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We study candidate vacuum configurations in ten-dimensional O(32) and Eg X E; supergrav-
ity and superstring theory that have unbroken N =1 supersymmetry in four dimensions. This
condition permits only a few possibilities, all of which have vanishing cosmological constant. In the
Eg X E4 case, one of these possibilities leads to a model that in four dimensions has an E4 gauge
group with four standard generations of fermions.

mathematical abstraction meets physical necessity Nucl. Phys. B 258 (1985)



String theory becomes predictive only after specifying
a vacuum solution.

Standard Model of Elementary Particles
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String theory becomes predictive only after specifying
a vacuum solution.

Two difficulties: 1) too many options;
2) the map from geometry to physics is too complicated.
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No realistic bottom-up approach.

Some hand-crafted models:

Greene, Kirklin, Miron, Ross, 1986

Braun, Candelas, Davies, Ronagi 2009+2011
Bouchard, Ronagi, 2005

Braun, He, Ovrut, Pantev, 2005

String theory becomes predictive only after specifying

a vacuum solution.
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Three steps

e identify models that have the correct gauge group and particle spectrum

e compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli

e stabilise all moduli; understanding non-perturbative physics is typically required at this step




Three steps

e identify models that have the correct gauge group and particle spectrum
e compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli

e stabilise all moduli; often, to do this one needs to understand non-perturbative physics

In this paper, we will discuss some considerations, which, if valid, come very close
to determining K uniquely. We require

(i) The geometry to be of the form 9N, X K, where 9N, is a maximally symmetric
spacetime.

(ii)) There should be an unbroken N =1 supersymmetry in four dimensions.
General arguments [10] and explicit demonstrations [11] have shown that supersym-
metry may play an essential role in resolving the gauge hierarchy or Dirac large
numbers problem. These arguments require that supersymmetry is unbroken at the
Planck (or compactification) scale.

(i) The gauge group and fermion spectrum should be realistic.

[Candelas, Horowitz, Strominger, Witten, 1985]



Enumerating Calabi-Yau Manifolds: Placing Bounds
on the Number of Diffeomorphism Classes in the
Kreuzer-Skarke List

Aditi Chandra, Andrei Constantin,* Cristofero S. Fraser-Taliente, Thomas R. Harvey,
and Andre Lukas

The diffeomorphism class of simply connected smooth Calabi-Yau threefolds
with torsion-free cohomology is determined via certain basic topological
invariants: the Hodge numbers, the triple intersection form, and the second
Chern class. In the present paper, we shed some light on this classification by
placing bounds on the number of diffeomorphism classes present in the set
of smooth Calabi-Yau threefolds constructed from the Kreuzer-Skarke (KS) list
of reflexive polytopes up to Picard number six. The main difficulty arises from
the comparison of triple intersection numbers and divisor integrals of the
second Chern class up to basis transformations. By using certain
basis-independent invariants, some of which appear here for the first time, we
are able to place lower bounds on the number of classes. Upper bounds are
obtained by explicitly identifying basis transformations, using constraints
related to the index of line bundles. Extrapolating our results, we conjecture
that the favorable entries of the KS list of reflexive polytopes lead to some
10%%° diffeomorphically distinct Calabi-Yau threefolds.

Fortsch. Phys. 72 (2024)

~ 10%0 v,

See also: Counting Calabi-Yau Threefolds,
Gendler, MacFadden, McAllister, Moritz, 2310.06820



dim. 1: all genus-one curves are diffeomorphic
dim. 2: all K3 are diffeomorphic to each other
dim. 3: diffeomorphism classes classified by the

“Wall data”: Hodge numbers, triple intersection numbers
diix = D; - D; - Dy and second Chern class ¢, ; = ¢,(X) - D;
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dim. 1: all genus-one curves are diffeomorphic

dim. 2: all K3 are diffeomorphic to each other

dim. 3: diffeomorphism classes classified by the

“Wall data”: Hodge numbers, triple intersection numbers

diix = D; - D; - Dy and second Chern class ¢, ; = ¢,(X) - D;

l

Difficulty: hard to tell when two Wall data are equivalent

up to an integral transformation on H*(X, Z).
Solution: use GL(n, Z)-invariants and line bundle data.
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ABSTRACT

We derive an approximate analytic relation between the number of consistent heterotic Calabi-Yau
compactifications of string theory with the exact charged matter content of the standard model of
particle physics and the topological data of the internal manifold: the former scaling exponentially with
the number of Kdhler parameters. This is done by an estimate of the number of solutions to a set of
Diophantine equations representing constraints satisfied by any consistent heterotic string vacuum with
three chiral massless families, and has been computationally checked to hold for complete intersection
Calabi-Yau threefolds (CICYs) with up to seven Kdhler parameters. When extrapolated to the entire CICY
list, the relation gives ~1023 string theory standard models; for the class of Calabi-Yau hypersurfaces in
toric varieties, it gives ~10723 standard models.

Phys. Lett. B 792 (2019)

~ 107%3 three-family models per CY,

Cf. with the famous 10°°Y 1IB flux compactifications [Douglas, 2003] and

10272999 E_theory flux compactifications on a single 4-fold [Taylor & Wang, 2015]
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Physics of Line Bundles on Calabi-Yau Threefolds




Heterotic string compactifications on CY 3-folds with line bundles

Eq X Eg Heterotic string - from N=1 supersymmetric theory in 10d to the N=1 in 4d:
o Eg = Gpynaie X Ggur: Ggur = Ghinite X Gsm
. matter fields: 248 — (1,Adg_ ) ® @; (R.r)  n, =h'(X,Vy)
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Heterotic string compactifications on CY 3-folds with line bundles

Eq X Eg Heterotic string - from N=1 supersymmetric theory in 10d to the N=1 in 4d:
o Xy = Xg X M,

o £y = Gyunale X Gour: Gour = Ghinite X Gsm

. matter fields: 248 — (1,Adg_ ) ® @; (R.r)  n, =h'(X,Vy)
To preserve N=1 susy in 4d:

o X must be Calabi-Yau, R 5 =0

e V must be holomorphic and poly-stable, F,, = F.; = g*°F ; = 0
e anomaly cancellation: ¢,(V) < ¢, (TX)
e matter fields massless: harmonic forms



Heterotic string compactifications on CY 3-folds with line bundles

Eq X Eg Heterotic string - from N=1 supersymmetric theory in 10d to the N=1 in 4d:
o Xy = Xg X M,

o £y = Gyunale X Gour: Gour = Ghinite X Gsm

. matter fields: 248 — (1,Adg_ ) ® @; (R.r)  n, =h'(X,Vy)
To preserve N=1 susy in 4d:

o X must be Calabi-Yau, R 5 =0

e V must be holomorphic and poly-stable, F,, = F.; = g*°F ; = 0
e anomaly cancellation: ¢,(V) < ¢, (TX)
e matter fields massless: harmonic forms

Simplest setting: V = EBZ:l L, Gyl = S(U1)°) and Ggur = SU(S) X S(U)).

SM multiplets in gea+eb’ 10, ; Higgs pair: (S_ _

e,» e t+e,); bundle moduli: 1

€,— €



PROBLEM: What is the number N = N(h,c2,, d;ji)
of rank five line bundle sums V = @®>_;L,, where
L, = Ox(k,) such that the following constraints are
satisfied:

5 .
Es embedding: ¢ (V) = > ki =0foralli=1,...,k
a=1

Anomaly cancellation:

1 , !
co,i(V) = —§d¢jk; Zkék’; <cg,foralli=... h;

Supersymm_etry/ Zero Slope: there is a common so-
lution ¢* to the vanishing slopes

w(Ly) = dijkkitjtk L0 fora = 1,...,5
such that J = t'.J; € interior of the Kahler cone;

Particle generations: the chiral asymmetry is six, i.e.

1 .
ind(V) = - diji S kikikE = 3.



Heterotic line bundle models: searches

e Situation about 12 years ago: only a handful of models that recovered the SM spectrum were known

e Systematic searches: in 2013 we undertook a massive search, scanning essentially over some

10* (X, V)-pairs; this resulted in several million heterotic line bundle models with three families

[Anderson, AC, Gray, Lukas, Palti ‘13]



Heterotic line bundle models: searches

e Situation about 12 years ago: only a handful of models that recovered the SM spectrum were known

e Systematic searches: in 2013 we undertook a massive search, scanning essentially over some

10* (X, V)-pairs; this resulted in several million heterotic line bundle models with three families

[Anderson, AC, Gray, Lukas, Palti ‘13]
e Heuristic searches: more recently, we used Genetic Algorithms and Reinforcement Learning to search
even larger regions of the string landscape. We also used Quantum Annealing ‘intrinsic’ mutation

to enhanced the GAs performance.

e New three-family models can now be identified on demand (thousands per day) or generated using Al.

[Larfors, Schneider '20]
[Abel, AC, Harvey, Lukas, Nutricati 23]



Genetic Algorithms in Pictures

7.59
6.21
4.83
3.45
2.07
0.69
-0.69
-2.07
-3.45
-4.83

In this example:

e Population size of 100 individuals

e Binary encoding/decoding for the chromosomes

¢ 16-bit chromosomes (8 bits for x-coordinate, 8 bits for y-coordinate)
e Tournament selection for parent selection -2t
* Single-point crossover with crossover rate of 80%
e Bit-flip mutation rate of 3%

e Evolution over 50 generations

e Elitism to preserve the best solution B o
-3 -2 -1 0 1 2 3




Reinforcement Learning in Pictures

Contour Plot of ind = -20

************************** :L*”* 102
4l
e terminal
0; | e episode
: | e first
— 1 @ last
5l
‘ ‘ 1 2,86
——————————————————————————————————— X= IP)3 2 —10k
| . P° 4 ,
""""""""" 5 10 T
k4
14 1 Mathematical structure of RL: Markov Decision Processes.
X(X, Ox(D)) = ED + ECQ(X) D Simplest version: policy-based RL.

1 1 The policy is controlled by a NN and learnt without
=% <4k1k22 + <4k1k2 + (4k1 + 2k2) kz) kz) + T (24k1 + 44k2) any prior knowledge of the environment.



Search results

Manifold h |I'||Range| GA Scan|Found Explored
w4 2| P iR G l00% 1o
7862 4 4 |[7.8]| 30 31| 97% 10 '°
7447 5 2| [-7,8] | 38 38 |100% 10~ **
7447 5 4 | [-7,8] | 139 154 | 90% 10~ **
5302 6 2 |[-7,8] | 403 442 | 93% 10 *°
5302 6 4 | [-7,8] | 722 897 | 80% 107"
4071 7 2 |[-3,4] |11,937 N/JA| N/A 10~

[Abel, AC, Harvey, Lukas, Nutricati 23]

Comparison with systematic scans: virtually the same results while scanning only a fraction of ~ 107201

Comparison between GA and RL: very different philosophies, similar results.



Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:

e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
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v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
e use the additional (effectively global) U(1)-symmetries to constrain the superpotential

The Yukawa couplings take the form:

up sector:  (singlet insertions) x HY, ., 10 107
down sector:  (singlet insertions) x Hga oy De,te, 102,



Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:

v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
e use the additional (effectively global) U(1)-symmetries to constrain the superpotential

The Yukawa couplings take the form:

up sector:  (singlet insertions) x HY, ., 10 107
down sector:  (singlet insertions) x Hga oy De,te, 102,

- the additional (effectively global) U(1)-symmetries can constrain the superpotential to
induce the observed flavour parameters (quark and lepton masses and mixing)

- out of the millions of models line bundle models that have the correct MSSM spectrum,
we were able to identify a few dozen that can accommodate — somewhere in the moduli
space — the empirical flavour parameters in the SM. In these models the ,MHH term is also
under control thanks to the U(1)-symmetries. [AC, Leung, Lukas, Nutricati '25]



Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:

v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
v/ yes, correct * use the additional (effectively global) U(1)-symmetries to constrain the superpotential

fermion masses
and mixing
can be obtained up sector:  (singlet insertions) x era_ebl%clﬂéd

The Yukawa couplings take the form:

) . . . d =i j
down sector:  (singlet insertions) X Hg o 56 1o,10%

- the additional (effectively global) U(1)-symmetries can constrain the superpotential to

induce the observed flavour parameters (quark and lepton masses and mixing)
- out of the millions of models line bundle models that have the correct MSSM spectrum,
we were able to identify a few dozen that can accommodate — somewhere in the moduli

space — the empirical flavour parameters in the SM. In these models the /,tHI-_I term is also
under control thanks to the U(1)-symmetries. [AC, Leung, Lukas, Nutricati '25]
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The Yukawa couplings take the form:

) . . . d =i j
down sector:  (singlet insertions) X Hg o 56 1o,10%

e full knowledge of the compactification geometry required to compute the O(1)-coefficients:
the Ricci-flat metric on X, hermitian Yang-Mills connection on V, harmonic bundle-valued forms
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v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
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fermion masses
and mixing
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e full knowledge of the compactification geometry required to compute the O(1)-coefficients:
the Ricci-flat metric on X, hermitian Yang-Mills connection on V, harmonic bundle-valued forms
- detailed knowledge of the geometry can be obtained numerically using neural networks,
so the O(1)-coefficients are now computable [AC, Fraser-Taliente, Harvey, Lukas, Overt, 2024];

CYmetric package: [Larfors, Lukas, Ruehle, Schneider, 22]
(see also similar work on standard embedding [Butbaia, Pefia, Tan, Berglund, Hiibsch])
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Going beyond the basic check of having 3 chiral families of fermions involves:

v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
v/ yes, correct * use the additional (effectively global) U(1)-symmetries to constrain the superpotential

fermion masses
The Yukawa couplings take the form:
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Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:

v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
v/ yes, correct * use the additional (effectively global) U(1)-symmetries to constrain the superpotential

fermion masses
The Yukawa couplings take the form:

and mixing
can be obtained up sector:  (singlet insertions) x Hﬁea_ebl%clﬂéd
down sector:  (singlet insertions) x Hga +eb5fac ‘e leée
v feasible e full knowledge of the compactification geometry required to compute the O(1)-coefficients:

the Ricci-flat metric on X, hermitian Yang-Mills connection on V, harmonic bundle-valued forms
e all these quantities depend on geometric (manifold and bundle) moduli; explaining the observed
free parameters of the SM can only be done in conjunction with moduli stabilisation



Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:

v/ feasible e fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli
v/ yes, correct * use the additional (effectively global) U(1)-symmetries to constrain the superpotential

fermion masses
The Yukawa couplings take the form:

and mixing
can be obtained up sector:  (singlet insertions) x HY, ., 10 107
down sector:  (singlet insertions) x Hga +eb5fac ‘e leée
v feasible e full knowledge of the compactification geometry required to compute the O(1)-coefficients:
the Ricci-flat metric on X, hermitian Yang-Mills connection on V, harmonic bundle-valued forms
W.i.p. e all these quantities depend on geometric (manifold and bundle) moduli; explaining the observed

free parameters of the SM can only be done in conjunction with moduli stabilisation
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An example

2

$a,2 + 23055 235,20 23 ¢5,2
Up Yukawa -> o3 ¢s5,2 &3 $3
o3 ¢s,2 o3 o3

2 2 2
1,4 $3,1 4,2 + G1,4 $1,5 3,1 05,2 @1 4 $3,1 P42 + 1,4 G1,5 $3,1 5,2 D7 4 $3,1 Pa,2 + $1,4 $1,5 ¢3,1 ¥5,2
Down Yukawa -> $1,4 $1,5 ¢3,1 + 21 95,2 ¢1,4 $1,5 $3,1 + 21 P5,2 $1,4 $1,5 $3,1 + 21 ¢5,2

¢1,4 1,5 ¢3,1 + B1 5,2 1,4 $1,5 ¢3,1 + 21 P52 ¢1,4 ¢1,5 ¢3,1 + B1 Ps5,2

VEVS --> <|@ - 0.011186, & - 0, 33 > 0.0208645, &4 - 0, 35 > 0> (|¢2,1 - 0, ¢3,1 > 0.220866, ¢1,4 » 0.157553,
¢1’5 - 0.116906, ¢5,1 - 9, ¢2’3 - 0, (1)2,4 - 0, ¢4,2 - 0.589303, ¢5,2 - 0.334451, d)4’3 - 0, ¢5,3 - 9, ¢5’4 - 0’)

{-3.48814, 6.81476} {-0.0970636} {0.405479}

me} --> {172.4,

{me,

{mp, mg} --> {4-18:

(m., Me} —-> {1.77682,

0.241786 0.0035785
0.969315 0.0448244

ol Up coeffs --> {-6.88697} {-0.00205929} {0.00507336} {Up Higgs, Down Higgs} --> {84.5001, 152.104}
(0.336461) (0.663477}  {-0.280755}
1.07321 5.31902 ~6.95226
(—3.93794] (3.78552] (—1.50959]
0.582884 1.25548 | (-0.76408
ol Down coeffs --> (—0.670534] [-1.27911) (0.773568]
~1.31787| (0.411061| [-1.12268
(0.638412] [0.729356) (0.156689]
0.913761 3.91872 6.64024
(-0.377272J (—1.6784) (-2.99491)
~0.756866 | (-5.31757 0.114206
ol Leptons coeffs --> ( 0.818604 } ( 2.85963 ] [—0.0983683]

-2.10909 -1.30161 3.54416
[ 2.28786 J [0.317915] (—3.76934)

CKM matrix -->
0.00736923 0.0443591 0.998988



Geometry of Line Bundles on Calabi-Yau Threefolds




Line bundle cohomology for low energy

string spectra

repr. | cohomology total number required for MSSM
Loy | H(X, La®@ Ly) | Y, WX, La @ L) = WM (X, V@ V") -

Sap | HI(X, Ly ® Ly) | ey B (X, Ly ® Ly) = B (X, A2V nh

50p | HY(X, Lo ® Lp) | Y ,cp ' (X, Lo ® Lp) = K1 (X, A?V) 30| + ny,

10, | HY(X, L,) S hNX, L,) = (X, V) 3|

10, | HY(X, L)) S hN(X, L) =h(X, V) 0




Line bundle cohomology with spectral
sequences

XCA=P" xP” x...xP™
Let L — X be a line bundle over X and L 4 the corresponding line bundle.

Write the Koszul complex associated with L:

0 - LAQANNY = LaanAN N = .. = L4 > L =0



Line bundle cohomology with spectral
sequences

XCA=P" xP” x...xP™
Let L — X be a line bundle over X and L 4 the corresponding line bundle.

Write the Koszul complex associated with L:

0 - LAQANNY = LaanAN N = .. = L4 > L =0

Line bundles on P". Cohomology dimensions given by the Bott formula:

k+n

R (P", Opn(k)) = ( . ) = % (14+k)...(n+ k), if k>0, and 0 otherwise.
h (P",Opn(k)) =0, if0O<i<n.

h"(P", Opn(k)) = (_;f;;) = %(—n—k)...(—l—k) ,if k< —n—1,

and 0 otherwise.



Line bundle cohomology with spectral
sequences

XCA=P" xP”? x...xP"™m

Let L — X be a line bundle over X and L 4 the corresponding line bundle.

Write the Koszul complex associated with L:

0 - LAQANNY = LaanAN N = .. = L4 > L =0

Line bundles on P". Cohomology dimensions given by the Bott formula:

hO([EDn, Opn(k)) = (k j; n) — % (1+k)...(n+ k), if k>0, and 0 otherwise. For spectral
sequence

h' (P, Opn(k)) =0, ifO<i<n. technology,
see, e.g., Hubsch’
CY Bestiary.

h"(P", Opn(k)) = (_;f;;) = %(—n—k)...(—l—k) ,if k< —n—1,

and 0 otherwise.



The Leray spectral sequence machinery can be automatised.
[CIPro package, Anderson, AC, Gray, He, Lee, Lukas, to appear]
[pyCICY by Larfors & Schneider ‘19]

. . 3
Computational cost of cohomology calculations with spectral sequences: ~ O ((p(X)dlm(X)deg(L)dlm(X)) )

Example: for a line bundle of (multi)-degree 10 on a Calabi-Yau threefold

with A1(X) = p(X) = 4 Kahler parameters, the estimate is

~ 10'* elementary operations

which reaches the limits of a standard machine



[ol ol ool ool olNo oM olo oM oMol oMo Mol
ool ool ool ool oM olol oM oMol oMo Mol
ool ol olol ol olNo ol olol ol oMol oMo Mol
[ol ol ool ool ool oM olol oM oMol oMo Mol
[ol ool ool ol olNol ol olol oMol ol oMo o]

Train a neural network?

Here is some data for h(S, L = O(k;, k,)), where S is the Hirzebruch surface F, for —8 < k; < 8.

One can blindly train a NN to predict these numbers. Most of

[olol ool ool ool ol olol oM oMoloMoMo]

© 0 9 17 24 30 35 39 42 44 45 _ . _ _
© 0 8 15 21 26 30 33 35 36 36 the time they come out right, with the occasional error of 1.
© 0 7 13 18 22 25 27 28 28 28 (0, 0) )
® 0 6 11 15 18 20 21 21 21 21 5620’}162} [Ruehle 17]
© 05 9 12 14 15 15 15 15 15 (62, 62} {0, 0}
©0 4 7 9 10 10 10 10 10 10 E;gi Eggi
035 6 6 6 6 6 6 6 (36, 36) (0, 0)
©02 3 3 3 3 3 3 3 3 (0, 0 {0, 0}
{0, 0} {0, 0}
01 1 1 1 1 1 1 1 1 . o] oy, 36)
©O0 06 0 06 0 0 0 0 0 0 (0, 0) [0, 0)
00 6 6 6 6 06 0 0 0 oo ©, 0)
©00 06 06 06 6 6 6 0 0 (0, ) (s 138,
©00 6 6 6 6 06 0 0 0 oo 1, 0)
©O0 06 06 06 06 06 06 0 0 0 (0, 0) {2,2}
(0, 0} {0, 0}
©O0 06 06 06 06 06 06 0 0O 0 oo (21, 21)
O 00 0 6 0 0 06 0 0 0 (28, 28} {119, 120}
OO0 0 0 0 0 6 0 6 0 (e, 03 {0, 0}
{251, 252} {0, 0}

{0, 0} {0, 0}
(63, 63)
{95, 95)
(45, 45)



An exercise in pattern recognition

T T T T T T T T T T T T T T T T T T T T T T T T
15 36 73 131 215 315 415 515 615 715 | 1 5 15 36 73 131 216 333 481 eis 809 973 1137 1301
1 2,86 6L 5 15 36 73 131 205 279 353 427 501 i 8r 0 1 5 15 36 73 131 216 330 460 590 720 850 980
P 1 1 1 0 0 1 5 15 36 73 131 215 315 415 515 615 715
X = 1 5 15 36 73 125 177 229 281 333 |
IP)4 4 1 ] 6F0 0 0 1 5 15 36 73 \131 205 279 353 427 501
4- 0 1 5 15 36 70 104 138 172 206
| 0 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 1 5 15 3 8 75 95 15 4 40 0 0O O O 1 5 15 36 70 104 138 172 206
: 2L 0 0 0 1 5 15 25 35 45 55 - 0 0 0 0 O O 1 5 15 35 55 75 95 115
look at patterns in the ,
0 0 0 0 1 ) N 13 17 21 | 200 0 0O O O O O 1 5 \15 25 35 45 55
data for 0 0 0 0 0O O 0 O 1 ‘5 9 13 17 21
0o 0 0 0 0 2 3 4 5
0 . ] o606 0 06 0 0 0 0 23 45
h*(X,L), L € Pic(X) o o o 0o 0o o 0 0o 0 0| o 0 0o 0 0 0 0 0 o o 0 o o
-4 -2 0 2 4 -8 -6 -4 -2 0 2 4

region in eff. cone h°(X, L = Ox(D = kiD; + k2 D5))
blue 2ki(14 k3) + 2ko(5 + k3)

green 2k1(1—|—k22)-|-%k2(5+k22)+%k1(1_k12)
yellow 2ki(1+ k3) + 2ka(5 + k3) + Sha (1 — k) +
+ 11— (8k + ko)?) [Ha22]
ki >0, kk =0 ki +1
ki =k >0 1

[AC, Lukas "18]
[Larfors, Schneider "19]
[Brodie, AC, Lukas ‘21]




It is possible to train a neural network (supervised learning) to identify the

different regions and the formulae that hold within each.

z~ /
X = (kz, kikj, .. ) —> (Wg,bg)

[Brodie, AC, Deen, Lukas, 1906.08730]
see also: [Klaewer, Schlechter, 1809.02547]

The training data consists of pairs (k, h'(X, Ox(k))).

Drawback: the amount of training data is limited by the slow algorithmic
computation. For larger Picard number manifolds it is not feasible to generate
enough training data. Nevertheless, this ML exercise was useful to generate

conjectures.



topological data of (X, V)
global data:

cohomology groups
h*(X,V)

local data



topological data of (X, V)
global data:

cohomology groups
> h*(X,V)

local data



Quasi-topological formula for individual cohomologies on

surfaces
Hirzebruch-Riemann-Roch theorem (X cplx, V holom.): R
) 6 0 0 0 13 18 22 25
dim(X) o 0 0 0 € 1 15 18 20 -
X(X7 V) — Z (_1>zhz(Xa V) = / Ch<V) : td(X) 4 0 0 0 : 9 12 14 15 ]
1=0 X 0 0 0 4 7 9 1 ---10 |
2 0 0 0 5 but----6----6
Theorem: line bundle cohomology formula for toric surfaces P 0 0 2 iRl $----3
- 0 0 - 1 1 + 4
Let S be a smooth projective toric surface, and D an effective integral divisor . o o . o o o o
with Zariski decomposition D = P + N. Then 2 . T
h’(S,0s(D)) = x(S,0s(|P])) - h¥ data for del Pezzo of degree 8

Explicitly, if D lies in the Zariski chamber X, . ;. , obtained by translating a Similar theorems for K3 surfaces and

codimension n face F of the nef cone along the set of dual Mori cone (generalised) del Pezzo surfaces

generators { M, Mi,, ... M, } orthogonal (with respect to the intersection

form) to the face F, then Information needed to write a formula:

) n , the intersection form and the generators
h (S,OS(D)) = X(S,(’)s (D — Z (—D : M;k,{;l,...,;nﬂ Mik>) : of the Mori cone

k=1

[Brodie, AC ‘20]



A Picard number 3 toric surface

D1 Dy D3 Dy Ds D

1 0 0 1 0
0 1 0 2 1
0 0 1 1 1




Line bundle cohomology on Calabi-Yau threefolds

Features of line bundle cohomology on Calabi-Yau threefolds

e We studied: CICY three-folds, smooth quotients thereof by freely acting

discrete symmetries, (hypersurfaces) in toric varieties.

e We know empirically that analytic formulae exist for all cohomology
groups. By Serre duality, it is enough to understand the zeroth and the
first cohomologies.

e The Picard group splits into various cones, in each of which the zeroth

cohomology can be computed as an index.



Two types of cones

e In the Kahler cone KC(X), due to Kodaira's vanishing theorem
H(X, L) = x(X; L)

where the Euler characteristic of L = Ox(D), on a Calabi-Yau 3-fold is

1 1
X(X,0x(D)) = £D* + Zcx(X) - D

® Some CY3s have ‘other Kahler cones’: these are really the Kahler cones of
the threefolds related to X by a sequence of flops

® There can also be Zariski chambers, similar to the case of complex surfaces



Zariski chambers. The other type of zeroth cohomology chambers that arise
are Zariski chambers. Here is an example.

1.5 15 36 73 131 216 333 481 645 809 973 1137 1301
80 1 5 15 36 73 131 216 330 460 590 720 850 980
0 0 1 5 15 36 73 131 215 315 415 515 615 715 1 2’86
660 0 0 15 15 36 73 131 205 279 353 427 501 ]P) 1
0 0 0 0 1 5 15 36 73 125 177 229 281 333 X — IP)4 4
440 0 0 0 0 1 5 15 36 70 104 138 172 206
0 0 0 0O 0 0 4 5 15 35 55 75 95 115
200 0 0 0 O O O 1 5 .\15 25 35 45 55
0o 0 0 0 0 0 0 0 1 9 13 17 21
o000 0 0 0 0 0 0 0 O 2—3—4—5
0 0 0 0 0 0 0 0 O 0 0 0 0
-8 -6 -4 -2 0 2 4

In each chamber, the zeroth cohomology can be written as an index.
region in eff. cone hO(X, L=0x(D = kiDy 4+ kaD»))
K(X) x(X, Ox(D))
K(X)\ {Ox} x(X', Ox/ (D)
: (00 (o1 [28]7))
ki >0, kn=0 x(P', (D - C1)Hp)
—ki=k >0 1




131

333

973

1137 1301

1 5 15 36 73 216 481 eis 809
0 1 5 15 36 73 131 216 330 460 500 720 850 980-
0 0 1 5 15 36 73 131 215 315 415 515 615 715
0 0 0 1 5 15 36 73 131 205 279 353 427 501-
0O 0 0 0 1 5 15 36 73 125 177 229 281 333
0O 0 0 0 0 1 5 15 36 70 104 138 172 206-
O 0 0 0 0 0 4 5 15 35 55 75 95 115
O 0 0 0 0 0 0 1 5 15 25 35 45 55-
O 0 0 0 0 0 0 0 41 5 9 13 17 21
o6 0 0 0 0 0 0 0 > 3 4 5
©o 0 0 0 0 0 0 0 0 0 0 0 0 0
s s “4 2 0 2 4

Cohomology series

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X,t1,ts) =

(1 —tita) (1 — tat3)

(1—t)*(1—t5)°



131 216 333 481

-
o
w |
o3}
~
w

973 1137 1301

1 5 eis 809
L0 4 5 15 36 73 131 216 330 460 590 720 850 980-
0 0 1 5 15 36 73 131 215 315 415 515 615 715
"0 0 0 1 5 15 36 73 131 205 279 353 427 501
0O 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 0 0 0 1 5 15 36 70 104 138 172 206
O 0 0 0 0 0 4 5 15 35 55 75 95 115
0 0 0 0 0 0 0 1 5 15 25 35 45 55-
O 0 0 0 0 0 0 0 41 5 9 13 17 21
o6 0 0 0 0 0 0 0 > 3 4 5
©o 0 0 0 0 0 0 0 0 0 0 0 0 0
s s “4 2 0 2 4

Cohomology series

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1,t2) =

(1—t1ta) (1 — t1t3)
(1—t)*(1—t2)®

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X’ in a toric

variety [25] with a weight system and weights for the defining equations given by

21 22 Y1 Ys P1/ PQ/
X'~ 1 1 0 o1 1
1 —4 1 110 0

which corresponds to the Hilbert-Poincaré series

HS(X' t1,t3) =

(1—1t,'t3)?

(1 =ty t2)2(1 = t2)°(1 —ty't5)

21 %2 Yr ... UYs P1/ PQ,
~ —-1-1 0 ... 0 -1 -1 (3.52)
4 1 1 ... 1 5 H

(3.53)



w |
[«

73 131

973 1137 1301

1 5 15 216 333 481 eis 809
L0 4 5 15 36 73 131 216 330 460 590 720 850 980-
0 0 1 5 15 36 73 131 215 315 415 515 615 715
"0 0 0 1 5 15 36 73 131 205 279 353 427 501
0O 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 0 0 0 1 5 15 36 70 104 138 172 206
O 0 0 0 0 0 4 5 15 35 55 75 95 115
0 0 0 0 0 0 0 1 5 15 25 35 45 55-
O 0 0 0 0 0 0 0 41 5 9 13 17 21
o6 0 0 0 0 0 0 0 > 3 4 5
©o 0 0 0 0 0 0 0 0 0 0 0 0 0
s s “4 2 0 2 4

Cohomology series

HS(X' t1,t3) =

The Hilbert-Poincaré series associated with the coordinate ring of X is

(-t

1
t3)°

(-t )P0 - (- ')

(1 —tita) (1 — tat3)

HS(X,t1,ts) =

(1—t)*(1—t5)°

(3.53)

Both X and the flopped threefold X’ are resolutions of the same singular manifold Xg,, which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line

bundle cohomology on X (and also on X’) from the following contributions

CS%(X, ty,t2) =

(1 —t1t2)(1 — t1t3)

(1 —t1)%(1 —to)d

)

to 11
0 O

+

(1—t;'t5)?

ta

Y

(1=t ")2(1 —t2)(1 — 7 't3) 7 0

where the correction term is such that:

(1 —t1t2)(1 — t1t3)

(1 =12)*(1 = t2)° |4,

(1= 17t

(1- 6 )20

—t2)5(1 —t1't3)

t1:OO

3]

0

1+¢3
(1 —t5)°

1+¢3 t2
(1—1t)° " 0

= HS(P*[5], t3)

(3.54)



w |
[«

73 131

973 1137 1301

1 5 15 216 333 481 eis 809
L0 4 5 15 36 73 131 216 330 460 590 720 850 980-
0 0 1 5 15 36 73 131 215 315 415 515 615 715
"0 0 0 1 5 15 36 73 131 205 279 353 427 501
0O 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 0 0 0 1 5 15 36 70 104 138 172 206
O 0 0 0 0 0 4 5 15 35 55 75 95 115
0 0 0 0 0 0 0 1 5 15 25 35 45 55-
O 0 0 0 0 0 0 0 41 5 9 13 17 21
o6 0 0 0 0 0 0 0 > 3 4 5
©o 0 0 0 0 0 0 0 0 0 0 0 0 0
s s “4 2 0 2 4

Cohomology series

HS(X' t1,t3) =

The Hilbert-Poincaré series associated with the coordinate ring of X is

(-t

1
t3)°

(-t )P0 - (- ')

(1 —tita) (1 — tat3)

HS(X,t1,ts) =

(1—t)*(1—t5)°

(3.53)

Both X and the flopped threefold X’ are resolutions of the same singular manifold Xg,, which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line

bundle cohomology on X (and also on X’) from the following contributions

CS%(X, ty,t2) =

(1 —t1t2)(1 — t1t3)

(1 —t1)%(1 —to)d

)

to 11
0 O

+

(1—t;'t5)?

ta

Y

(1=t ")2(1 —t2)(1 — 7 't3) 7 0

where the correction term is such that:

(1 —t1t2)(1 — t1t3)

(1 =12)*(1 = t2)° |4,

(1= 17t

(1- 6 )20

—t2)5(1 —t1't3)

t1:OO

3]

0

1+¢3
(1 —t5)°

1+¢3 t2
(1—1t)° " 0

= HS(P*[5], t3)

(3.54)



1 5 15 36 73 131 216 333 481 eis 809 973 1137 1301
0 1 5 15 36 73 131 216 330 460 590 720 850 980 .
0 0 1 5 15 36 73 131 215 315 415 515 615 715 C0h0m0|ogy series
0 0 0 1 5 15 36 73 131 205 279 353 427 501-
0 0 0 0 1 5 15 36 73 125 177 229 281 333
0 0 0 0 0 1 5 15 36 70 104 138 172 206
0 0 0 0 0 0 WP % TN The Hilbert-Poincaré series associated with the coordinate ring of X is
0 0 0 0O 0 0 0 1 5 15 25 35 45 55-
0o 0 0 0 0 0 0O 0 1 5 9 13 17 21 (1 —tite) (1 — t113)
0o 0 0 0 0 0 0 0 0 9§t 5 HS(X,t1,t2) = (1—t1)2(1—t2)5
0o 0 0 0 0 0 0O 0 0 0 0 0 0 O
s Z6 4 2 0 2 4

So the zeroth line bundle cohomology data encodes the information about the two birational models X and
X' (their triple intersection numbers and second Chern classes), related by a flop, as well as about the singular
threefold that lies in the ‘middle’ of the flop. In particular, it encodes the GV invariant associated

with the collapsing curve class involved in the flop.

It also know about the way in which X’ degenerates as the Kihler form approaches the Zariski
wall. This is encoded by the data around the wall, which corresponds to
(1—t1)?

HS(Pr11113]44], 1) = P07 1+ 5t + 15t% + 36t> 4+ 73t* 4+ 131° + . ..

It also knows that X degenerates as a K3 fibration over P! as the K&hler form approaches the boundary

of the movable cone that is also a boundary of the effective cone.



Conjecture 5. Let X be a general complete intersection of two hypersurfaces of bi-degrees (1,1) and (1,

P! x P4, belonging to the deformation family with configuration matriz
P 1
P 1 4

The effective, movable and nef cones of X are given by

EH(X) = Ronl +R20(H2 - Hl), MOV(X) = R20H1 + R20(4H2 — Hl)
Nef(X) = RZ()Hl + RZ()HQ s

4) in

(1.16)

(1.17)

where Hy = Op1ypa(1,0)|x and Hy = Op1ypa(0,1)|x. We propose the following generating functions for all line

bundle cohomology dimensions in the entire Picard group of X :

CS°(X,0x) = (1- 2>2 (1-t)" b2 h
’ 1—t1)’ (1 —ta)° (1 —t7") (1 —t7'2) " 0 0
CS'(X,0x) = (1- 2>2 (1-t)" b2t
’ A—t1)> (1 —t2)° (1 —t7) (1 —t7'4) " 00 0

OS2 (X,0x) = - 2)2 (1-1)° ta
’ 1=t (1 —t2)° (1 —t7") (1 —t7'2) " 0 oo

)2 (1 — 4)?

CS%(X,0x) = _-nrd ?) __ =
(I—t)"(1—t)’ (1—t7") (1—t;'3) oo oo

1.5 15 36 73 131 216 333 481 615 809 973 1137 1301 f 142 63 16 0 0 0 0 0 0
860 1 5 15 36 73 131 216 330 460 590 720 850 980- sl 133 61 16 0 0 0 0 0 0
0 0 1 5 15 36 73 131 215 315 415 515 615 715 121 58 16 0 0 0 0 0 0
660 0 0 1 5 15 36 73 131 205 279 353 427 501 6 106 53 16 0 0 0 0 0 0
0 0 0 0 1 5 15 36 73 115 177 229 281 333 | e 46 15 0 0 0 0 0 0
4)0 0 0 0O O 1 5 15 36 70 104 138 172 2061 a4l o7 37 13 0 0 0 0 0 0
0 0 0 0 0 0O 1 5 15 35 55 75 95 115 | 45 26 10 0 0 0 0 0 0
200 0 0 0 O O O 1 5 .15 25 35 45 55 2l 25 15 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 9 13 17 21 Lo 7 3 0 0 0 0 0 0
66— —6—86—06—06—=¢ 2345 o—s 2 1 8 8 6 8 8 6
0 0 0 0 0 0 0 0 O 0 0 0 o0 0 0 0 0 0 0 0 0 0
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4

(1.18)

[AC’24]



A Picard number 3 example
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Figure 14: A slice of the effective cone of the example CY hypersurface discussed in §4.6. In red are the two
Kahler cones of the two Picard number 3 CYs X; and Xs5. In cyan are Zariski chambers corresponding to
the Picard number 2 CYs associated to the reflexive polytopes A$,, A3;, A3; (the full secondary fans of these
polytopes, each embedded in this secondary fan, are outlined with dashed lines). In beige are Zariski chambers
associated to weighted projective spaces. Black lines delineate chamber boundaries in the CY effective cone; gray
dashed line are flips of the toric variety which do not affect this chamber structure. Walls of the effective cone
are labeled when they correspond to non-trivial toric varieties of lower dimension. :
v Y P v v i [AC, Lukas, Sheridan ’25]



Cohomology series: examples in arbitrary dimension,
Fano, CY and general type included

Hypersurfaces in P! x P*. Moving up in dimension, we propose the following.

Conjecture 3. Let X be a general hypersurface of bi-degree (d,e) in P! x P23 with d < n and e arbitrary or

d arbitrary and e = 1. Denote Hy = Op1ypn(1,0)|x and Hy = Opiypn(0,1)|x. Then in the basis {H1, Ha},

(1—t§)d+1

CS°(X,0x)= (

__ze\d+1
CS' (X, 0x)= 1=13)

(1-t5)"+*

eSO Pl

(1—t§)d+1

(_1)ncsn(X7 OX): (1—t1)2(1—t2)n+1(1—t1_1tg)d ’

o~ N

and all intermediate line bundle cohomologies vanish.

(1=t1)2(1—to)n 1 (1=t ' t5)d

to

(1=t1)2(1—t2)m+1 (1t 't5)? " 0

to
0

to

©.0)

lo

©.0)

= Z hO(X, OX(m1H1+m2H2))tT1t?2

3]
0 mi,moEZ

t
F =Y hMX, Ox (maHima Ho))E 8y

o0 mlamZEZ

t
5) = > W"NX, Ox (my Hy+moHy) )t £
ml,TTLQEZ

t
! — Z hn(X, Ox(mlHl-i-mgHg))tgnltgnQ
o0 m1,moEZ

(1.10)

[AC '24]
[Pollock, Szendroi '25]
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Conjecture 3.25. (Conjecture 6) Let X be a general hypersurface of bidegree (3,3) in P? x P2, Let Hy =

Op2yp2(1,0)|x and Hy = Op24p2(0,1)|x. Defining

(z7'y)° (A +z—y)° —1+32(1—y))
(1—a=1y)3(1 —y)? ’

all line bundle cohomology dimensions on X are encoded in the following generating functions, written in the

basis {Hy, Ho}:

G(x,y) = (3.90)

t t
CSO(X, OX) =14+ G(tl,tQ), 0 + (G(tz,tl), 5 02

CSl(X OX —O+ (G(tlatQ)’

) (et 2)
_OS2(X,0x) = 2+ (G(tl,tg), tol t2) + (G(t2,t1), h tOQ)
" ( )

(3.91)

—CS3(X,0x) =

[AC’24]



Conjecture 7. Let X be a general complete intersection Calabi- Yau threefold in the deformation family given

by the configuration matrix
P2 0 1 1 1
PO 2 1 1 1

and let Hy = Opaypa(1,0)|x and Hy = Opaypa(0,1)|x. The effective cone decomposes into a doubly infinite

sequence of Mori chambers corresponding to the nef cones of isomorphic Calabi- Yau threefolds connected to X

through a sequence of flops, of the form
KM = R>o(ant1Hr — anHs) + Rso(anHi — an—1H2)

where a, 1s given by

(3+2v2)" - (3-2v2)"
442 ’
such that K(©) = Nef(X). A generating function for all line bundle cohomology dimensions can be written in

the basis {Hy, Ha} in terms of the functions

ap = (an) = ... —204,-35,—6,—1,0,1,6,35,204, . .. (1.25)

(1= (1 1)) = (frtg ™) (L= gyt gy oy

Gn(t1,t2) = —
(1 — 0, 9)5(1 — tong, )5
1 U2 ) (1.26)
 (4Anp—An—1\2  (4An—An—1\3
oty = (U020 ™))
(1=t )?
as follows:
0 t2 t1 to
CS°(X,0x) = | Y. Gultr,t2)+Cnlt1,t2), . ZG (t1,t2)+Cn(t1,t2), -

0
t
CSY(X,0x) = ( Z G (t1,t2)+Ch(t1,t2), 2 ) . {remove terms t”tﬂ with o + < 0} +
0

n=—oo

- t
(Z G (t1,t2)+Ch(t1,t2), ' ) /. {remove terms 8t with a + B < 0}
0

n=0 o0

(1.24)

Non-Mori dream spaces

Mori dream space X: Cox(X) is finitely generated.

Cox(X)= @ H'X,L)

LePic(X)

K&
K(©) = Nef(X)

\(1)




Side remark: infinite sequences of flops. Many CICY 3-folds and hypersurfaces

in toric varieties admit infinite sequences of flops. Here is an example.

P2 1 1]
X = 3 LZOX(k1D1+k2D2)
P2 1 1
121 10 224 620 1092 1638 2260 2960 3740 4602 5548 -
0 154 484 884 1352 1890 2500 3184 3944 4782
10F 0 100 370 704 1100 1560 2086 2680 3344 4080 -
0 60 276 550 880 1268 1716 2226 2800 3440
sk 0 32 200 420 690 1012 1388 1820 2310 2860 -
0 14 140 312 528 790 1100 1460 1872 2338
6F 0 4 94 224 392 600 850 1144 1484 1872 -
0 0 60 154 280 440 636 870 1144 1460
4F 0 0 3 100 190 308 456 636 850 1100 -
0 0 20 60 120 202 308 440 600 790
2l 0 0 10 32 68 120 190 280 392 528 -
0 0 4 14 32 60 100 154 224 312
o0 0 4 10 20 36 60 94 140
0 0 ) 0 0 o o0 0 4 14
-2f o 0 ) 0 0 0 0 0 0 0 -

|
N
o
N
N
(0)]

New features: infinitely many Kahler cones. The effective cone (in this case the
extended Kahler cone) turns out to be irrational.




L

Infinite Flop Chains, the Distance Conjecture

and the Kawamata-Morrison Conjecture

re
=
AL & K(X)
K(X) %
Y -
K(XY)
M)

[Brodie, AC, Lukas, Ruehle "21]



Why should one care?

The existence of line bundle cohomology formulae / generating functions greatly simplifies
the analysis of heterotic line bundle models. Calculations that would otherwise take minutes
or hours, are now virtually instantaneous.

Moreover, these expressions are of mathematical interest in themselves. We have examples in
arbitrary dimension > 2 including varieties of Fano, semi-Fano, CY and general type,
including also non-Mori dream spaces and complex structure dependence.

Aim: convert geometry into algebraic data.

Two surprises:
1. evidence that such generating functions exist
2. the same generating function, expanded around different points, encodes the zeroth and higher
cohomology of all line bundles.

Generating functions carry a lot of numerical information about the variety.

Do they uniquely determine the variety? A similar question has been asked for the regularised

guantum period of Fano varieties, which is a generating function for certain Gromov-Witten invariants.
[Coates, Kasprzyk, Pitton, Tveiten 21]



Thank you for listening!







Summary

Connecting String Theory and particle Physics: a hard, but worthwhile problem.
Al tools likely to bring the solution within reach.

The size of the string landscape: the spectacular success of heuristic search methods seems to indicate

that this is no longer a problem.
Fast line bundle cohomology computations: an essential tool for model building.

Computation of physical parameters (quark and lepton masses): now feasible in realistic string models.



ML Tutorial




ML and Neural Network basics

e One should think of Machine Learning in terms of fitting functions with a large number of

parameters. AlexNet: millions of parameters. GPT-4: (estimated to) trillions of parameters.
Us: ~80 billion neurons.

e Neural networks provide a versatile and structured recipe for constructing such functions
by composing linear (affine) and non-linear functions:

_,(0)

Y= (@) = fu0fa10...0f0 f1("X)
—z(1)

\ >4
-~

=z(2)

:z(n_l)

7

:z(n)

e The free parameters are placed in the linear (affine) parts. Parameter optimisation is often
carried out using first order algorithms such as gradient descent.



"loss"

Linear Regression with Linear Model

— Best Fit Line
Data: D = {(1,1.9), (2,4.1),(3,6.0), (4,8.1)}; N =4.
8l
Linear model fp(z) = ax + b. Parameters: 6 = {a, b}.
Mean square loss function: 6l
1 N
LO,D) =y~ (aw+6)*)p = D (e = (aza +0)*
a=1
net = NetChain[LinearLayer[1], 9
"Input" -> "Scalar", "Output" -> "Scalar"];
trainedNet = NetTrain[net, data, MaxTrainingRounds->10000]
/] : . .
"rounds" 1.0 1.5 2.0 25 3.0 35 4.0
2000 4000 6000 8000 10000 X
RN
L\
\
o T 0 — 60—Vl
10°? \
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Non-Linear Regression

— True Function e Training Data e Testing Data

True Function and Noisy Data

/\

-2




net = NetChain[LinearLayer[10], Tanh, LinearLayer[10],
Tanh, LinearLayer[1],
"Input" -> "Scalar", "Output" -> "Scalar"];
trainedNet = NetTrain[net, trainingData,

MaxTrainingRounds -> 10000, ValidationSet -> testDatal

1.0}

0.5F

-1.0f

-1.5}




net = NetChain[LinearLayer[10], Tanh, LinearLayer[10],
Tanh, LinearLayer[1], T

"Input" -> "Scalar", "Output" -> "Scalar"];
trainedNet = NetTrain[net, trainingData,

MaxTrainingRounds -> 10000, ValidationSet -> testDatal

1.0} fix]

0.17661 + 0.703751 Tanh[0.204803 + 0.00520699 Tanh[2.15607 - 7.44641 x] + 1.14988 Tanh[0.610416 - 4.64819 x| +
0.596274 Tanh[1.60028 - 2.82762 x] - 0.139781 Tanh[2.0049 - 2.05248 x] + 1.41275 Tanh[1.33975 - 1.19419 x] - 1.83663 Tanh[0.488284 + 1.95824 x| -
1.40558 Tanh[1.2765 + 2.80008 x] - 0.781195 Tanh[5.46282 + 3.94157 x] - 1.76049 Tanh[4.21767 + 5.05674 x] - 1.29827 Tanh[0.914676 + 5.71618 x] | -
2.75689 Tanh[0.163854 + 1.52014 Tanh[2.15607 - 7.44641 x] + 0.934268 Tanh[0.610416 - 4.64819 x] + 0.147245 Tanh[1.60028 - 2.82762 x| -
0.037561Tanh[2.0049 - 2.05248 x| - 0.36906 Tanh[1.33975 - 1.19419 x] - 0.946579 Tanh[0.488284 + 1.95824 x] - 0.157913 Tanh[1.2765 + 2.80008 x] -
0.437372Tanh[5.46282 + 3.94157 x] + 0.00617781 Tanh[4.21767 + 5.05674 x] - 1.21075 Tanh[0.914676 + 5.71618 x] ] +
0.779261Tanh[0.216784 + 0.129262 Tanh[2.15607 - 7.44641 x| + 0.246823 Tanh[0.610416 - 4.64819 x] + 1.01958 Tanh[1.60028 - 2.82762 x] -
0.110342 Tanh([2.0049 - 2.05248 x] + 2.35819 Tanh[1.33975 - 1.19419 x] - 2.86023 Tanh[0.488284 + 1.95824 x] - 1.41244 Tanh[1.2765 + 2.80008 x] -
> 00— 2.18076 Tanh[5.46282 + 3.94157 x] - 2.11799 Tanh[4.21767 + 5.05674 x] - 1.09177 Tanh[0.914676 + 5.71618 x] ] +
1.47308 Tanh[0.0986917 + 0.0714758 Tanh[2.15607 - 7.44641 x] + 0.313793 Tanh[0.610416 - 4.64819 x] - 1.24099 Tanh[1.60028 - 2.82762 ] -
0.256933 Tanh[2.0049 - 2.05248 x] - 1.13638 Tanh[1.33975 - 1.19419 x] + 0.954097 Tanh[0.488284 + 1.95824 x] + 1.00679 Tanh[1.2765 + 2.80008 x] +
1.11952 Tanh([5.46282 + 3.94157 x] + 0.112738 Tanh[4.21767 + 5.05674 x] - 0.85862 Tanh[0.914676 + 5.71618 x] ] +
-05k 1.3983 Tanh[0.163903 - 0.0163045 Tanh[2.15607 - 7.44641 x] + 0.0811762 Tanh[0.610416 - 4.64819 x] - 0.311803 Tanh[1.60028 - 2.82762 x] -
0.325621Tanh([2.0049 - 2.05248 x| + 0.629629 Tanh[1.33975 - 1.19419 x] - 0.75579 Tanh[0.488284 + 1.95824 x] + 0.322376 Tanh[1.2765 + 2.80008 x| -
3.47232 Tanh[5.46282 + 3.94157 x] - 2.23701 Tanh[4.21767 + 5.05674 x] - 0.284133 Tanh[0.914676 + 5.71618 x] ] +
0.837281Tanh[0.172128 - 0.00604862 Tanh[2.15607 - 7.44641 x] + 0.266826 Tanh[0.610416 - 4.64819 x] + 2.40392 Tanh[1.60028 - 2.82762 x| +
-1.0 2.3114 Tanh[2.0049 - 2.05248 x] + 1.50169 Tanh[1.33975 - 1.19419 x] - 0.538229 Tanh [0.488284 + 1.95824 x] - 0.297384 Tanh[1.2765 + 2.80008 x] -
0.582774 Tanh[5.46282 + 3.94157 x] - 0.216548 Tanh[4.21767 + 5.05674 x] + 0.0199791 Tanh[0.914676 + 5.71618 x] ] +
0.298102 Tanh([0.138128 + 1.59492 Tanh[2.15607 - 7.44641 x] + 0.813672 Tanh[0.610416 - 4.64819 x] + 2.00805 Tanh[1.60028 - 2.82762 x] +
0.0844229 Tanh[2.0049 - 2.05248 x] + 0.856589 Tanh[1.33975 - 1.19419 x] - 0.392794 Tanh[0.488284 + 1.95824 x] - 0.338992 Tanh[1.2765 + 2.80008 x] +
0.209547 Tanh[5.46282 + 3.94157 x] - 0.539457 Tanh[4.21767 + 5.05674 x] + 0.0503122 Tanh[0.914676 + 5.71618 x] ] +
1.4728 Tanh[0.33742 + 0.216924 Tanh[2.15607 - 7.44641 x] + 0.500515 Tanh [0.610416 - 4.64819 x] - 0.873752 Tanh[1.60028 - 2.82762 x] +
2.35402 Tanh[2.0049 - 2.05248 x] + 3.72717 Tanh[1.33975 - 1.19419 x] - 0.233875 Tanh [0.488284 + 1.95824 x| + 0.264878 Tanh[1.2765 + 2.80008 x] +
-3 0.0393616 Tanh[5.46282 + 3.94157 x] - 0.313547 Tanh[4.21767 + 5.05674 x] + 0.116385 Tanh[0.914676 + 5.71618 x] | -
2.4524 Tanh[1.0637 - 1.0223 Tanh[2.15607 - 7.44641 x] - 0.599124 Tanh[0.610416 - 4.64819 x] + 0.663922 Tanh[1.60028 - 2.82762 x] + 1.65099 Tanh[2.0049 - 2.05248 x] -
0.556632 Tanh[1.33975 - 1.19419 x] - 0.0284082 Tanh[0.488284 + 1.95824 x] - 0.156302 Tanh[1.2765 + 2.80008 x] -
1.45683 Tanh[5.46282 + 3.94157 x] - 0.636407 Tanh[4.21767 + 5.05674 x] + 0.12467 Tanh[0.914676 + 5.71618 x] ] -
1.00163 Tanh[0.0569403 - 0.0191611 Tanh[2.15607 - 7.44641 x] - 0.318248 Tanh[0.610416 - 4.64819 x] - 0.18598 Tanh[1.60028 - 2.82762 x] -
0.248466 Tanh[2.0049 - 2.05248 x] - 0.916941 Tanh[1.33975 - 1.19419 x] + 3.15879 Tanh[0.488284 + 1.95824 x] + 1.50443 Tanh[1.2765 + 2.80008 x] +
4.48518 Tanh[5.46282 + 3.94157 x] + 0.675371 Tanh[4.21767 + 5.05674 x] + 0.534663 Tanh[0.914676 + 5.71618 x] |

-1.5}
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net = NetChain[FlattenLayer[], LinearLayer[10], Ramp,
LinearLayer[10], SoftmaxLayerl[],
"Input" -> NetEncoder["Image", 28, 28, "Grayscale"l],
"Output" -> NetDecoder["Class", Rangel[O, 9]];
trainedNet = NetTrain[net, trainingData,
ValidationSet -> testData, MaxTrainingRounds -> 200,
Method -> "ADAM", BatchSize -> 100]

NetEncoder["Image", 28, 28, "Grayscale"] [imageName]
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Differential Equations

Solving differential equation (LHS = RHS, BCs = 0) with neural networks:

® no training data is available

instead, train on LHS-RHS = 0 (evaluated on a sample of points) and BCs =0

the neural network is simply an ansatz for the solution

as usual, optimise the parameters with gradient descent

avoid finite differences: the NN can be automatically differentiated w.r.t. the inputs

The simple NN from the previous examples can be successfully used to solve most
undergraduate level DEs.



