhere”




B GR AND MEASUREMENTS

From Covariance to Local Frames

General Covariance requires that physics laws are expressed
by means of tensorial equations in a pseudo-Riemannian
manifold, which is the (mathematical model of the) four-
dimensional space-time.




B GR AND MEASUREMENTS

Operational definition of measurements

According to the mathematical model underlying GR (but
also “metric theories of gravity”) in order to operationally
define measurements performed in a laboratory we need to




. GR AND MEASUREMENTS

- ds*=dT"* —dX"” —d

o+l

s? =dT? —dX? —dY?* —dZ

Space-time is “locally”
Minkowskian

Space-time is “locally” Physics is simple when i'
Minkowskian |




B GR AND MEASUREMENTS

Y Extending the reference

o | 3 S '
d32 — (1 + ROlo'nXan)de + (gR{)lijan) dXJ —+
\\

| 1

| ,, —(dix — gRilkale)dXika + O(| 3)'




B GR AND MEASUREMENTS

To define the results of measurements in four-dimensional
space-time it is necessary to focus on laboratories where
measurements are carried out, i.e. on the observers that
perform measurements:

> observers possess their own space-time, in the vicinity of

their world-lines
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LOCAL REFERENCE FRAMES

Up to linear displacements from the observer worldline the
space-time metric is:
ds® = (1+2A-x)d? —dx-dx —2(Q A x) - dxdt + O(|x|?)

@ A is the spatial projection of the observer’s four-acceleration —
failure of free fall

@ ) is the precession rate of the local tetrad with respect to a
Fermi-Walker transported tetrad — rotation of the gyroscopes wit
respect to the observer’s tetrad

@ the observer’s frame is non rotating when its axes are

Fermi-Walker transported, so {2 measures the rotation rate of the
frame

Minkowski spacetime iff A=0 and Q=0




LOCAL REFERENCE FRAMES

The space-time metric in a terrestrial laboratory is

ds? = (1 +2A- x) dt 2(Q A x) - dxdt + O(|x[?)

Q) is the rotation rate of the laboratory and can be measured by
‘very accurate rotation sensors: ring lasers!

The output of the ring laser is

4A
ol = ﬁﬂ -u




LOCAL REFERENCE FRAMES

In order to define 2, we have to consider that
@ the laboratory is fixed on the Earth surface

@ the space-time of the rotating Earth can be described by the
post-Newtonian metric

ds?> = (1—-2U(R))dT? — (1 +2yU(R)) §;dX'dX’ +
(1+v+a1/4)

2 3

(Jg x R); — aqU(R)W;| dX'dT,

where v = 1,y = 0 in GR; U(R) is the gravitational potential of
the Earth, Jg is its angular momentum, W; measures preferred
frames effect.




LOCAL REFERENCE FRAMES

The rotation rate measured in a terrestrial laboratory is
Q=Q0+ Qpe
where Qo is the terrestrial rotation rate and
Qper = Ng+ N+ Qw + Q7

where GM
Qg = —(14+9) 5= 2R sin ¥QoUy — Geodetic Precession
Qp = e _2i_ Zablk C2CI3?3 [Jo — 3 (Jg - Ur) U] — Lense — Thirring
Qw = O: ng u, AN W — Preferred Frame Effect
Qr = 912 Q3 R? sin® 92y — Thomas Precession
s S5 Mooy~ 61010 ¢ g

| 5 —-10 Qp ~




LOCAL REFERENCE FRAMES

The space-time metric in a terrestrial laboratory is

ds® = (14+2A-x)dt? —dx-dx —2(QA x) - dxdt + O(|x|?)

dp Dp; ~ v =

= = mkE; — x B

T mA + 2mv X (2 o = M +’m’70(c X G)i
Analogy

Motion in inertial fields Motion in GEM fields
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B} GENARAL RELATIVITY AND BEYOND

Was Einstein Right?

» General Relativity (GR) has passed with flying colors many

tests in the solar system and in binary pulsar systems




B} GENARAL RELATIVITY AND BEYOND

Parameter  Effect Limit Remarks
time delay 2.3 x 107>  Cassini tracking
light deflection 4x10"*  VLBI
perihelion shift 3x 107 J2 = 1077 from helioseismology

binary acceleraths
(3 Newton's 3rd law

Ca -

nN = 43 — v — 3 assumed
gravimeter data

Lunar laser ranging

PSR J2317+1439

solar alignment with ecliptic
pulsar P statistics

lunar laser ranging
combined PPN bounds
P, for PSR 1913+16
Lunar acceleration

not independent

N\

'Constrained by ring-lasers
L - S A—




B} GENARAL RELATIVITY AND BEYOND

But... is still Einstein Right?

» Data coming from the observation of galactic rotation
curves cannot be explained with Newtonian gravity or GR:

dark matter is needed

?nght curves of the laSN and CMB state that the Universe is
2rgoing ated  expansion, which




B} GENARAL RELATIVITY AND BEYOND

The Fall of GR...?

» The query for dark matter and dark energy perhaps

suggests the failure of GR to deal with M
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ALTERNATIVES TO GR

Sst /d4xv—g[F(<0)R — Z(0)8""' VoV, =2V ()] + Sy

~ 167Gy

=Tensor (g,,,) + Scalar field ( )
= Hints: inflation, strings, higher order...

Negligible mass of the scalar field m, << mg

14+ w

= —— Yops — 1 =(2.14£2.3) x 107°
7 (w) > et ( 3) x 10
w > 104
Very massive scalar field my >> Mg

dynamics of the scalar field is frozen on the given scale




ALTERNATIVES TO GR

Sst /d4xv—g[F(¢)R — Z(0)8""' VoV, =2V ()] + Sy

~ 167Gy

=Tensor (g,,,) + Scalar field ( )
= Hints: inflation, strings, higher order...

Intermediate case

3+ 2w — e~ /ms
342w + e—Me/ms

y

Measuring Y allows to set contraints on w at the given scale

Olmo 2005
Perivolaraoupolos 2009
Capone, MLR 2010




ALTERNATIVES TO GR

/ 3 /=g f(R) + S

S —
O = 16nGy

= Higher order theories (richer geometry!)
= Hints: speculation but also...inflation, cosmology

Analogy with scalar-tensor gravity H m,, = [f ' ?)—fljf ”]
Solutions of the tricky field equations Guv = NMuw + Py

o s

perturbation of the Newtonian potential




ALTERNATIVES TO GR

Some perturbations of the Newtonian potential

f ) 8

T (9
_ _GM | kr*
U__'r' +6
GM o e T
U=-="+35+5ns5myg




B ALTERNATIVES TO GR

ds? = (1 + ¢(r)) dt* — (1 + ¢(r)) (dr? + r2dQ?)

where

o(r) = 2Un + 26U

v(r) = —2Un 4+ 0va(r)
Power Law Perturbations U = %
r n
U = ﬂr|m|

MLR 2010




ALTERNATIVES TO GR

Starting from the background metric

A+v+a/4)

ds? = (1 — 2UN)dT2 — (1 + 2")/UN) (5z'jdXide+ 2[ RS

U@AR%—@JKMWﬂdX%T

f.i. we obtain the “geodetic precession”
Qg = —(1-|—’}’)VUN/\V

1+~v4+a1/4)

ds? = (1 — 2U)GT? — (1 + 29U) 6;;dX'dXI+ 2 Jo AR). — a UW; | dXdT
‘\:\\ . Z

@ Un + 5U> @rbation)

GM terms

Qg — Qg + 08¢




B ALTERNATIVES TO GR

Mansouri - Sexl Test Theory

> Test theory of special relativity

~ Role of simultaneity and syncrhonziation between frames

- t=aT+ex

Generalization of Lorentz

: b-d
transformations x=dX+ e v(vx) - bvT




ALTERNATIVES TO GR

Anisotropy of light propagation

b(1-v?)
a [cos® 6 +b2d*(1 - v?) sin? 9] /2

c{f)=

Use an accurate sensor (ring Iaser) to test anlsotropy
of light propagation w.r.t. some “inertial frame” and set

| ‘constraints on the theory parameters




B ALTERNATIVES TO GR

Standard Model Extension (SME)

? More fundamental theories required to include a quantum
description of the gravitational field

1
SEH = 2—/d4$6(R — ZA)

K
Lsme = Lsm + Lgr +0L *
‘ Siv = i /d4xe(—uR + SMVRZ;,, + MY Oz )




B ALTERNATIVES TO GR

Standard Model Extension (SME)

= | aboratory Experiments

Toaxy  «—>  pr= im0

gyro precession rate ring laser output
0’ QJE - QJ

CoR > CSMES

Bailey and Kostelecky 2006




ROTATING OBSERVERS

where

57T —i(_5/3)3

N _+gg(_3/5)§JK5K.

—KLa.KaL)a.J

= corrections parallels to terrestrial rotation rate

= corrections to the geodetic term

Bailey and Kostelecky 2006




CONCLUSIONS




FUNDAMENTAL PHYSICS AND G-GRANSASSO

What we aim at doing with G-GranSasso?

o Testing GR and metric theories of gravity in the
laboratory
@ Constraining PPN parameters

What we could aim at doing with G-GranSasso?

O Use the ring laser as an accurate sensor to set
constraints on theories/models that go beyond the PPN
scheme in a terrestrial environment




