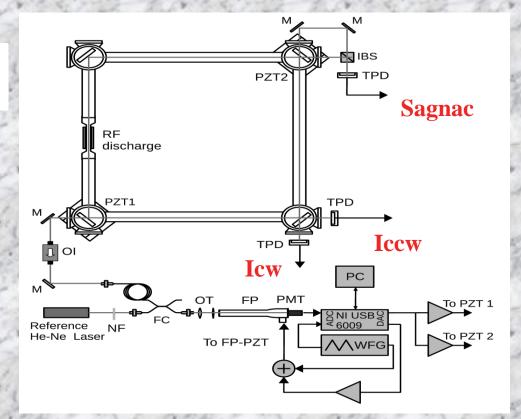


DAQ SYSTEM FOR GYROLASER


Bachir Bouhadef

Padova Meeting 2011

DAQ SYSTEM FOR GYROLASER

Analog input channels :

Icw, Iccw and Sagnac @ 5 kHz. Control parameters (>10) @ 1 Hz.

Padova Meeting 2011

DAQ SYSTEM FOR GYROLASER

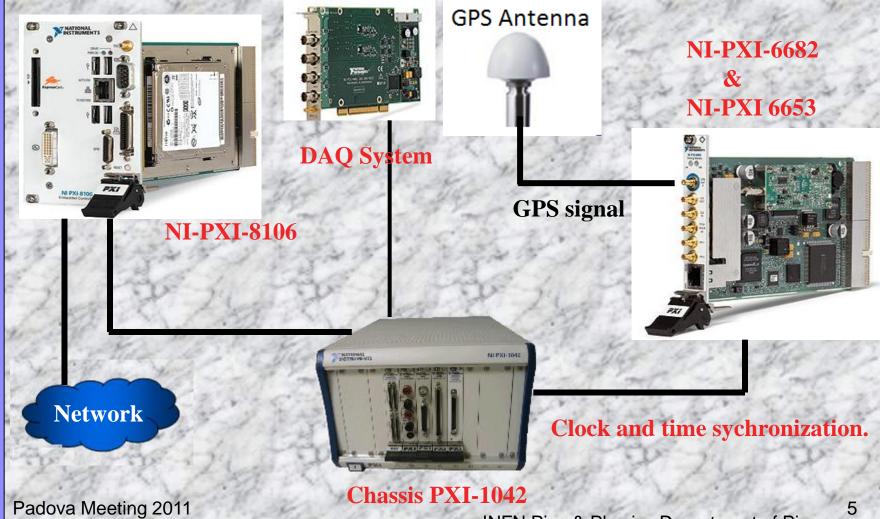
NI PXI-8106 RT : 2.16 GHz Intel Core 2 Duo T7400 With LabVIEW Real-Time

Padova Meeting 2011

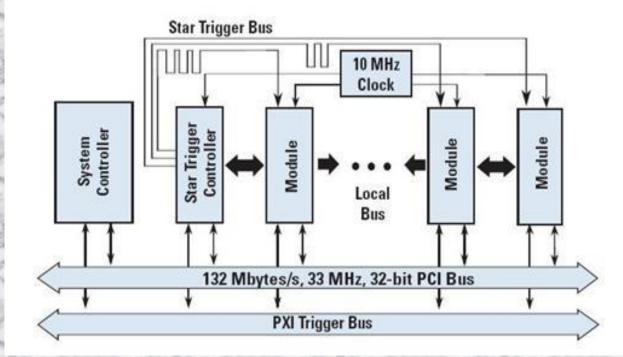
0

INFN Pisa & Physics Department of Pisa

DAQ SYSTEM FOR GYROLASER


What PXI-8106 can offer ?

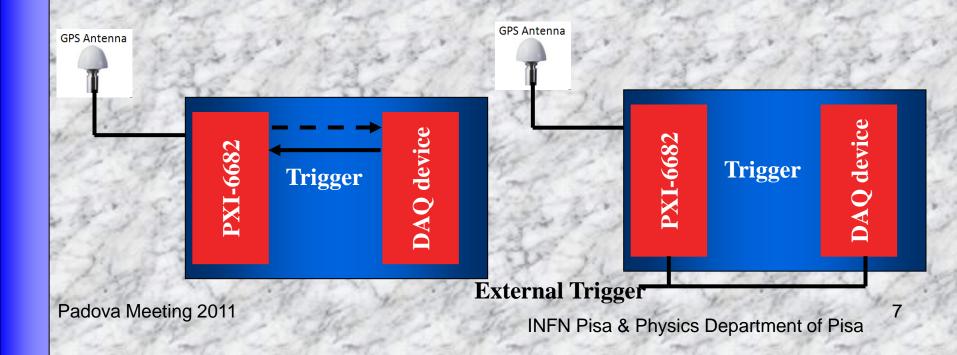
Express card


10/100/1000BASE-TX (Gigabit) Etherne

DAQ SYSTEM FOR GYROLASER

DAQ SYSTEM FOR GYROLASER

PXI Timing and Triggering Buses – PXI combines industry-standard PC components, such as the PCI bus, with advanced triggering and synchronization extensions on the backplane.


Padova Meeting 2011

INFN Pisa & Physics Department of Pisa

DAQ SYSTEM FOR GYROLASER

Time synchronization in PXI

- 1. 1PXI-6682 can generate start trigger and send to DQA device.
- 2. Or DAQ system can send trigger when start acquisition.
- 3. We use an externel trigger.

DAQ SYSTEM FOR GYROLASER

Time synchronization in PXI

GPS Antenna

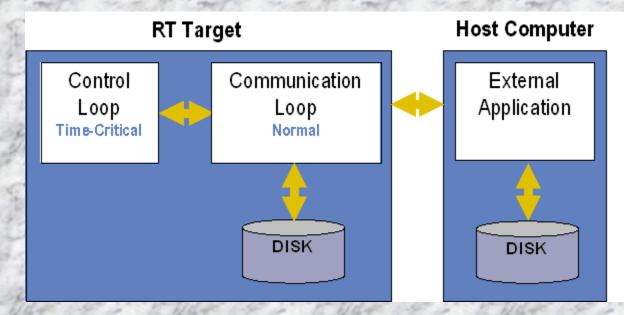
•PXI-6682 can power the GPS antenna and process the RF signal (1.575 GHz)

•PXI-6682 routes clocks and triggers with low skew within chassis

•Most PXI chassis provide a 10MHz reference clock

with 25ppm accuracy(10MHz±250Hz)

•With PXI 6682, clock accuracy can be improved to 1ppm.

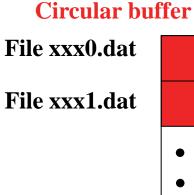

The PXI-6682 can generate a start trigger and send it to the data acquisition device on the PXI backplane. This introduces a 2-3 nanosecond propagation delay per slot.

PXI- 6653 uses PPS signal to generate a stable clock of 10 MHz, even though 6682 Could be enough (using PPS to generate clock with labview) . Padova Meeting 2011 INFN Pisa & Physics Department of Pisa

DAQ SYSTEM FOR GYROLASER

Real time embedded module

In our RT embedded module have two kind of processes or loops -Time-Critical process : timestamp of our data -Normal process for saving data and sending it to host computer


DAQ SYSTEM FOR GYROLASER

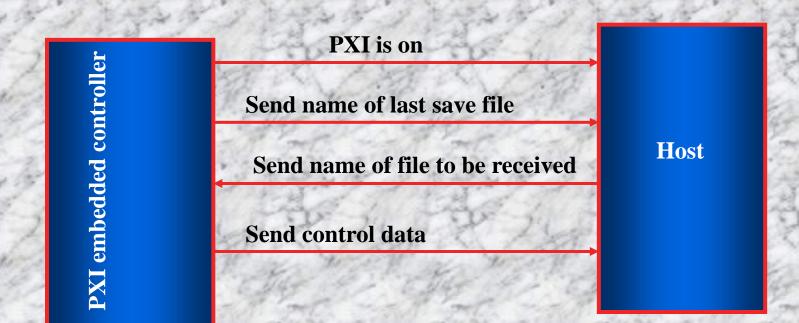
Real time embedded module work

Create circular buffer of 24 files, each file name will be the same each 24 hours this can be extended to many if needed.

After the end of an hour the file will be closed and a message containing the file name will be send to the host for transfer.

If the system stop fo some minutes, the data will be append to the older in the same file and the hour is over a new file will be created.

File xxx22.dat File xxx23.dat


DAQ SYSTEM FOR GYROLASER

Gyro laser user Interface in host computer

and and and and	🔕 📀 🔗 Gyro Laser Control Panel V0
Connect to PXI to receive data files of 1 hour	Connect to DAQ GL Data Viewer Channels
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Connect to PXI
CAR IN CAR IN CAR	
a the all the a the	Chalue -
System status of PXI and data	Status :
To the critical steps of acquisition system	
	6
FRANK FRANK FRANK	Help OK Cancel
to a flow the set of the set of the	
AL EAST AL EAST AL EAST	
The state of the state of the	C. SAN TEL SAN TEL

DAQ SYSTEM FOR GYROLASER

PXI embedded controller -host interface

DAQ SYSTEM FOR GYROLASER

Gyro laser user Interface

Start time and period

🔍 🗢 🔿 Gyro Laser Control Panel V0	Gyro Laser Control Panel V0
Connect to DAQ GL Data Viewer Channels	Connect to DAQ GL Data Viewer Channels
☐ Iccw ☐ Iccw ☐ Saganc ☐ Bachceatte	GPS Time : Time Windows : Time (UTC) :
	Start Pause Continue Stop
<u>H</u> elp <u>OK Cancel</u>	Help OK Cancel

Check the channel to be analysed

Buttons to start stop the analysis.

DAQ SYSTEM FOR GYROLASER

NI PXI-4462 4 input channels @ 204.8 kS/s.

Used for acoustic and vibration data For that reason

24-bit resolution ADCs with 118 dB dynamic range Variable antialiasing filters Software-configurable AC/DC coupling and IEPE conditioning Integrated Electronic Piezoelectric (IEPE) must be disable in our application

DAQ SYSTEM FOR GYROLASER

NI PXI-6229 16-Bit, 250 kS/s, 32 Analog Inputs

Four 16-bit analog outputs (833 kS/s) 48 digital I/O; 32-bit counters; digital triggering

Padova Meeting 2011