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We study candidate vacuum configurations in ten-dimensional 0(32) and E 8 X E 8 supergrav- 
ity and superstring theory that have unbroken N = 1 supersymmetry in four dimensions. This 
condition permits only a few possibilities, all of which have vanishing cosmological constant. In the 
E 8 × E 8 case, one of these possibilities leads to a model that in four dimensions has an E 6 gauge 
group with four standard generations of fermions. 

1. Introduction 

In  recent  years,  it  has become clear that  supers t r ing theories [1] (for reviews, see 
[2]) a re  good  cand ida tes  for  mathemat ica l ly  consis tent  theories of  q u a n t u m  gravity.  
These  theor ies  deve loped  f rom the old Ramond-Neveu -Schwarz  spinning str ing 
theory  [3], a n d  they reduce at low energies to ten-d imens iona l  supergravi ty  theories 
(see [4,5] for  references,  respectively,  on N =  1 and N =  2 supergravi ty  in ten 
d imens ions) .  Recent ly ,  the discovery [6] of anomaly  cancel la t ion  in a modi f i ed  
vers ion  of  d = 10 supergravi ty  and supers t r ing theory with gauge group 0(32)  or  
E 8 x E 8 has  opened  the poss ib i l i ty  that  these theories might  be  phenomeno log ica l ly  
real is t ic  as well  as mathemat ica l ly  consistent .  A new str ing theory  with E 8 x E 8 
gauge  group  has  recent ly  been cons t ruc ted  [7] a long with a second 0(32)  theory.  
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No realistic bottom-up approach.

Some hand-crafted models:

Greene, Kirklin, Miron, Ross, 1986

Braun, Candelas, Davies, Ronagi 2009+2011

Bouchard, Ronagi, 2005

Braun, He, Ovrut, Pantev, 2005
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• stabilise all moduli; understanding non-perturbative physics is typically required at this step



Three steps

• identify models that have the correct gauge group and particle spectrum


• compute Yukawa couplings (quark and lepton masses and mixing parameters) as functions of the moduli 


• stabilise all moduli; often, to do this one needs to understand non-perturbative physics

P. Candelas et al. / Superstrings 47 

For  these theories to be realistic, it is necessary that the vacuum state be of the 
form M 4 X K,  where M 4 is four-dimensional Minkowski space and K is some 
compact  six-dimensional manifold. (Indeed, Kaluza-Klein t h e o r y -  with its now 
widely accepted interpretation that all dimensions are on the same logical 
footing - was first proposed [8] in an effort to make sense out of higher-dimensional 
string theories). Quantum numbers of quarks and leptons are then determined by 
topological invariants of K and of an 0(32) or E 8 X E 8 gauge field defined on K [9]. 
Such considerations, however, are far from uniquely determining K. 

In this paper, we will discuss some considerations, which, if valid, come very close 
to determining K uniquely. We require 

(i) The geometry to be of the form ~L 4 x K, where eY~ 4 is a maximally symmetric 
spacetime. 

(ii) There should be an unbroken N = 1 supersymmetry in four dimensions. 
General  arguments [10] and explicit demonstrations [11] have shown that supersym- 
metry may play an essential role in resolving the gauge hierarchy or Dirac large 
numbers problem. These arguments require that supersymmetry is unbroken at the 
Planck (or compactification) scale. 

(iii) The gauge group and fermion spectrum should be realistic. 
These requirements turn out to be extremely restrictive. In previous ten-dimen- 

sional supergravity theories, supersymmetric configurations have never given rise to 
chiral f e r m i o n s -  let alone to a realistic spectrum. However, the modification 
introduced by Green and Schwarz to produce an anomaly-free field theory also 
makes it possible to satisfy these requirements. We will see that unbroken N = 1 
supersymmetry requires that K have, for perturbatively accessible configurations, 
SU(3) holonomy* and that the four-dimensional cosmological constant vanish. The 
existence of spaces with SU(3) holonomy was conjectured by Calabi [12] and proved 
by Yau [13]. 

On such a space, the theory can lead very naturally to a four-dimensional theory 
with E 6 gauge group and standard fermion generations (27's of E6).  This naturally 
incorporates physics as we know it [14]. The number of generations** turns out to 
be one-half the Euler characteristic of K. We will discuss one choice of K that leads 
to unbroken N = 1 supersymmetry and four generations. 

The above considerations concern only the field theory limit of the string theory. 
In general, it does not appear possible to formulate a consistent string theory on an 
arbitrary manifold. It is quite remarkable that, as we will see in sect. 5, the manifolds 
forced on us by phenomenological considerations in the field theory limit are 
precisely those manifolds on which it is possible to formulate a consistent string 
theory. 

* The holonomy group is the group generated by the connection, and is thus always a subgroup of 0(6) 
in six dimensions. SU(3) holonomy implies that the metric is Ricci-flat and K~,hler. 

** By this we mean the number of generations minus mirror generations. 

[Candelas, Horowitz, Strominger, Witten, 1985]
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Enumerating Calabi-Yau Manifolds: Placing Bounds
on the Number of Diffeomorphism Classes in the
Kreuzer-Skarke List

Aditi Chandra, Andrei Constantin,* Cristofero S. Fraser-Taliente, Thomas R. Harvey,
and Andre Lukas

The diffeomorphism class of simply connected smooth Calabi-Yau threefolds
with torsion-free cohomology is determined via certain basic topological
invariants: the Hodge numbers, the triple intersection form, and the second
Chern class. In the present paper, we shed some light on this classification by
placing bounds on the number of diffeomorphism classes present in the set
of smooth Calabi-Yau threefolds constructed from the Kreuzer-Skarke (KS) list
of reflexive polytopes up to Picard number six. The main difficulty arises from
the comparison of triple intersection numbers and divisor integrals of the
second Chern class up to basis transformations. By using certain
basis-independent invariants, some of which appear here for the first time, we
are able to place lower bounds on the number of classes. Upper bounds are
obtained by explicitly identifying basis transformations, using constraints
related to the index of line bundles. Extrapolating our results, we conjecture
that the favorable entries of the KS list of reflexive polytopes lead to some
10400 diffeomorphically distinct Calabi-Yau threefolds.

1. Introduction and Summary

The purpose of this paper is to distinguish the diffeomorphism
class of smooth, simply connectedCalabi-Yau three-folds, defined
as compact Kähler three-folds X with trivial canonical bundle and
vanishingH1(X,X ).We assume that certain basic topological in-
variants are known, namely the Hodge numbers, the symmetric
trilinear intersection form, and the second Chern class given ex-
plicitly relative to an integral basis of H2(X,ℤ). The key problem
addressed here is to decide when two sets of intersections forms
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and second Chern classes are the same
up to a basis transformation.
The pair of Hodge numbers

(h1,1(X ), h2,1(X )) specifies what is known
in the literature as the topological type of
a Calabi-Yau three-fold X . Certainly, if
two Calabi-Yau three-folds are homeo-
morphic to each other, their topological
types must agree. The converse, however,
is not true. Two Calabi-Yau three-folds
of the same topological type may dif-
fer with respect to other invariants,
such as the trilinear form and second
Chern class. For simply connected
manifolds with torsion-free cohomol-
ogy, Wall’s theorem[1 ] states that the
isomorphism class of the system of in-
variants mentioned above, including the
Hodge numbers, specifies uniquely the
diffeomorphism type. Two non-singular

diffeomorphic Calabi-Yau three-folds are also deformation
equivalent,[2,3 ] that is, their homotopy types agree, provided that
the diffeomorphism types agree; however, this fails to hold in
general.[4 ]

The question addressed in this paper is of importance to both
pure mathematics and physics. Since CY manifolds form one of
the building blocks in the classification of algebraic varieties up
to birational isomorphisms, their classification is an important
and open problem in algebraic geometry. From a differential ge-
ometric perspective, the question of classifying CY manifolds up
to diffeomorphisms is natural. In dimensions one, all CY mani-
folds, that is, genus-one curves, are diffeomorphic to each other.
The same is true in dimension two: all CY2 surfaces, a.k.a. K3 sur-
faces, are diffeomorphic as smooth 4-manifolds. In dimension
three, the picture is much more diverse and, to a large extent,
unresolved. For instance, it is not known whether the number of
distinct topological types is finite, except in the case of elliptically-
fibered CY three-folds, for which the answer is positive.[5,6 ] It is
also not known what kind of trilinear intersection forms can oc-
cur on CY three-folds, unlike the case of K3 surfaces, where the
possible intersection forms are classified by the even self-dual lat-
tices of signature (3,19). Another interesting question is whether
the number of distinct Hodge pairs that can arise for a given iso-
morphism class of triple intersection numbers and divisor inte-
grals of the secondChern class is bounded or not. It turns out that
this is true for CY three-folds containing no rigid non-movable
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dim. 1: all genus-one curves are diffeomorphic
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dim. 3: diffeomorphism classes classified by the 

“Wall data”: Hodge numbers, triple intersection numbers
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three, the picture is much more diverse and, to a large extent,
unresolved. For instance, it is not known whether the number of
distinct topological types is finite, except in the case of elliptically-
fibered CY three-folds, for which the answer is positive.[5,6 ] It is
also not known what kind of trilinear intersection forms can oc-
cur on CY three-folds, unlike the case of K3 surfaces, where the
possible intersection forms are classified by the even self-dual lat-
tices of signature (3,19). Another interesting question is whether
the number of distinct Hodge pairs that can arise for a given iso-
morphism class of triple intersection numbers and divisor inte-
grals of the secondChern class is bounded or not. It turns out that
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diffeomorphic Calabi-Yau three-folds are also deformation
equivalent,[2,3 ] that is, their homotopy types agree, provided that
the diffeomorphism types agree; however, this fails to hold in
general.[4 ]
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the building blocks in the classification of algebraic varieties up
to birational isomorphisms, their classification is an important
and open problem in algebraic geometry. From a differential ge-
ometric perspective, the question of classifying CY manifolds up
to diffeomorphisms is natural. In dimensions one, all CY mani-
folds, that is, genus-one curves, are diffeomorphic to each other.
The same is true in dimension two: all CY2 surfaces, a.k.a. K3 sur-
faces, are diffeomorphic as smooth 4-manifolds. In dimension
three, the picture is much more diverse and, to a large extent,
unresolved. For instance, it is not known whether the number of
distinct topological types is finite, except in the case of elliptically-
fibered CY three-folds, for which the answer is positive.[5,6 ] It is
also not known what kind of trilinear intersection forms can oc-
cur on CY three-folds, unlike the case of K3 surfaces, where the
possible intersection forms are classified by the even self-dual lat-
tices of signature (3,19). Another interesting question is whether
the number of distinct Hodge pairs that can arise for a given iso-
morphism class of triple intersection numbers and divisor inte-
grals of the secondChern class is bounded or not. It turns out that
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We derive an approximate analytic relation between the number of consistent heterotic Calabi-Yau 
compactifications of string theory with the exact charged matter content of the standard model of 
particle physics and the topological data of the internal manifold: the former scaling exponentially with 
the number of Kähler parameters. This is done by an estimate of the number of solutions to a set of 
Diophantine equations representing constraints satisfied by any consistent heterotic string vacuum with 
three chiral massless families, and has been computationally checked to hold for complete intersection 
Calabi-Yau threefolds (CICYs) with up to seven Kähler parameters. When extrapolated to the entire CICY 
list, the relation gives ∼1023 string theory standard models; for the class of Calabi-Yau hypersurfaces in 
toric varieties, it gives ∼10723 standard models.
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1. Introduction and summary

It is generally believed that string compactifications that have 
the exact charged matter content of the standard model of parti-
cle physics (and no other charged matter except moduli) are few 
in number. The purpose of this letter is to show that, although 
such compactifications may be rare and hard to find, their num-
ber is substantial. Admittedly, this bias has come in the past from 
the difficulty to construct phenomenologically viable compactifica-
tions. However, since the birth of string phenomenology in Ref. [1], 
from the advent of the first standard-like string model [2], to the 
first exact particle spectrum directly derived from a string com-
pactification [3–6], to the first result [7] from algorithmic heterotic 
compactification [8], until the comprehensive computer scan of 
Refs. [9–11,15], as well as the various statistical perspectives on 
the heterotic landscape [12,38] (cf. [13] in Type II and beyond 
[14]), there has been much progress.

While it can be specified at different levels of sophistication, for 
this letter a “string standard model” is a model with a massless 
spectrum which is exactly that of the minimally supersymmet-
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ric standard model (MSSM), plus any number of massless modes 
(moduli fields) uncharged under the standard model gauge group.

The general strategy of heterotic string phenomenology is to 
consider a smooth, compact Calabi-Yau threefold (CY), say X , with 
a non-trivial fundamental group !, together with a holomorphic, 
(poly-)stable vector bundle V over X , typically with structure 
group SU (5) or SU (4). Subsequently, a !-Wilson line can break 
the Grand Unified Theory (GUT) group, typically SU (5) or S O (10), 
to the MSSM group and the !-equivariant cohomology of V as well 
as its appropriate tensor powers correspond to the MSSM particles.

From an algorithmic point of view, one can (1) take manifolds 
X̃ from existing databases, most of which are simply connected, 
then search for discrete, freely acting symmetry groups ! on X̃ , 
and consider the quotient X # X̃/! with fundamental group !; 
(2) construct and classify families of !-equivariant bundles V
on X , ensure stability, and then compute the relevant cohomology 
groups; and (3) scan through the results to look for exact MSSM 
particle content. Much of these can be implemented on a com-
puter.

The most extensively used databases of manifolds are the 
Complete Intersection Calabi-Yau three-folds (CICYs) embedded in 
products of projective spaces of around 8000 manifolds [16,17]
as well as the Kreuzer-Skarke (KS) dataset of Calabi-Yau hyper-
surfaces embedded in around half-billion four-dimensional toric 
varieties [18–20] (the actual number of Calabi-Yau will vastly ex-

https://doi.org/10.1016/j.physletb.2019.03.048
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ric standard model (MSSM), plus any number of massless modes 
(moduli fields) uncharged under the standard model gauge group.

The general strategy of heterotic string phenomenology is to 
consider a smooth, compact Calabi-Yau threefold (CY), say X , with 
a non-trivial fundamental group !, together with a holomorphic, 
(poly-)stable vector bundle V over X , typically with structure 
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Cf. with the famous  IIB flux compactifications [Douglas, 2003] and

 F-theory flux compactifications on a single 4-fold [Taylor & Wang, 2015]
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Physics of Line Bundles on Calabi-Yau Threefolds



 Heterotic string - from N=1 supersymmetric theory in 10d to the N=1 in 4d:
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• matter fields: 

E8 × E8

X10 = X6 × M4
E8 → Gbundle × GGUT, GGUT → Gfinite × GSM

248 → (1, AdGGUT
) ⊕ (⊕i (Ri, ri)) nri

= h1(X, VRi
)

Heterotic string compactifications on CY 3-folds with line bundlesHeterotic string compactifications on CY 3-folds with line bundles
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To preserve N=1 susy in 4d:


•  must be Calabi-Yau, 


•  must be holomorphic and poly-stable, 

• anomaly cancellation: 

• matter fields massless: harmonic forms

X6 Rab̄ = 0
V Fab = Fāb̄ = gab̄Fab̄ = 0

c2(V ) ≤ c2(TX )



To preserve N=1 susy in 4d:


•  must be Calabi-Yau, 


•  must be holomorphic and poly-stable, 

• anomaly cancellation: 

• matter fields massless: harmonic forms

X6 Rab̄ = 0
V Fab = Fāb̄ = gab̄Fab̄ = 0

c2(V ) ≤ c2(TX )

Simplest setting:     . 


SM multiplets in ; Higgs pair: ; bundle moduli: 

V = ⊕5
a=1 La, Gbundle = S(U(1)5) and GGUT = SU(5) × S(U(1)5)

5̄ea+eb
, 10ea

(5−ea−eb
, 5̄ea+eb

) 1ea−eb

 Heterotic string - from N=1 supersymmetric theory in 10d to the N=1 in 4d:


• 

• 


• matter fields: 

E8 × E8

X10 = X6 × M4
E8 → Gbundle × GGUT, GGUT → Gfinite × GSM

248 → (1, AdGGUT
) ⊕ (⊕i (Ri, ri)) nri

= h1(X, VRi
)

Heterotic string compactifications on CY 3-folds with line bundles



2

exception to this rule is the class of vector bundles that
split into a sum of line bundles. Holomorphic line bun-
dles are classified by their first Chern class, which can
be expressed in terms of h1,1(X) integers. As such, line
bundles can be enumerated. Moreover, there is enough
evidence that indicates the existence of analytic formulae
for the ranks of line bundle valued cohomology groups in
terms of the line bundle integers [19–22]. Finally, line
bundle sums o↵er an accessible window into the moduli
space of non-abelian bundles [22–24]: if a line bundle sum
corresponds to a standard-like model, then usually it can
be deformed into non-abelian bundles that also lead to
standard-like models. Our model building experience for
such (rank five) line bundle models on CICYs suggests
that a significant number of consistent models with the
correct chiral asymmetry will descend to standard mod-
els after dividing by the freely acting discrete symmetry
group �. Moreover, by far the most frequent symmetry
is Z2. This suggests that an indication of the number
of standard models should be provided by counting the
consistent upstairs line bundle models with chiral asym-
metry 6, relevant for Z2 symmetries.

We start our analysis by outlining the constraints on
the compactification data that guarantee an MSSM-like
spectrum. For a fixed manifold, most of these constraints
take the form of diophantine equations and inequalities,
where the unknown variables are the line bundle inte-
gers. For the class of CICY manifolds with less than six
Kähler parameters this system was solved in Ref. [11] by
explicitly checking every possible line bundle sum. We
augment this dataset of line bundle models with results
for 7 new manifolds with h1,1(X) = 6, 7. These scans
suggest a simple rule: the number of line bundle models
increases roughly by an order of magnitude with every in-
crement of h1,1(X) by one. However, it is di�cult to test
this relation for larger values of h1,1(X) due to computer
limitations. Instead, we estimate the number of solutions
to the diophantine system of constraints using a result
from the mathematical literature [25]. For this to hold,
we define a bound on the line bundle integers in terms
of topological data of the manifold. Finally, we come
back to the empirical dataset of line bundles and corre-
late the number of solutions not only with h1,1(X), but
also with a number of topological invariants, constructed
from the intersection form and the second Chern class
of the CY manifold, that display little variation with in-
creasing h1,1(X). Extrapolating the multi-linear regres-
sion to the maximal value of h1,1(X) found in the CICY
dataset, we estimate a total of NCICY ' 1023 line bundle
models, while for the manifolds in the Kreuzer-Skarke list
we expect NKS ' 10723 line bundle models.

II. COUNTING LINE BUNDLE MSSMS

The models of interest for our count have an exact
MSSM particle content and are constructed from het-
erotic compactifications on a smooth, compact Calabi-

Yau threefolds X endowed with slope-zero, poly-stable
direct sums of line bundles. Let h denote the Picard
number of X, h := h1,1(X), and choose an integral ba-
sis of H2(X) denoted by {Ji}, where i = 1, . . . , h. In
this basis, let the second Chern class of X be c2,i and
the triple intersection numbers be dijk =

R
X Ji ^ Jj ^ Jk.

Line bundles L ! X with first Chern class c1(L) = kiJi
are denoted by L = OX(k).
The counting problem can then be formulated as fol-

lows:

PROBLEM: What is the number N = N(h, c2,i, dijk)
of rank five line bundle sums V = �

5
a=1La, where

La = OX(ka) such that the following constraints are
satisfied:

E8 embedding: c1(V ) =
5P

a=1
kia

!
= 0 for all i = 1, . . . , h;

Anomaly cancellation:

c2,i(V ) = �
1

2
dijk

X

a

kjak
k
a

!
 c2,i for all i = . . . , h;

Supersymmetry/Zero Slope: there is a common so-
lution ti to the vanishing slopes

µ(La) = dijkk
itjtk

!
= 0 for a = 1, . . . , 5

such that J = tiJi 2 interior of the Kahler cone;

Particle generations: the chiral asymmetry is six, i.e.

ind(V ) =
1

6
dijk

X

a

kiak
j
ak

k
a

!
= �3.

We emphasize that N is a function of the prescribed
Hodge number h, the second Chern class c2,i, as well
as the triple intersection numbers dijk of X.
A few remarks should be added and the reader is also

referred to Sec. 4 of Ref. [11] for further details on the
above constraints. The above counting is only concerned
with SU(5) bundles V for the following reason. From a
group theoretic point of view [18], there are many ways
to break the GUT group to the MSSM group using an
appropriate discrete Wilson line, for example, the ex-
act MSSM spectrum of [4] was achieved with a Z3 ⇥ Z3

Wilson line from an SO(10) GUT group. However, CY
manifolds X̃ with a large freely acting discrete symmetry
group � are quite rare. This can be seen, for instance,
from the complete classification of freely-acting [29] and
residual [30, 31] symmetries on all CICYs, or from the KS
dataset of hypersurfaces in toric Fano fourfolds [26, 28].
Therefore, generically, it is expected that Calabi-Yau

manifolds with a small fundamental group ⇡1(X), should
far exceed in number those with a large ⇡1(X) (this
should be contrasted with the relative paucity of Calabi-
Yau manifolds of small Hodge numbers [32, 33, 35]).
The smallest possible ⇡1(X) that breaks the SU(5) GUT
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• Heuristic searches: more recently, we used Genetic Algorithms and Reinforcement Learning to search 


even larger regions of the string landscape. We also used Quantum Annealing ‘intrinsic’ mutation 


to enhanced the GAs performance.


• New three-family models can now be identified on demand (thousands per day) or generated using AI. 
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Heterotic line bundle models: searches
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In this example: 


• Population size of 100 individuals

• Binary encoding/decoding for the chromosomes

• 16-bit chromosomes (8 bits for x-coordinate, 8 bits for y-coordinate)

• Tournament selection for parent selection

• Single-point crossover with crossover rate of 80%

• Bit-flip mutation rate of 3%

• Evolution over 50 generations

• Elitism to preserve the best solution

Genetic Algorithms in Pictures



Reinforcement Learning in Pictures
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Chern class corresponds to the condition that the sum of
the degrees in each row of the configuration matrix equals
the dimension of the corresponding projective space plus
one. All CICY three-folds are simply connected.

Holomorphic line bundles are specified by their first
Chern class, which is an element ofH2(X,Z). All Calabi-
Yau manifolds X ⇢ A discussed in this letter benefit
from being ‘favourably’ embedded, in the sense that a
basis of H2(X,Z) can be obtained by pulling-back the
Kähler two-forms of the hyperplane bundles over the Pn

factors of A. We denote this basis by (D1, D2, . . . , Dm)
for A = Pn1 ⇥ · · · ⇥ Pnm and the dual basis of curve
classes by (C1, C2, . . . , Cm). The vast majority of CICY
three-folds can be favourably embedded [13].

Several cones in H
2(X,R) play an important role in

the present discussion, whose definition we briefly review.
The Kähler cone K is the set of cohomology classes of
smooth positive definite closed (1, 1)-forms. For all the
manifolds studied below, the Kähler cone descends from
the ambient product of projective spaces, which means K
is the positive span of {D1, D2, . . . , Dm}. The closure K

is the nef cone. A line bundle is nef if its first Chern class
belongs to the nef cone. A line bundle is called e↵ective
if it has a global section or, equivalently, a non-vanishing
zeroth cohomology.

If L is a line bundle in the interior of the nef cone,
Kodaira’s vanishing theorem guarantees that all higher
cohomologies are trivial and, consequently, h0(X,L) =
�(X,L), where �(X,L) is the Euler characteristic of L,
which on a Calabi-Yau three-fold takes form

�(X,OX(D)) =
1

6
D

3 +
1

12
c2(X) ·D . (II.2)

The Euler characteristic is a linear combination of
two basic topological invariants on H

2(X,Z), namely
the cup-product cubic form H

2(X,Z) ! Z given by
D 7! D

3 and the linear form c2 : H2(X,Z) ! Z given
by D 7! c2(X) · D. It is known that a nef line bundle
L = OX(D) on a projective three-fold falls in the interior
of the e↵ective cone i↵ D

3
> 0 (see Thm. 2.2.16. in [14]).

We will make use of three important relations that hold
when X and X

0 are related by a flop which contracts a
finite number of disjoint P1 curves. First, since a flop
is an isomorphism in co-dimension one, H

2(X,R) and
H

2(X 0
,R) can be identified. In the following, divisors

identified in this way will be denoted by the same sym-
bol, primed for X

0 and unprimed for X. Second, since
the zeroth cohomology counts co-dimension one objects,
it is preserved under the flop, that is, h0

�
X,OX(D)

�
=

h
0
�
X

0
,OX0(D0)

�
where D

0 is the divisor on X
0 corre-

sponding to D on X. Note the same is not true of higher
cohomologies. Third, the above two forms have the fol-
lowing transformation rule,

D
03 = D

3
�

X

i

(D · Ci)
3

c2(X
0) ·D0 = c2(X) ·D + 2

X

i

D · Ci ,
(II.3)

where C1, C2, . . . , CN are the isolated exceptional P1

curves with normal bundle O(�1) � O(�1) contracted
in the flop [15, 16]. The Kähler cones K(X) and K(X 0)
share a common wall. The change in the cup product
cubic form corresponds in topological string theory to
the statement that the A-model 3-point correlation func-
tion on K(X) may be analytically continued to give the
A-model 3-point correlation function on K(X 0) [17].

III. THE MANIFOLD 7887.

In this example X is a generic Calabi-Yau hypersur-
face in the ambient space A = P1

⇥ P3 defined by the
configuration matrix

P1

P3


2
4

�2,86
(III.1)

with identification number 7887 in the CICY list [1, 2].
If L is a line bundle over X, we write its first Chern

class as c1(L) = k1D1 + k2D2. Line bundle cohomology
dimensions, computed algorithmically using the CICY
package [18] for �3  k1  4, �1  k2  9 are shown in
the chart below.

FIG. 1. Zeroth cohomology dimensions on the CICY man-

ifold 7887. Blue region: Kähler cone K(X) of X. Green

region: Kähler cone K(X 0) of the flopped space X 0.

The positive quadrant (blue region in Fig. 1) corre-
sponds to the Kähler cone of X. In this region we have
h
0(X,L) = �(X,L). The Euler characteristic is com-

puted with the following topological data:

d111 d112 d122 d222 c2 ·D1 c2 ·D2

0 0 4 2 24 44
(III.2)

where dijk = Di ·Dj ·Dk. Along the horizontal boundary
of the nef cone the cubic form D 7! D

3 vanishes, which
indicates that this is also a boundary of the e↵ective cone.
The vertical boundary is shared with another cone (the
green region in Fig. 1) which we conjecture to be the
nef cone of a flopped Calabi-Yau three-fold X

0. For line
bundles L in this region this implies

h
0(X,L) = h

0(X 0
, L

0) = �(X 0
, L

0) . (III.3)
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Mathematical structure of RL: Markov Decision Processes. 

Simplest version: policy-based RL. 

The policy is controlled by a NN and learnt without 

any prior knowledge of the environment. 
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which means that the fittest individual in every genera-
tion is copied to the next generation without modifica-
tion.

The genetic quantum annealing algorithm (GQAA) de-
scribed in Ref. [22] makes a further step by realising the
genotype of individuals in a quantum mechanical way,
that is, as quantum reads on a system of spins on a quan-
tum annealer. This approach uses quantum annealing
to enhance the GA but maintaining the same topology
for the algorithm. This sidesteps the difficulty of encod-
ing the problem directly onto the annealer (for recent
discussions in the Physics context see Ref. [25] and also
Ref. [26]).

The manner in which such a GQAA enhances the clas-
sical GA is motivated by the way that classical GAs
work. To understand this we can use the schema the-
orem of Holland as a rough guide (notwithstanding its
still controversial status). According to the theorem, the
classical GA works by propagating favourable sets of im-
portant alleles (i.e. the schema in question) throughout
the population, such that the number of individuals with
a good schema will grow exponentially with time. How-
ever there is clearly some redundancy in the mechanism,
because the only way that the fitness gifting abilities of
a particular schema can be represented is through the
number of individuals in the population that carry it.
The GQAA works by instead representing individuals in
terms of continuous biases and couplings on a quantum
annealer. These continuous allele values are called the
classical genotype. In order to extract the phenotypes
of all the individuals, the first step is to produce a so-
called quantum genotype for them all by reading off the
corresponding discrete spin values produced in a quan-
tum anneal. The quantum genotypes that emerge from
the quantum anneal are isomorphic to those in the classi-
cal GA. Thereafter the calculation of the phenotype and
fitness, the selection and the breeding is all performed
classically in the usual way, with the result being used to
define the next generation of biases and couplings.

The advantage of this arrangement is that now the
fitness can be represented continuously in the spin bias-
ing of each individual. Thus, for example, the classical
genotype of a very fit individual will strongly bias its
preferred quantum genotype, while a weaker individual
is more likely to be influenced by the stronger individ-
uals to which it couples. In this way the represention
of the fitness yielding advantage of a particular schema
is enhanced beyond simply counting the number of indi-
viduals in the population that carry it. This quantum
annealing step can then be thought of as a form of di-
rected mutation, namely a mutation in which the prior
fitness of the parents influences the offspring that are
produced, as does the presence of much fitter individu-
als in the population. Indeed, it completely replaces the
classical mutation step. There are several other aspects
of the GQAA (especially regarding the preferred format
of the couplings between individuals in the population)
which are further described in Ref. [22].

Note that in the limit in which there is no coupling
between the spins on the annealer such that there are
only biases, and in which the annealing is carried out
perfectly adiabatically, the classical genotype determines
the quantum genotype exactly, and the GQAA becomes a
classical GA in this limit. This allows a direct comparison
of the potential enhancement conferred by the GQAA
using an otherwise identical system.

IV. RESULTS

Let us begin with the classical GA. We have imple-
mented the classic genetic algorithm and the line bundle
environment (performing the binary encoding and the
computation of the fitness function) in C, and the code is
available here [27, 28]. We performed 7 different searches,
as summarised in Table I. Each search was divided into
a large number of genetic episodes, with every episode
containing 300 generations of 300 individuals each. The
mutation rate was set to 0.5%, and the selection proba-
bility factor to ↵ = 3.

Table I. Summary of results for the 7 GA searches. The ta-
ble compares the number of models found here (GA) with
numbers found in previous comprehensive searches (Scan) for
manifolds with h < 7, both as actual numbers and as per-
centages. For the first three manifolds these numbers refer to
the models that pass a sufficient criterion for poly-stability,
performed after the GA search. The last column indicates the
fraction of the environment explored in the GA search.

Manifold h |�| Range GA Scan Found Explored

7862 4 2 [-7,8] 5 5 100% 10�10

7862 4 4 [-7,8] 30 31 97% 10�10

7447 5 2 [-7,8] 38 38 100% 10�14

7447 5 4 [-7,8] 139 154 90% 10�14

5302 6 2 [-7,8] 403 442 93% 10�19

5302 6 4 [-7,8] 722 897 80% 10�19

4071 7 2 [-3,4] 11,937 N/A N/A 10�14

A. The manifolds X7862, X7447 and X5302

Systematic and comprehensive scans on these mani-
folds have been previously carried out in Ref. [18]. On
the manifold X5302 a search using reinforcement learning
was carried out in Ref. [21]. Our purpose here is to gauge
the GA performance as a heuristic method of search.
The results are surprising. For the manifold X7862 with
h1,1(X) = 4, the environment contains ⇠1019 line bundle
sums1. All Z2-models and 97% of the Z4-models were

1 The comprehensive scan of Ref. [18] on environments of this size
was only possible due to the split nature of the bundle, which

(a) Fitness histogram: number of individuals as a
function of generation and fitness.

(b) Fraction of perfect models vs generation.

Figure 1: Performance measures for a typical GA initialisation on the bicubic.

size of the search space is
814 ' 4.4⇥ 1012 .

By comparison, the number of states visited in the above run, namely 50, 000, represents only a tiny
fraction of the space. However, the GA was capable of finding 48 perfect states, while a random
search over millions of states would typically lead to no perfect states at all.

Secondly, as already noted, the GA has a tendency of visiting the same states multiple times. It is
interesting to plot the total number of perfect states found after n generations as a function of n.
For our illustrative run such a plot is shown in Figure 2, which suggests that there is no additional
benefit in letting the population evolve beyond a certain generation (n ' 150).

Figure 2: Saturation of the number of perfect states found in a typical GA run on the bicubic.

Finally, it is useful to compute the degeneracy of the 18 states that remain after removing redun-
dancies. By performing all the allowed permutations a number of 19, 080 states are obtained. This
should be compared with the product 18 ⇥ 2800 = 50, 400 which turns out to be an overestimate
by more than a factor of 2. Moreover, what this computation indicates is that a single run of the
GA is not enough if the aim was to find all the perfect states available in the environment and that
1, 000 further runs, which would take about 1 day on a single machine, would be just about enough
to find the other redundant representations of the 18 states found in the first run. Of course, many
more new states, not related to the 18 by permutations, would be expected to arise in such a search,
which implies that a comprehensive search would require several, possibly tens of thousands of GA
runs. With 10, 000 runs this would amount to exploring ⇠ 0.01% of the environment.

14

Comparison with systematic scans: virtually the same results while scanning only a fraction of  !!

Comparison between GA and RL: very different philosophies, similar results.

∼ 10−20
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Beyond 3 generations

Going beyond the basic check of having 3 chiral families of fermions involves:


• fast cohomology computations to decide the presence of Higgs pairs, exotic matter, bundle moduli

• use the additional (effectively global) -symmetries to constrain the superpotential


The Yukawa couplings take the form:

U(1)
where ea is the a-th standard basis vector in 5 dimensions. Our task now is to determine

the structure of the Yukawa matrices as dictated by the U(1) symmetries.

The generic form of the Yukawa couplings is the following:

up sector: (singlet insertions)⇥ H
u
�ea�eb10

i
ec10

j
ed

down sector: (singlet insertions)⇥ H
d
ea+eb 5̄

i
ec+ed10

j
ee ,

(1.9)

The leading-order singlet insertions that lead to G-invariant operators are:

up sector:

0

B@
�5,1�4,1 �5,1�1,2�4,1 �4,1

�5,1�1,2�4,1 �5,1�
2
1,2�4,1 �1,2�4,1

�4,1 �1,2�4,1 �4,5

1

CA

down sector:

0

B@
�5,1�3,5 �5,1�3,5 �5,1�3,5

�5,1�3,5�1,2 �5,1�3,5�1,2 �5,1�3,5�1,2

�3,5 �3,5 �3,5

1

CA

(1.10)

with the convention that the ordering of the three families follows the sequence in which

they are listed in (1.6).
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Beyond 3 generations
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up sector: (singlet insertions)⇥ H
u
�ea�eb10

i
ec10

j
ed

down sector: (singlet insertions)⇥ H
d
ea+eb 5̄

i
ec+ed10

j
ee ,

(1.9)

The leading-order singlet insertions that lead to G-invariant operators are:
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An example



Geometry of Line Bundles on Calabi-Yau Threefolds



Line bundle cohomology for low energy 
string spectra




We note that a line bundle L (other than the trivial bundle) with vanishing slope, µ(L) = 0,

has vanishing zeroth and third cohomology, H0(X,L) = H3(X,L) = 0 so that

ind(L) = �h1(X,L) + h1(X,L
⇤
) . (2.8)

2.2 The Spectrum

For a bundle structure group S(U(1)5) ⇢ SU(5) ⇢ E8 the low-energy gauge group, given by the

commutant of the structure group within E8, is SU(5) ⇥ S
�
U(1)5

�
. The matter multiplets present

in the four-dimensional theory can be obtained by decomposing the adjoint 248E8 of E8 under the

SU(5)⇥ S
�
U(1)5

�
sub-group which leads to

10a , 10a , 5a,b , 5a,b , 1a,b , (2.9)

Here the number indicates the SU(5) representation and the indices a, b, . . . = 1, . . . 5 indicate which

of the five U(1) symmetries the multiplet is charged under. Specifically, the 10a (10a) multiplets carry

charge +1 (�1) under the ath U(1) symmetry while being uncharged under the others. The 5a,b (5a,b)

multiplets carry charge +1 (�1) under U(1) charges a and b while the singlets 1a,b carry charge +1

under the ath and charge �1 and the bth U(1). The multiplicity of each of these multiplets can be

computed from line bundle cohomology, as summarised in Table 1. The cohomology of line bundles

repr. cohomology total number required for MSSM

1a,b H1(X,La ⌦ L
⇤
b
)

P
a,b

h1(X,La ⌦ L
⇤
b
) = h1(X,V ⌦ V

⇤
) -

5a,b H1(X,L
⇤
a ⌦ L

⇤
b
)

P
a<b

h1(X,L
⇤
a ⌦ L

⇤
b
) = h1(X,^2V

⇤
) nh

5a,b H1(X,La ⌦ Lb)
P

a<b
h1(X,La ⌦ Lb) = h1(X,^2V ) 3|�|+ nh

10a H1(X,La)
P

a
h1(X,La) = h1(X,V ) 3|�|

10a H1(X,L
⇤
a)

P
a
h1(X,L

⇤
a) = h1(X,V

⇤
) 0

Table 1: The spectrum of SU(5) GUT models derived from the heterotic line bundle construction. In the
final column, |�| stands for the order of the fundamental group of X and nh represents the number of 5 � 5
Higgs fields.

is usually easier to compute than that of non-Abelian bundles and this constitutes another major

technical advantage of line bundle models. The phenomenological requirements on the GUT particle

spectrum – essentially the three-family constraint plus having an additional 5� 5 pair to account for

the Higgs doublets – are summarized in the last column of Table 1.

In order to arrive at a standard-like model, we need a freely-acting symmetry � on X, with

order |�|, which can be lifted to the bundle V , that is, the bundle V needs to have a �– equivariant

structure. Then, performing the quotient by � and including a Wilson line in the hypercharge direction
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Line bundle cohomology with spectral 
sequences

Line bundle cohomology on CICYs.

The computation of line bundle cohomology on X ⇢ A = Pn1 ⇥ Pn2 ⇥ . . .⇥ Pnm

proceeds in three steps. Say X is defined by K polynomials; these are sections

of line bundles, whose direct sum forms the normal bundle N . Suppose the

embedding X ⇢ A is favourable, in the sense that all the line bundles on X

descend from line bundles on A.

Let L ! X be a line bundle over X and LA the corresponding line bundle.

Step 1. Write the Koszul complex associated with L:

0 ! LA ⌦ ^KN ⇤ ! LA ⌦ ^K�1N ⇤ ! . . . ! LA ! L ! 0

Step 2. Compute all ambient space cohomologies involved in the above

sequence.

Step 3. Use the Leray spectral sequence machinery to infer the cohomology

of L. The computation of di↵erentials is facilitated by the Borel-Weil-Bott

representation of cohomology groups in terms of irreps of unitary groups.
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Line bundles on Pn. Cohomology dimensions given by the Bott formula:

h0(Pn,OPn (k)) =

 
k + n
n

!
=

1
n!

(1 + k) . . . (n + k) , if k � 0, and 0 otherwise.

hi (Pn,OPn (k)) = 0 , if 0 < i < n .

hn(Pn,OPn (k)) =

 
�k � 1

�n � k � 1

!
=

1
n!

(�n � k) . . . (�1� k) , if k  �n � 1,

and 0 otherwise.

h0(Pn,OPn (k)): the number of degree k homogeneous polynomials in the n + 1

variables x0, x1, . . . xn. The result for the top cohomology can be obtained by

Serre duality, hi (X , L) = hn�i (X ,KX ⌦ L⇤), with KPn = OPn (�n� 1). The Bott

gap result can be argued, e.g. using the Čech complex. Note that for projective

spaces, line bundle cohomology can be nonzero in at most one degree.

It is straightforward to generalise Bott’s formula to products of projective

spaces – Künneth formula.
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spaces, line bundle cohomology can be nonzero in at most one degree.

It is straightforward to generalise Bott’s formula to products of projective
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For spectral 

sequence 

technology, 

see, e.g., Hübsch’ 

CY Bestiary.



The Leray spectral sequence machinery can be automatised. 

[CIPro package, Anderson, AC, Gray, He, Lee, Lukas, to appear]


[pyCICY by Larfors & Schneider ‘19]


Computational cost of cohomology calculations with spectral sequences: 


Example: for a line bundle of (multi)-degree 10 on a Calabi-Yau threefold


with  Kähler parameters, the estimate is


 elementary operations


which reaches the limits of a standard machine 


∼ O ((ρ(X )dim(X)deg(L)dim(X))3)

h1,1(X ) = ρ(X ) = 4

∼ 1014



Train a neural network?
Here is some data for , where  is the Hirzebruch surface  for .h0(S, L = 𝒪S(k1, k2)) S F1 −8 ≤ ki ≤ 8

One can blindly train a NN to predict these numbers. Most of 

the time they come out right, with the occasional error of .
±1

[Ruehle ’17]



An exercise in pattern recognition
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region in e↵. cone h0(X , L = OX (D = k1D1 + k2D2))

blue 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 )

green 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 ) +
8
3k1(1� k2

1 )

yellow 2k1(1 + k2
2 ) +

5
6k2(5 + k2

2 ) +
8
3k1(1� k2

1 )+

+ 1
2 (1� (4k1 + k2)2)

l
4k1+k2
�3

m

k1 > 0, k2 = 0 k1 + 1

�k1 = k2 � 0 1

Note that inside the e↵ective cone, this defines a continuous function on the

real Neron-Severi space.



look at patterns in the

data for


Example. Consider a fairly innocent example of a Picard number 2 CICY

three-fold (that is h1,1(X ) = 2), defined by the configuration matrix

X =
P1

P4

"
1 1

4 1

#2,86

L = OX (k1D1 + k2D2)

[Larfors, Schneider, 1906.00392], [Brodie, AC, Lukas 2010.06597]

For string model building, this is far too slow.

h0(X, L), L ∈ Pic(X )

[AC, Lukas ’18]

[Larfors, Schneider ’19]

[Brodie, AC, Lukas ‘21]



It is possible to train a neural network (supervised learning) to identify the

di↵erent regions and the formulae that hold within each.

(W1,b1)k (W2,b2)� �
Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)

Rn2 · R

g�

Zh

ZN

[Brodie, AC, Deen, Lukas, 1906.08730]

see also: [Klaewer, Schlechter, 1809.02547]

The training data consists of pairs (k, hi (X ,OX (k))).

Drawback: the amount of training data is limited by the slow algorithmic

computation. For larger Picard number manifolds it is not feasible to generate

enough training data. Nevertheless, this ML exercise was useful to generate

conjectures.



topological data of (X ,V )

Counting String Theory Standard Models

Andrei Constantin

University of Oxford

Liverpool University, 9 October 2018

global data:

local data

cohomology groups

h•(X ,V )



topological data of (X ,V )

Counting String Theory Standard Models

Andrei Constantin

University of Oxford

Liverpool University, 9 October 2018

global data:

local data

cohomology groups

h•(X ,V )



Quasi-topological formula for individual cohomologies on 
surfaces

Theorem: line bundle cohomology formula for toric surfaces

Let S be a smooth projective toric surface, and D an e↵ective integral divisor

with Zariski decomposition D = P + N. Then

h0�S ,OS(D)
�
= �

�
S ,OS(bPc)

�
.

Explicitly, if D lies in the Zariski chamber ⌃i1,...in , obtained by translating a

codimension n face F of the nef cone along the set of dual Mori cone

generators {Mi1 ,Mi2 , . . .Min} orthogonal (with respect to the intersection

form) to the face F , then

h0�S ,OS(D)
�
= �

✓
S ,OS

⇣
D �

nX

k=1

⌃
�D · M_

ik ,{i1,...,in}

⌥
Mik

⌘◆
.

Similar theorems for generalised del Pezzo surfaces and K3 surfaces, more

details in [Brodie, AC, 2009.01275].

The information needed to write down a general formula: the intersection form

and the generators of the Mori cone.

Hirzebruch-Riemann-Roch theorem (  cplx,  holom.):   
X V

RECENT DEVELOPMENTS IN LINE BUNDLE COHOMOLOGY AND

APPLICATIONS TO STRING PHENOMENOLOGY

CALLUM BRODIE, ANDREI CONSTANTIN, JAMES GRAY, ANDRE LUKAS, AND FABIAN RUEHLE

Abstract. Vector bundle cohomology represents a key ingredient for string phenomenology, being associated
with the massless spectrum arising in string compactifications on smooth compact manifolds. Although
standard algorithmic techniques exist for performing cohomology calculations, they are laborious and ill-
suited for scanning over large sets of string compactifications to find those most relevant to particle physics.
In this article (based on the second author’s lecture at the Nankai Symposium, August 2021) we review some
recent progress in deriving closed-form expressions for line bundle cohomology and discuss some applications
to string phenomenology.

1. Introduction

Computing cohomology is a crucial and time-consuming step in the derivation of the spectrum of low-
energy particles resulting from string compactifications. The state-of-the-art consists of computer imple-
mentations of algorithmic methods, based on Čech cohomology and spectral sequences [1–3]. However, these
methods are computationally intensive and provide little insight into the origin of the results. Recently, it has
been shown that in many cases of interest in string theory topological formulae for line bundle cohomology
exist, providing mathematical shortcuts that can reduce the time needed for deciding the physical viability
of a string compactification from several months of computer algebra to the split of a second.

Line bundles feature in many string theory contexts and have proven to be a fruitful setting for realistic
phenomenology [4–11]. Moreover, they represent building blocks for higher-rank vector bundles, such as
monad or extension bundles [12–17]. Topological formulae for line bundle cohomology were initially discovered
empirically, through a combination of direct observation [18–22] and machine learning techniques [23–26]
and covered examples from several classes of complex manifolds of dimensions two and three. The main
observation was that the Picard group decomposes into disjoint regions, called cohomology chambers, in each
of which the cohomology function is polynomial or very close to polynomial, a pattern observed both for the
zeroth and the higher cohomologies, with a di↵erent chamber structure emerging for each type of cohomology.
The number of regions often increases dramatically with the Picard number.

It is well-known that given a complex manifold X and a holomorphic bundle V , the Euler characteristic
�(X,V ), that is the alternating sum of cohomologies hi(X,V ) can be equated to a purely topological index:

�(X,V ) =

dim(X)X

i=0

(�1)ihi(X,V ) =

Z

X
ch(V ) · td(X) ,

which is the statement of the Hirzebruch-Riemann-Roch theorem. Similar formulae have now been found to
hold for each individual cohomology dimension h

i(X,V ), for large classes of complex manifolds and abelian
vector bundles.

2. Dimension Two

The first advancement in understanding the mathematical origin of these formulae came through the study
of line bundles on several classes of complex surfaces widely used in string theory, including compact toric
surfaces, weak Fano surfaces (generalised del Pezzo surfaces), and K3 surfaces [27,28]. Note that for surfaces
it su�ces to study the zeroth cohomology function h

0(X,V ), from which the formulae for the first and second
cohomologies then follow by Serre duality and the Riemann-Roch theorem.

Line bundle cohomology formulae on these families of surfaces arise through a combination of Zariski de-
composition and vanishing theorems. Zariski decomposition is the statement that on any complex projective
surface X, any e↵ective divisor D can be uniquely decomposed as D = P +N , where P is nef, N is e↵ective,

1
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Example: P2 blown up in one point (del Pezzo surface of degree 8); has one

(�1)-curve.
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Another example: F6, a Picard number 3 Gorenstein Fano toric surface

isomorphic to a blow-up of the Hirzebruch surface F2; has two (�1)-curves and

one (�2)-curve.

A curve on a surface is simultaneously a curve and a divisor. You have the Mori

cone of e↵ective curves, the nef cone of divisors that have positive intersection

with every e↵ective curve. Each Mori cone generator is perpendicular to a facet

of the nef cone. Every face of the nef cone gives rise to a cohomology chamber.

 data for del Pezzo of degree 8


Similar theorems for K3 surfaces and

(generalised) del Pezzo surfaces.


Information needed to write a formula:

the intersection form and the generators

of the Mori cone 


[Brodie, AC ‘20]

h0



D1 D2 D3 D4 D5

1 0 0 1 0

0 1 0 2 1

0 0 1 1 1

We can take as a divisor basis {D1, D2, D3}, in terms of which D4 = D1 +2D2 +D3 and D5 = D2 +D3. The

self-intersections are given by

D2
1 = �2 , D2

2 = �1 , D2
3 = �1 , D2

4 = 1 , D2
5 = 0 , (3.3)

and the intersection form in the above basis is

(Di ·Dj) =

0

BB@

�2 1 0

1 �1 1

0 1 �1

1

CCA . (3.4)

As before, we write divisors in the chosen basis as D = ( · , · , · ). The anti-canonical divisor �K is the sum of

the toric divisors, �K = (2, 4, 3). The Mori cone generators and the dual nef cone generators are given by

M1 = (1, 0, 0) , M2 = (0, 1, 0) , M3 = (0, 0, 1) ,

N1 = (0, 1, 1) , N2 = (1, 2, 2) , N3 = (1, 2, 1) ,
(3.5)

where Mi · Nj = �ij . The rigid irreducible curves are simply the Mori cone generators.

Figure 4: The effective cone of the Gorenstein Fano toric surface F6 splits into five different
Zariski chambers outside of the nef cone. We have labelled the rays of the Mori cone generators
Mi and the nef cone generators Nj.
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A Picard number 3 toric surface



Features of line bundle cohomology on Calabi-Yau threefolds

• We studied: CICY three-folds, smooth quotients thereof by freely acting

discrete symmetries, (hypersurfaces) in toric varieties.

• We know empirically that analytic formulae exist for all cohomology

groups. By Serre duality, it is enough to understand the zeroth and the

first cohomologies.

• The Picard group splits into various cones, in each of which the zeroth

cohomology can be computed as an index.

Line bundle cohomology on Calabi-Yau threefolds



Two types of cones

• In the Kähler cone K(X ), due to Kodaira’s vanishing theorem

h0(X , L) = �(X , L)

where the Euler characteristic of L = OX (D), on a Calabi-Yau 3-fold is

�(X ,OX (D)) =
1
6
D3 +

1
12

c2(X ) · D

• Some CY3s have ‘other Kähler cones’: these are really the Kähler cones of

the threefolds related to X by a sequence of flops

• There can also be Zariski chambers, similar to the case of complex surfaces



Zariski chambers. The other type of zeroth cohomology chambers that arise

are Zariski chambers. Here is an example.
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X =
P1

P4

"
1 1

4 1

#2,86

In each chamber, the zeroth cohomology can be written as an index.

region in e↵. cone h0(X , L = OX (D = k1D1 + k2D2))

K(X ) �(X ,OX (D))

K(X 0) \ {OX} �(X 0,OX 0(D 0)

⌃ �
⇣
X 0,OX 0

⇣
D 0 �

l
D0

·C̃ 0
2

�0·C̃ 0
2

m
�0

⌘⌘

k1 > 0, k2 = 0 �(P1, (D · C1)HP1)

�k1 = k2 � 0 1



3.3.4. Other examples of Mori-dream spaces in Picard number 2

Example 3.17. Let X be a general hypersurface of bi-degree (3, 5) in P1
◊P3, which corresponds to a threefold

of general type. This example is a particular case of Conjecture 3.11. Denoting, as before, H1 = OP1◊P3(1, 0)|X
and H2 = OP1◊P3(0, 1)|X , it was shown in Ref. [24] that the divisor 5H2 ≠ H1 is base-point free and defines a
contraction to P2. Moreover,

E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0(5H2 ≠ H1) . (3.47)

Note that in this case Nef(X) does not descend from the ambient variety. A generating function for the zeroth
line bundle cohomology throughout the entire Picard group can be written as:

CS
0 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

0 0

R

b =
ÿ

m1,m2œZ
h

0(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

CS
1 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

0 Œ

R

b =
ÿ

m1,m2œZ
h

1(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

≠CS
2 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

Œ 0

R

b =
ÿ

m1,m2œZ
h

2(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

≠CS
3 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

Œ Œ

R

b =
ÿ

m1,m2œZ
h

3(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

(3.48)
The generating function for the zeroth cohomology dimensions follows from the presentation for the Cox ring
of X given in [24]; the other generating functions are conjectural.

Example 3.18. Moving away from hypersurfaces, letX be a general Calabi-Yau three-fold in the deformation
family defined by the configuration matrix

P1

P4

S

U 1 1
1 4

T

V , (3.49)

with position 7885 in the list of CICY threefolds and Hodge numbers (h1,1(X), h
1,2(X)) = (2, 86). The structure

of the e�ective cone has been studied in Ref. [8], namely

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(3.50)

such that the e�ective cone consists of three Mori chambers, one of which is a Zariski chamber and the other two
are associated with the nef cones of the two (non-isomorphic) birational models of X. Figure 7 displays some
data about the zeroth line bundle cohomology.

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1, t2) =
(1 ≠ t1t2)

!
1 ≠ t1t

4
2
"

(1 ≠ t1)2 (1 ≠ t2)5 . (3.51)
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Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

≠ 1 ≠ 1 0 . . . 0 ≠1 ≠1
4 1 1 . . . 1 5 5

(3.52)

which corresponds to the Hilbert-Poincaré series

HS(X Õ
, t1, t2) = (1 ≠ t

≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

. (3.53)

Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:

(1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (3.54)

Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
0(X, t1, t2) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R

b (3.55)
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Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

≠ 1 ≠ 1 0 . . . 0 ≠1 ≠1
4 1 1 . . . 1 5 5

(3.52)

which corresponds to the Hilbert-Poincaré series

HS(X Õ
, t1, t2) = (1 ≠ t

≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

. (3.53)

Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:

(1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (3.54)

Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
0(X, t1, t2) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R

b (3.55)

30

Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
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To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by
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which corresponds to the Hilbert-Poincaré series
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Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:

(1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (3.54)

Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
0(X, t1, t2) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R
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Cohomology series

3.3.4. Other examples of Mori-dream spaces in Picard number 2

Example 3.17. Let X be a general hypersurface of bi-degree (3, 5) in P1
◊P3, which corresponds to a threefold

of general type. This example is a particular case of Conjecture 3.11. Denoting, as before, H1 = OP1◊P3(1, 0)|X
and H2 = OP1◊P3(0, 1)|X , it was shown in Ref. [24] that the divisor 5H2 ≠ H1 is base-point free and defines a
contraction to P2. Moreover,

E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0(5H2 ≠ H1) . (3.47)

Note that in this case Nef(X) does not descend from the ambient variety. A generating function for the zeroth
line bundle cohomology throughout the entire Picard group can be written as:

CS
0 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

0 0

R

b =
ÿ

m1,m2œZ
h

0(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

CS
1 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

0 Œ

R

b =
ÿ

m1,m2œZ
h

1(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

≠CS
2 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

Œ 0

R

b =
ÿ

m1,m2œZ
h

2(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

≠CS
3 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
2)3 ,

t2 t1

Œ Œ

R

b =
ÿ

m1,m2œZ
h

3(X, OX(m1H1 + m2H2))tm1
1 t

m2
2

(3.48)
The generating function for the zeroth cohomology dimensions follows from the presentation for the Cox ring
of X given in [24]; the other generating functions are conjectural.

Example 3.18. Moving away from hypersurfaces, letX be a general Calabi-Yau three-fold in the deformation
family defined by the configuration matrix

P1

P4

S

U 1 1
1 4

T

V , (3.49)

with position 7885 in the list of CICY threefolds and Hodge numbers (h1,1(X), h
1,2(X)) = (2, 86). The structure

of the e�ective cone has been studied in Ref. [8], namely

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(3.50)

such that the e�ective cone consists of three Mori chambers, one of which is a Zariski chamber and the other two
are associated with the nef cones of the two (non-isomorphic) birational models of X. Figure 7 displays some
data about the zeroth line bundle cohomology.

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1, t2) =
(1 ≠ t1t2)

!
1 ≠ t1t

4
2
"

(1 ≠ t1)2 (1 ≠ t2)5 . (3.51)

29



00

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

11

55

00

00

00

00

00

00

11

55

1515

00

00

00

00

00

11

55

1515

3636

00

00

00

00

11

55

1515

3636

7373

00

00

00

11

55

1515

3636

7373

131131

00

00

11

55

1515

3636

7373

131131

215215

00

11

55

1515

3535

7070

125125

205205

315315

00

22

99

2525

5555

104104

177177

279279

415415

00

33

1313

3535

7575

138138

229229

353353

515515

00

44

1717

4545

9595

172172

281281

427427

615615

00

55

2121

5555

115115

206206

333333

501501

715715

55

55

1515

3636

55

1515

3636

55

1515

3636

7373

55

1515

3636

7373

131131

216216

55

1515

3636

7373

131131

216216

333333

55

1515

3636

7373

131131

215215

330330

481481

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

11

00

55

00

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

11

55

00

00

00

00

00

00

11

55

1515

00

00

00

00

00

11

55

1515

3636

00

00

00

00

11

55

1515

3636

7373

00

00

00

11

55

1515

3636

7373

131131

00

00

11

55

1515

3636

7373

131131

215215

00

11

55

1515

3535

7070

125125

205205

315315

00

22

99

2525

5555

104104

177177

279279

415415

00

33

1313

3535

7575

138138

229229

353353

515515

00

44

1717

4545

9595

172172

281281

427427

615615

00

55

2121

5555

115115

206206

333333

501501

715715

55

55

1515

3636

55

1515

3636

55

1515

3636

7373

55

1515

3636

7373

131131

216216

55

1515

3636

7373

131131

216216

333333

55

1515

3636

7373

131131

215215

330330

481481

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

216216

333333

131131

215215

330330

333333 481481

131131

7373

3636

55

1515

7373

131131

55

1515

3535

7070

125125

205205

315315

460460460460

645645

590590

809809

720720

973973

850850

11371137

980980

1301130113113173731515

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

11

00

55

-8 -6 -4 -2 0 2 4

0

2

4

6

8

Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

≠ 1 ≠ 1 0 . . . 0 ≠1 ≠1
4 1 1 . . . 1 5 5

(3.52)

which corresponds to the Hilbert-Poincaré series

HS(X Õ
, t1, t2) = (1 ≠ t

≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

. (3.53)

Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
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Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
0(X, t1, t2) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R

b (3.55)

30

Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by
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Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions
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where the correction term is such that:
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Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:
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3.3.4. Other examples of Mori-dream spaces in Picard number 2

Example 3.17. Let X be a general hypersurface of bi-degree (3, 5) in P1
◊P3, which corresponds to a threefold

of general type. This example is a particular case of Conjecture 3.11. Denoting, as before, H1 = OP1◊P3(1, 0)|X
and H2 = OP1◊P3(0, 1)|X , it was shown in Ref. [24] that the divisor 5H2 ≠ H1 is base-point free and defines a
contraction to P2. Moreover,

E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0(5H2 ≠ H1) . (3.47)

Note that in this case Nef(X) does not descend from the ambient variety. A generating function for the zeroth
line bundle cohomology throughout the entire Picard group can be written as:

CS
0 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
1 t

5
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t2 t1

0 0
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1 t

m2
2
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t2 t1
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(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
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≠CS
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5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠1
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3(X, OX(m1H1 + m2H2))tm1
1 t

m2
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(3.48)
The generating function for the zeroth cohomology dimensions follows from the presentation for the Cox ring
of X given in [24]; the other generating functions are conjectural.

Example 3.18. Moving away from hypersurfaces, letX be a general Calabi-Yau three-fold in the deformation
family defined by the configuration matrix

P1

P4

S

U 1 1
1 4

T

V , (3.49)

with position 7885 in the list of CICY threefolds and Hodge numbers (h1,1(X), h
1,2(X)) = (2, 86). The structure

of the e�ective cone has been studied in Ref. [8], namely

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(3.50)

such that the e�ective cone consists of three Mori chambers, one of which is a Zariski chamber and the other two
are associated with the nef cones of the two (non-isomorphic) birational models of X. Figure 7 displays some
data about the zeroth line bundle cohomology.

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1, t2) =
(1 ≠ t1t2)

!
1 ≠ t1t

4
2
"

(1 ≠ t1)2 (1 ≠ t2)5 . (3.51)
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Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

≠ 1 ≠ 1 0 . . . 0 ≠1 ≠1
4 1 1 . . . 1 5 5

(3.52)

which corresponds to the Hilbert-Poincaré series

HS(X Õ
, t1, t2) = (1 ≠ t

≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

. (3.53)

Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
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where the correction term is such that:
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----
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≠
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(1 ≠ t2)5 = HS(P4[5], t2) (3.54)

Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
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Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
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Õ
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which corresponds to the Hilbert-Poincaré series
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Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions
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where the correction term is such that:
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Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:
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3.3.4. Other examples of Mori-dream spaces in Picard number 2

Example 3.17. Let X be a general hypersurface of bi-degree (3, 5) in P1
◊P3, which corresponds to a threefold

of general type. This example is a particular case of Conjecture 3.11. Denoting, as before, H1 = OP1◊P3(1, 0)|X
and H2 = OP1◊P3(0, 1)|X , it was shown in Ref. [24] that the divisor 5H2 ≠ H1 is base-point free and defines a
contraction to P2. Moreover,

E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0(5H2 ≠ H1) . (3.47)

Note that in this case Nef(X) does not descend from the ambient variety. A generating function for the zeroth
line bundle cohomology throughout the entire Picard group can be written as:

CS
0 (X, OX) =

Q

a (1 ≠ t
5
2)4

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
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1 t
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≠CS
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(3.48)
The generating function for the zeroth cohomology dimensions follows from the presentation for the Cox ring
of X given in [24]; the other generating functions are conjectural.

Example 3.18. Moving away from hypersurfaces, letX be a general Calabi-Yau three-fold in the deformation
family defined by the configuration matrix

P1

P4

S

U 1 1
1 4

T

V , (3.49)

with position 7885 in the list of CICY threefolds and Hodge numbers (h1,1(X), h
1,2(X)) = (2, 86). The structure

of the e�ective cone has been studied in Ref. [8], namely

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(3.50)

such that the e�ective cone consists of three Mori chambers, one of which is a Zariski chamber and the other two
are associated with the nef cones of the two (non-isomorphic) birational models of X. Figure 7 displays some
data about the zeroth line bundle cohomology.

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1, t2) =
(1 ≠ t1t2)

!
1 ≠ t1t

4
2
"

(1 ≠ t1)2 (1 ≠ t2)5 . (3.51)
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Figure 7: Zeroth line bundle cohomology data for general complete intersections in the family (3.49). The
numbers indicate cohomology dimensions; the location in the plot indicates the first Chern class.

To construct the zeroth cohomology series, note that X can be flopped to a complete intersection X
Õ in a toric

variety [25] with a weight system and weights for the defining equations given by

X
Õ
≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

1 1 0 . . . 0 1 1
≠1 ≠4 1 . . . 1 0 0

≥

z1 z2 y1 . . . y5 P
Õ
1 P

Õ
2

≠ 1 ≠ 1 0 . . . 0 ≠1 ≠1
4 1 1 . . . 1 5 5

(3.52)

which corresponds to the Hilbert-Poincaré series

HS(X Õ
, t1, t2) = (1 ≠ t

≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

. (3.53)

Both X and the flopped threefold X
Õ are resolutions of the same singular manifold Xsing which belongs to the

deformation family P4[5] as discussed in [25]. As such, we construct the generating function for the zeroth line
bundle cohomology on X (and also on X

Õ) from the following contributions

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:

(1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (3.54)

Note that the information about the Zariski chamber and the Mori chamber associated with the nef cone of X
Õ

is encoded in the second term, which reflects the fact that the dimensions of linear systems of divisors belonging
to the Zariski chamber remain constant upon removing the fixed parts.

The three contributions can be combined into a single rational function, such that:

CS
0(X, t1, t2) =

Q

a (1 ≠ t2)2 !
1 ≠ t

4
2
"2

(1 ≠ t1)2 (1 ≠ t2)5 !
1 ≠ t

≠1
1 t2

" !
1 ≠ t

≠1
1 t

4
2
" ,

t2 t1

0 0

R

b (3.55)
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1 Introduction

So the zeroth line bundle cohomology data encodes the information about the two birational models X and
X

0 (their triple intersection numbers and second Chern classes), related by a flop, as well as about the singular

threefold that lies in the ‘middle’ of the flop. In particular, it encodes the GV invariant associated

with the collapsing curve class involved in the flop.

It also know about the way in which X
0
degenerates as the Kähler form approaches the Zariski

wall. This is encoded by the data around the wall, which corresponds to

HS(P111113[44], t) =
(1� t

4
)
2

(1� t)5(1� t3)
= 1 + 5t+ 15t

2
+ 36t

3
+ 73t

4
+ 131t

5
+ . . .

It also knows that X degenerates as a K3 fibration over P1 as the Kähler form approaches the boundary
of the movable cone that is also a boundary of the effective cone.

1.1 Background

Line bundle cohomology on Calabi-Yau manifolds is important in both mathematics and theoretical physics.
From a mathematical point of view, line bundle cohomology directly encodes the topology of a variety and its
divisors. An important application in physics arises in string theory, where line bundle cohomology dimensions
determine the number of matter fields in the associated low-energy theory (see, for example, Ref. [1]).

Line bundle cohomology dimensions are, in general, difficult to compute. Complicated and computationally
intense commutative algebra algorithms are usually required, which scale very poorly with Picard number and
the cohomology dimensions themselves. Beyond being arduous, these calculations are typically carried out one
line bundle at a time, obscuring any mathematical structure which may govern these integers. Fortunately, such
structure exists: the end result of these calculations, for certain examples of Calabi-Yau (CY) three-folds, can
be expressed in terms of relatively simple closed formulae [2]. To be more specific, consider holomorphic line
bundles L ! X over a CY three-fold X with Picard number n; the isomorphism classes of such bundles form an
Abelian group ⇠= Zn identifiable with the Picard group. In a fixed basis, then, line bundles L are determined by
integer vectors k 2 Zn. The observation in Ref. [2] was that the cohomology dimensions hi(X,L) can be written
as piecewise closed form expressions of k on polyhedral cones, referred to as “cohomology chambers.” Moreover,
the formulas are polynomial, or otherwise polynomial with contributions from terms with floor or mod functions.

In some cases, this is a well-known mathematical result. For example, vanishing theorems (e.g., Kawa-
mata–Viehweg) and index formulae (e.g., Hirzebruch-Riemann-Roch) together ensure that sufficiently nice line
bundles (e.g., those that are nef and big) have their zeroth line bundle cohomology described by polynomials
determined from the intersection numbers and Chern class of the variety. What is surprising is the evidence that
all line bundles may have all of their cohomology dimensions be described by closed form expressions.

This observation has motivated diverse explorations of the structure of line bundle cohomology. A wider

4

Cohomology series

3.3.4. Other examples of Mori-dream spaces in Picard number 2

Example 3.17. Let X be a general hypersurface of bi-degree (3, 5) in P1
◊P3, which corresponds to a threefold

of general type. This example is a particular case of Conjecture 3.11. Denoting, as before, H1 = OP1◊P3(1, 0)|X
and H2 = OP1◊P3(0, 1)|X , it was shown in Ref. [24] that the divisor 5H2 ≠ H1 is base-point free and defines a
contraction to P2. Moreover,

E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0(5H2 ≠ H1) . (3.47)

Note that in this case Nef(X) does not descend from the ambient variety. A generating function for the zeroth
line bundle cohomology throughout the entire Picard group can be written as:

CS
0 (X, OX) =
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5
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ÿ
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≠CS
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≠CS
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Q
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≠1
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R
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(3.48)
The generating function for the zeroth cohomology dimensions follows from the presentation for the Cox ring
of X given in [24]; the other generating functions are conjectural.

Example 3.18. Moving away from hypersurfaces, letX be a general Calabi-Yau three-fold in the deformation
family defined by the configuration matrix

P1

P4

S

U 1 1
1 4

T

V , (3.49)

with position 7885 in the list of CICY threefolds and Hodge numbers (h1,1(X), h
1,2(X)) = (2, 86). The structure

of the e�ective cone has been studied in Ref. [8], namely

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(3.50)

such that the e�ective cone consists of three Mori chambers, one of which is a Zariski chamber and the other two
are associated with the nef cones of the two (non-isomorphic) birational models of X. Figure 7 displays some
data about the zeroth line bundle cohomology.

The Hilbert-Poincaré series associated with the coordinate ring of X is

HS(X, t1, t2) =
(1 ≠ t1t2)

!
1 ≠ t1t

4
2
"

(1 ≠ t1)2 (1 ≠ t2)5 . (3.51)
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Conjecture 4. Let X be a smooth hypersurface in P1
◊P3 defined as the zero locus of a homogeneous polynomial

f = x
2
0f0+x

2
1f2 where [x0, x1] are homogeneous coordinates on P1 and f0, f2 are general homogeneous polynomials

of degree 4 in the P3 coordinates. A generating function for all line bundle cohomology dimensions is given by

CS
0(X, OX) =

Q

a (1 ≠ t
4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

0 0

R

b
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,
t2 t1

0 Œ

R

b

≠CS
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Q
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4
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1 t

4
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,
t2 t1

Œ 0

R

b

≠CS
3(X, OX) =

Q
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4
2)2

(1 ≠ t1)2(1 ≠ t2)4(1 ≠ t
≠2
1 t

4
2)

,
t2 t1

Œ Œ

R

b .

(1.15)

Complete intersection examples. The fact that the varieties covered by Conjectures 3 and 4 correspond
to hypersurfaces is not essential for the existence of a universal generating function that can encode both the
zeroth and the higher cohomology dimensions. The same is case in the following.

Conjecture 5. Let X be a general complete intersection of two hypersurfaces of bi-degrees (1, 1) and (1, 4) in
P1

◊ P4, belonging to the deformation family with configuration matrix

P1

P4

S

U 1 1
1 4

T

V . (1.16)

The e�ective, movable and nef cones of X are given by

E�(X) = RØ0H1 + RØ0(H2 ≠ H1), Mov(X) = RØ0H1 + RØ0(4H2 ≠ H1)

Nef(X) = RØ0H1 + RØ0H2 ,

(1.17)

where H1 = OP1◊P4(1, 0)|X and H2 = OP1◊P4(0, 1)|X . We propose the following generating functions for all line
bundle cohomology dimensions in the entire Picard group of X:
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Figure 3: Zeroth and first line bundle cohomology data (left plot and, respectively, right plot) for a general Calabi-
Yau complete intersection in the deformation family (1.16). The numbers indicate cohomology dimensions while
their locations indicate first Chern classes of line bundles.

The generating function (1.18) has been constructed by adding up the Hilbert-Poincaré series associated with
the coordinate rings of the two birational models of X and subtracting a correction term, as discussed in
Example 3.11:

CS
0(X, t1, t2) =

Q

a (1 ≠ t1t2)(1 ≠ t1t
4
2)

(1 ≠ t1)2(1 ≠ t2)5 ,
t2 t1

0 0

R

b +

Q

a (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

,
t2 t1

0 0

R

b ≠

Q

a 1 + t
5
2

(1 ≠ t2)5 ,
t2

0

R

b ,

where the correction term is such that:
(1 ≠ t1t2)(1 ≠ t1t

4
2)

(1 ≠ t1)2(1 ≠ t2)5

----
t1=0

+ (1 ≠ t
≠1
1 t

5
2)2

(1 ≠ t
≠1
1 t2)2(1 ≠ t2)5(1 ≠ t

≠1
1 t

4
2)

----
t1=Œ

≠
1 + t

5
2

(1 ≠ t2)5 = HS(P4[5], t2) (1.19)

which is the Hilber-Poincaré series HS(P4[5], t2) associated with the singular threefold involved in the flop. The
generating function in (1.18) should be interpreted as the Hilbert-Poincareé series associated with the Cox ring
of X, represented as a complete intersection in a toric variety, as detailed in Example 3.11. Figure 3 displays a
part of the cohomology data on which Conjecture 5 is based.

The bicubic Calabi-Yau threefold. The above Calabi-Yau threefold examples suggest a certain pattern
for constructing the cohomology series, namely to combine the Hilbert-Poincaré series associated with each of
the birational models of the variety, while keeping track of the way in which the various Mori chambers attach
to each other in the movable cone, and then subtract suitable correction terms, such that along every wall
separating two Mori chambers the relevant contributions restrict to the Hilbert-Poincaré series of the singular
variety involved in the small modification in question. While confirming this pattern for the zeroth cohomology
series, the following example shows that this prescription is not general enough, if the aim is to obtain a universal
generating function that encodes both the zeroth and the higher cohomology series.

Conjecture 6. Let X be a general hypersurface of bidegree (3, 3) in P2
◊ P2. The e�ective, movable and nef

cones coincide
E�(X) = Mov(X) = Nef(X) = RØ0H1 + RØ0H2 ,

8

[AC ’24]



Figure 14: A slice of the effective cone of the example CY hypersurface discussed in §4.6. In red are the two
Kähler cones of the two Picard number 3 CYs X1 and X2. In cyan are Zariski chambers corresponding to
the Picard number 2 CYs associated to the reflexive polytopes �

�
24,�

�
31,�

�
33 (the full secondary fans of these

polytopes, each embedded in this secondary fan, are outlined with dashed lines). In beige are Zariski chambers
associated to weighted projective spaces. Black lines delineate chamber boundaries in the CY effective cone; gray
dashed line are flips of the toric variety which do not affect this chamber structure. Walls of the effective cone
are labeled when they correspond to non-trivial toric varieties of lower dimension.
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A closed-form formula for h
0
(X,OX(D)) for X the generic anticanonical family associated with the polytopes

�
�
21 and �

�
22, restricted to the fundamental domain of the effective cone, is

h
0
(X,OX(D)) =

8
>>><

>>>:

1 D 2 @
`
Z1

h
0
(X11123,OX11123(f

`
⇤D)) D 2 Z1

�(X1,OX1(D)) D 2 K1

=

8
>>><

>>>:

1 (k1, k2) 2 Cone((0, 1))

2
9k

3
1 +

8
3k1 +

1
9

⇣
k1 + 1mod 3

⌘
�

1
9 (k1, k2) 2 Cone((3, 1), (0, 1))

1
6k

3
1 +

1
2k

2
1k2 �

3
2k1k

2
2 +

17
6 k1 +

3
2k

3
2 �

1
2k2 (k1, k2) 2 Cone((1, 0), (3, 1))

(4.22)

4.6 Picard Number 3

At this point, we’ve managed to achieve a good understanding of the structure of line bundle cohomology on
CY hypersurfaces in toric varieties at Picard number 2, but many things are special in dimension two. Even by
increasing the dimension by one, we pass from strictly simplicial cones to cones with any number of generators,
and the flip graphs ES: (define earlier) of secondary fans go from line segments to arbitrary configurations. Given
the dramatic increase in complexity that happens from h

1,1
= 2 to h

1,1
= 3, we conclude our examples section

by conducting a case study at Picard number 3 to exhibit how our methods generalize.

In particular, we select an example simple enough to be described completely torically — we avoid polytopes
with non-toric phases and autochthonous divisors — but intricate enough to illustrate the utility of our method.

Example 4.10. In particular, we select a polytope �
� with charges

z0 z1 z2 z3 z4 z5 z6

1 0 0 1 �1 0 1

4 1 1 1 1 0 0

2 0 0 0 1 1 0

(4.23)

The secondary fan has sixteen chambers, seven of which are inside the moving cone. The extended Kähler cone
has two chambers, with one Kähler cone K1 for the CY X1 given by the union of five secondary cones in the
moving cone — five FRSTs that restrict identically to two faces — and the other K2 for X2 given by the union
of the two remaining secondary cones in the moving cone, each of which correspond to non-FRST fans. These
two Kähler cones have h

0 described by the holomorphic index of the respective CYs.

This leaves several Zariski chambers outside of the extended Kähler cone. In fact, there are 6. This
polytope �

� contains three reflexive subpolytopes with Picard number 2: in particular, polytopes 24, 31, and 33.
As a consequence, the secondary fan contains each of the fans for each of these polytopes. In particular, they are
not disjoint: polytopes 24 and 31 share their P11125 secondary cone, and polytopes 24 and 33 share their P11114.
Zariski chambers are given by unions of secondary fans whose toric varieties give rise to the same CY hypersurface:
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A Picard number 3 example

[AC, Lukas, Sheridan ’25]



While this example is straightforward, it reveals a recurring pattern that runs throughout the paper, namely the
existence of a ‘universal’ generating function (here the Hilbert-Poincaré series itself) encoding the dimensions of
all cohomologies of all line bundles in the Picard group. The examples discussed in the rest of the paper display
a variety of contexts in which such ‘universal’ generating functions have been identified.

Hirzebruch surfaces. In dimension two, we prove the existence of a universal generating function for the
cohomology of line bundles on Hirzebruch surfaces using the Cech cohomology tools developed in Refs. [19–23],
as discussed in Section 3.2.1. Unfortunately, the proof does not immediately generalise to other cases (beyond
toric examples), as tracking Cech cohomology representatives through spectral sequences is di�cult.

Theorem 2. Let Fn be the n-th Hirzebruch surface P(OP1 ü OP1(n)) with Picard group Pic(Fn) = ZC ü ZF ,
where C is the unique irreducible curve with negative self intersection C

2 = ≠n and F corresponds to the
fiber with F

2 = 0, F · C = 1. The nef cone is Nef(Fn) = RØ0F + RØ0(nF + C) and the e�ective cone
is E�(Fn) = RØ0F + RØ0C . The cohomology dimensions of all line bundles in Pic(Fn) are encoded by the
following cohomology series relative to the basis {C, F}:

CS
0(Fn, OFn)=

Q

a 1
(1 ≠ t1t

n
2 )(1 ≠ t2)2(1 ≠ t1) ,

t1 t2

0 0

R

b

CS
1(Fn, OFn)=

Q

a 1
(1 ≠ t1t

n
2 )(1 ≠ t2)2(1 ≠ t1) ,

t1 t2

Œ 0

R

b +

Q

a 1
(1 ≠ t1t

n
2 )(1 ≠ t2)2(1 ≠ t1) ,

t1 t2

0 Œ

R

b

CS
2(Fn, OFn)=

Q

a 1
(1 ≠ t1t

n
2 )(1 ≠ t2)2(1 ≠ t1) ,

t1 t2

Œ Œ

R

b

(1.9)

Note that the middle cohomology generating function has two contributions, since the first cohomology is non-
vanishing within the two disconnected cones ≠2C + RØ≠1F + RÆ0(C + F ) and RÆ≠2F + RØ0(C + F ).

Hypersurfaces in P1
◊ Pn. Moving up in dimension, we propose the following.

Conjecture 3. Let X be a general hypersurface of bi-degree (d, e) in P1
◊ PnØ3 with d Æ n and e arbitrary or

d arbitrary and e = 1. Denote H1 = OP1◊Pn(1, 0)|X and H2 = OP1◊Pn(0, 1)|X . Then in the basis {H1, H2},

CS
0(X, OX)=

Q

a (1≠t
e
2)d+1

(1≠t1)2(1≠t2)n+1(1≠t
≠1
1 t

e
2)d

,
t2 t1

0 0

R

b =
ÿ

m1,m2œZ
h

0(X, OX(m1H1+m2H2))tm1
1 t

m2
2

CS
1(X, OX)=

Q

a (1≠t
e
2)d+1

(1≠t1)2(1≠t2)n+1(1≠t
≠1
1 t

e
2)d

,
t2 t1

0 Œ

R

b =
ÿ

m1,m2œZ
h

1(X, OX(m1H1+m2H2))tm1
1 t

m2
2

(≠1)n
CS

n≠1(X,OX)=

Q

a (1≠t
e
2)d+1

(1≠t1)2(1≠t2)n+1(1≠t
≠1
1 t

e
2)d

,
t2 t1

Œ 0

R

b =
ÿ

m1,m2œZ
h

n≠1(X, OX(m1H1+m2H2))tm1
1 t

m2
2

(≠1)n
CS

n(X, OX)=

Q

a (1≠t
e
2)d+1

(1≠t1)2(1≠t2)n+1(1≠t
≠1
1 t

e
2)d

,
t2 t1

Œ Œ

R

b =
ÿ

m1,m2œZ
h

n(X, OX(m1H1+m2H2))tm1
1 t

m2
2

(1.10)
and all intermediate line bundle cohomologies vanish.

4

Cohomology series: examples in arbitrary dimension, 
Fano, CY and general type included

[AC ’24]
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This information can be compactly encoded in the Hilbert-Poincaré series:

CS
0(X, OX) = HS(X, t1, t2) =

Q

a 1 ≠ t
3
1t

3
2

(1 ≠ t1)3(1 ≠ t1)3 ,
t1 t2

0 0

R

b =
ÿ

m1,m2œZ
h

0(X, m1H1 +m2H2) t
m1
1 t

m2
2 . (3.89)

The first line bundle cohomology is non-trivial within the two disconnected cones R>0H2 +RØ0(≠H1 + H2) and
R>0H1 + RØ0(H1 ≠ H2) (Figure 9).
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Figure 9: Zeroth and first line bundle cohomology data (left plot and, respectively, right plot) for a general
Calabi-Yau threefold hypersurface of bi-degree (3, 3) in P2

◊ P2. The numbers indicate cohomology dimensions;
the location in the plot indicates the first Chern class.

Conjecture 3.25. (Conjecture 6) Let X be a general hypersurface of bidegree (3, 3) in P2
◊ P2. Let H1 =

OP2◊P2(1, 0)|X and H2 = OP2◊P2(0, 1)|X . Defining

G(x, y) = (x≠1
y)3((1 + x ≠ y)3

≠ 1 + 3x(1 ≠ y))
(1 ≠ x≠1y)3(1 ≠ y)3 , (3.90)

all line bundle cohomology dimensions on X are encoded in the following generating functions, written in the
basis {H1, H2}:

CS
0(X, OX) = 1 +

Q

aG(t1, t2) ,
t1 t2

0 0

R

b +

Q

aG(t2, t1) ,
t1 t2

0 0

R

b

CS
1(X, OX) = 0 +

Q

aG(t1, t2) ,
t1 t2

Œ 0

R

b +

Q

aG(t2, t1) ,
t1 t2

0 Œ

R

b

≠CS
2(X, OX) = 2 +

Q

aG(t1, t2) ,
t1 t2

0 Œ

R

b +

Q

aG(t2, t1) ,
t1 t2

Œ 0

R

b

≠CS
3(X, OX) = 1 +

Q

aG(t1, t2) ,
t1 t2

Œ Œ

R

b +

Q

aG(t2, t1) ,
t1 t2

Œ Œ

R

b

(3.91)

4. Conclusion and Outlook

While sheaf cohomology is a powerful tool in algebraic geometry and has direct implications for key quantities in
mathematical physics, the current methods in computational algebraic geometry are limited in their applicability.
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This information can be compactly encoded in the Hilbert-Poincaré series:

CS
0(X, OX) = HS(X, t1, t2) =

Q

a 1 ≠ t
3
1t

3
2

(1 ≠ t1)3(1 ≠ t1)3 ,
t1 t2

0 0

R

b =
ÿ

m1,m2œZ
h

0(X, m1H1 +m2H2) t
m1
1 t

m2
2 . (3.89)

The first line bundle cohomology is non-trivial within the two disconnected cones R>0H2 +RØ0(≠H1 + H2) and
R>0H1 + RØ0(H1 ≠ H2) (Figure 9).
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where H1 = OP2◊P2(1, 0)|X and H2 = OP2◊P2(0, 1)|X . The first line bundle cohomology is non-trivial within the
two disconnected cones R>0H2 + RØ0(≠H1 + H2) and R>0H1 + RØ0(H1 ≠ H2). Defining

G(x, y) = (x≠1
y)3((1 + x ≠ y)3

≠ 1 + 3x(1 ≠ y))
(1 ≠ x≠1y)3(1 ≠ y)3 , (1.21)

all cohomology dimensions of all line bundles on X are encoded in the following generating functions, relative
to the basis {H1, H2} of Pic(X):

CS
0(X, OX) = 1 +

Q

aG(t1, t2) ,
t1 t2

0 0

R

b +

Q

aG(t2, t1) ,
t1 t2

0 0

R

b

CS
1(X, OX) = 0 +

Q

aG(t1, t2) ,
t1 t2

Œ 0

R

b +

Q

aG(t2, t1) ,
t1 t2

0 Œ

R

b

≠CS
2(X, OX) = 2 +

Q

aG(t1, t2) ,
t1 t2

0 Œ

R

b +

Q

aG(t2, t1) ,
t1 t2

Œ 0

R

b

≠CS
3(X, OX) = 1 +

Q

aG(t1, t2) ,
t1 t2

Œ Œ

R

b +

Q

aG(t2, t1) ,
t1 t2

Œ Œ

R

b

(1.22)

The interpretation of the generating function G(x, y) is not transparent. However, the three terms that give the
zeroth cohomology dimensions combine to

CS
0(X, OX) =

Q

a (1 ≠ t
3
1t

3
2)

(1 ≠ t1)3(1 ≠ t2)3 ,
t1 t2

0 0

R

b , (1.23)

which, as expected, is the Hilbert-Poincaré series for the homogeneous coordinate ring of X. Indeed, in this case
the global sections of all e�ective line bundles are polynomial and therefore are counted by the dimension of the
corresponding graded piece of the homogeneous coordinate ring of X (see the discussion around Example 3.4).

Non-Mori dram spaces with an infinite number of flops. The above examples are all Mori dream spaces,
i.e. varieties for which the Cox ring is finitely generated. Being a Mori dream space is a relatively strong condition
and there are many examples of varieties for which this fails to be the case, e.g. due to the non-polyhedrality or
the non-closure of the e�ective or nef cones. Examples of non-Mori dream spaces that admit an infinite number
of flops and line bundle cohomology thereon have been studied in Refs. [8, 14, 27]. For such examples we propose
generating functions involving an infinite sum of rational functions.

Conjecture 7. Let X be a general complete intersection Calabi-Yau threefold in the deformation family given
by the configuration matrix

P4

P4

S

U2 0 1 1 1
0 2 1 1 1

T

V

and let H1 = OP4◊P4(1, 0)|X and H2 = OP4◊P4(0, 1)|X . The e�ective cone decomposes into a doubly infinite
sequence of Mori chambers corresponding to the nef cones of isomorphic Calabi-Yau threefolds connected to X

through a sequence of flops, of the form

K
(n) = RØ0(an+1H1 ≠ anH2) + RØ0(anH1 ≠ an≠1H2) (1.24)

9where an is given by

an =
!
3 + 2

Ô
2
"n

≠
!
3 ≠ 2

Ô
2
"n

4
Ô

2
, (an) = . . . ≠ 204, ≠35, ≠6, ≠1, 0, 1, 6, 35, 204, . . . (1.25)

such that K
(0) = Nef(X). A generating function for all line bundle cohomology dimensions can be written in

the basis {H1, H2} in terms of the functions

Gn(t1, t2) = (1 ≠ (tan+1
1 t

≠an
2 )2)(1 ≠ (tan

1 t
≠an≠1
2 )2)(1 ≠ t

an+an+1
1 t

≠an≠1≠an

2 )3

(1 ≠ t
an+1
1 t

≠an
2 )5(1 ≠ t

an
1 t

≠an≠1
2 )5

Cn(t1, t2) = (1 ≠ (tan
1 t

≠an≠1
2 )2)(1 ≠ (tan

1 t
≠an≠1
2 )3)

(1 ≠ t
an
1 t

≠an≠1
2 )5

,

(1.26)

as follows:

CS
0(X, OX) =

Q

a
0ÿ

n=≠Œ
Gn(t1, t2)+Cn(t1, t2) ,

t2 t1

0 0

R

b +

Q

a
Œÿ

n=1
Gn(t1, t2)+Cn(t1, t2) ,

t1 t2

0 0

R

b

CS
1(X, OX) =

Q

a
0ÿ

n=≠Œ
Gn(t1, t2)+Cn(t1, t2) ,

t2 t1

0 Œ

R

b /. {remove terms t
–
1 t

—
2 with – + — < 0} +

Q

a
Œÿ

n=0
Gn(t1, t2)+Cn(t1, t2) ,

t1 t2

0 Œ

R

b /. {remove terms t
–
1 t

—
2 with – + — < 0}

1 ≠ CS
2(X, OX) =

Q

a
0ÿ

n=≠Œ
Gn(t1, t2)+Cn(t1, t2) ,

t2 t1

Œ 0

R

b /. {remove terms t
–
1 t

—
2 with – + — > 0} +

Q

a
Œÿ

n=1
Gn(t1, t2)+Cn(t1, t2) ,

t1 t2

Œ 0

R

b /. {remove terms t
–
1 t

—
2 with – + — > 0}

1 ≠ CS
3(X, OX) =

Q

a
0ÿ

n=≠Œ
Gn(t1, t2)+Cn(t1, t2) ,

t2 t1

Œ Œ

R

b +

Q

a
Œÿ

n=0
Gn(t1, t2)+Cn(t1, t2) ,

t1 t2

Œ Œ

R

b .

(1.27)

While the examples discussed in this paper are intriguing, the general picture remains mysterious. The rest of
the paper discusses in more detail the above results and presents other similar examples. Importantly, neither the
type of the variety, nor its dimension, Picard number or the assumption of generality for the defining equations
seem to play an essential role for the existence of generating functions for line bundle cohomology dimensions.

It is tempting to speculate about the potential relevance of generating functions for the classification of projective
varieties. Since such functions carry a lot of numerical information about the variety, it is natural to ask whether
they uniquely determine the variety. A similar conjecture has been proposed for Fano varieties stating that
these are uniquely determined by their regularised quantum period, which is a generating function for certain
Gromov-Witten invariants [28]. Gromov-Witten invariants as well as topological invariants of line bundles have
already been used to classify the Calabi-Yau threefolds resulting from the Kreuzer-Skarke list of reflexive four-
dimensional polytopes up to Picard number 7 according to their di�eomorphism type [29, 30] and it is reasonable
to expect that line bundle cohomology generating functions will further distinguish these and other varieties.

10

Non-Mori dream spaces

1 Introduction

So the zeroth line bundle cohomology data encodes the information about the two birational models X and
X

0 (their triple intersection numbers and second Chern classes), related by a flop, as well as about the singular

threefold that lies in the ‘middle’ of the flop. In particular, it encodes the GV invariant associated

with the collapsing curve class involved in the flop.

It also know about the way in which X
0
degenerates as the Kähler form approaches the Zariski

wall. This is encoded by the data around the wall, which corresponds to

HS(P111113[44], t) =
(1� t

4
)
2

(1� t)5(1� t3)
= 1 + 5t+ 15t

2
+ 36t

3
+ 73t

4
+ 131t

5
+ . . .

It also knows that X degenerates as a K3 fibration over P1 as the Kähler form approaches the boundary
of the movable cone that is also a boundary of the effective cone.

Mori dream space X: Cox(X) is finitely generated.

Cox(X) =

M

L2Pic(X)

H
0
(X, )

1.1 Background

Line bundle cohomology on Calabi-Yau manifolds is important in both mathematics and theoretical physics.
From a mathematical point of view, line bundle cohomology directly encodes the topology of a variety and its
divisors. An important application in physics arises in string theory, where line bundle cohomology dimensions
determine the number of matter fields in the associated low-energy theory (see, for example, Ref. [1]).

Line bundle cohomology dimensions are, in general, difficult to compute. Complicated and computationally
intense commutative algebra algorithms are usually required, which scale very poorly with Picard number and
the cohomology dimensions themselves. Beyond being arduous, these calculations are typically carried out one
line bundle at a time, obscuring any mathematical structure which may govern these integers. Fortunately, such
structure exists: the end result of these calculations, for certain examples of Calabi-Yau (CY) three-folds, can
be expressed in terms of relatively simple closed formulae [2]. To be more specific, consider holomorphic line
bundles L ! X over a CY three-fold X with Picard number n; the isomorphism classes of such bundles form an
Abelian group ⇠= Zn identifiable with the Picard group. In a fixed basis, then, line bundles L are determined by
integer vectors k 2 Zn. The observation in Ref. [2] was that the cohomology dimensions hi(X,L) can be written
as piecewise closed form expressions of k on polyhedral cones, referred to as “cohomology chambers.” Moreover,
the formulas are polynomial, or otherwise polynomial with contributions from terms with floor or mod functions.

In some cases, this is a well-known mathematical result. For example, vanishing theorems (e.g., Kawa-
mata–Viehweg) and index formulae (e.g., Hirzebruch-Riemann-Roch) together ensure that sufficiently nice line
bundles (e.g., those that are nef and big) have their zeroth line bundle cohomology described by polynomials
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a general term in this sequence of Mori chambers is

K
(n) = RØ0(an+1H1 ≠ anH2) + RØ0(anH1 ≠ an≠1H2) (3.66)

where an is given by

an =
!
3 + 2

Ô
2
"n

≠
!
3 ≠ 2

Ô
2
"n

4
Ô

2
, (an) = . . . ≠ 204, ≠35, ≠6, ≠1, 0, 1, 6, 35, 204, . . . (3.67)

and K
(0) = Nef(X). The structure of the e�ective cone is schematically represented in Figure 8.

K
(0) = Nef(X)

K
(≠1)

K
(1)

Figure 8: Movable cone for a general complete intersection Calabi-Yau threefold in the deformation family (3.65),
admitting an infinite sequence of flops.

The generating function for cohomology can be written in terms of the Hilbert-Poincaré series associated with
the homogeneous coordinate ring of X,

HS(X, t1, t2) =
!
1 ≠ t

2
1
" !

1 ≠ t
2
2
"

(1 ≠ t1t2)3

(1 ≠ t1)5 (1 ≠ t2)5 (3.68)

and the correction term !
1 ≠ t

2" !
1 ≠ t

3"

(1 ≠ t)5 . (3.69)

Concretely, we define the functions

Gn(t1, t2) =

1
1 ≠ (tan+1

1 t
≠an
2 )2

21
1 ≠ (tan

1 t
≠an≠1
2 )2

2 1
1 ≠ t

an+an+1
1 t

≠an≠1≠an

2

23

!
1 ≠ t

an+1
1 t

≠an
2

"5 !
1 ≠ t

an
1 t

≠an≠1
2

"5

Cn(t1, t2) =

1
1 ≠ (tan

1 t
≠an≠1
2 )2

21
1 ≠ (tan

1 t
≠an≠1
2 )3

2

!
1 ≠ t

an
1 t

≠an≠1
2

"5 ,

(3.70)

in terms of which the zeroth line bundle cohomology series on X takes the form:

CS
0(X, OX) =

Q

a
0ÿ

n=≠Œ
Gn(t1, t2)+Cn(t1, t2) ,

t2 t1

0 0

R

b +

Q

a
Œÿ

n=1
Gn(t1, t2)+Cn(t1, t2) ,

t1 t2

0 0

R

b . (3.71)

The correction term is such that, e.g., along the wall separating K
(≠1) from K

(0)

(1 ≠ t
2
1)(1 ≠ t

2
2)(1 ≠ t1t2)3

(1 ≠ t1)5(1 ≠ t2)5

----
t1=0

+ (1 ≠ (t≠1
1 t

6
2)2)(1 ≠ t

2
2)(1 ≠ (t≠1

1 t
6
2)t2)3

(1 ≠ (t≠1
1 t

6
2))5(1 ≠ t2)5

----
t1=Œ

≠
(1 ≠ t

2
2)(1 ≠ t

3
2)

(1 ≠ t2)5 (3.72)
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Side remark: infinite sequences of flops. Many CICY 3-folds and hypersurfaces

in toric varieties admit infinite sequences of flops. Here is an example.

X =
P3

P3

"
2 1 1

2 1 1

#2,66

L = OX (k1D1 + k2D2)
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00
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00
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New features: infinitely many Kähler cones. The e↵ective cone (in this case the

extended Kähler cone) turns out to be irrational.



Infinite Flop Chains, the Distance Conjecture 

and the Kawamata-Morrison Conjecture

3

FIG. 1. Extended Kähler cone of a CY threefold admitting a
symmetric flop.

B. Symmetric flops

Two manifolds X and X
0 which are related by a flop are

(by definition) isomorphic in codimension one. But it
can additionally happen that the manifolds are precisely
isomorphic, that is, that the flop constitutes a birational
automorphism. In particular, in our context this means
that X and X

0 are isomorphic as smooth complex man-
ifolds. We call such a flop ‘symmetric’.

For a symmetric flop X ! X
0 the moduli space has an

involution ı which exchanges the Kähler cones K(X) and
K(X 0), as indicated in Fig. 1, while leaving the boundary
across which the flop arises (the vertical axis in Fig. 1)
invariant. Relative to the basis (Di) the involution can
be represented by a matrix M

i
j with M

2 = under
which the intersection numbers in Eq. (2) are related by
a tensorial transformation, that is,

d
0
ijk = dpqrM

p
iM

q
jM

r
k . (3)

To illustrate this, it is useful to consider Picard number
two manifolds. In this case, for a symmetric flop across
the t

1 = 0 boundary, the involution ı is described by the
matrix

M1 =

✓
�1 0
m1 1

◆
. (4)

Using that X ⇠= X
0 one can compute the positive inte-

ger m1 in terms of the intersection numbers as m1 =
2d122/d222.

Symmetric flops are quite common as well [20, 21].
Scanning again the 4874 Kähler-favorable CICYs, at least
2067 admit a symmetric flop. Among the 36 CICYs with
Picard number two, 27 display a symmetric flop and,
hence, an involution ı, along at least one Kähler cone
boundary. We will discuss Picard rank 2 examples in
detail in [22].

C. Infinite flop chains

If the manifoldX admits symmetric flops through mul-
tiple boundaries of its Kähler cone, then the extended

FIG. 2. Extended Kähler cone of a CY threefold admitting
an infinite flop chain.

Kähler cone can contain an infinite number of Kähler
cones, connected by an infinite sequence of flops. In
such cases, the corresponding involutions typically do not
commute and generate a discrete symmetry of countably
infinite order.
The simplest situation occurs for h

1,1(X) = 2, when
symmetric flops arise across both boundaries of the
Kähler cone. The resulting extended Kähler cone is de-
picted schematically in Fig. 2. In this case, X admits
symmetric flops to two manifolds X 0

1 and X
00
1 . But since

X
0
1 is isomorphic to X, it must itself admit two flops,

one going back to X, the other one going to another iso-
morphic manifold, X 0

2. By iteration, this process leads to
an infinite number of Kähler cones on both sides of the
original Kähler cone K(X). Here the Z2-action relating
K(X) and K(X 0

1) does not commute with the Z2-action
relating K(X) and K(X 0

2). The two involutions can be
obtained by writing down the two matrices representing
ı1 and ı2 which, generalizing Eq. (4), are given by

M1 =

✓
�1 0
m1 1

◆
, M2 =

✓
1 m2

0 �1

◆
, (5)

with m1 = 2d122/d222 and m2 = 2d211/d111. It is clear
that M

2
1 = M

2
2 = but also that the two matrices do

not commute. Their product

M12 = M1M2 =

✓
�1 �m2

m1 �1 +m1m2

◆
(6)

is of finite order form1m2 < 4 and it generates an infinite
group isomorphic to Z for m1m2 � 4. In fact, every
element in G can be uniquely written as Mq

1M
k
12, where

q 2 {0, 1} and k is in a finite range for m1m2 < 4 and
k 2 Z for m1m2 � 4.
The three finite order cases form1m2 < 4 are explicitly

given in the Table below.

(m1,m2) (1, 1) (1, 2) (1, 3)

G ⇠= 2 n 3 2 n 4 2 n 6

For these special cases, the extended Kähler cone con-
sists of a finite number of Kähler sub-cones, so that we

5

we are indeed left with h
1,1(X) � 1 independent scalar

fields, as required2.
The hyper multiplet scalars form a quaternionic ge-

ometry which receives loop corrections, such as the one
computed in Ref. [33]. The vector multiplet scalars, on
the other hand, parametrize a manifold with very special
geometry, governed by the tri-linear pre-potential (10).
Since the volume modulus V is part of the hyper mul-
tiplet sector, the vector multiplet geometry can be com-
puted at large volume and does not receive corrections.
In our context, we will be primarily interested in the vec-
tor multiplet moduli bi and their associated geodesics.

Besides the Hodge numbers, the five-dimensional su-
pergravity is determined by the triple intersection num-
bers dijk of the underlying CY threefold. In particular,
the moduli space metric for fields bi is given in terms of
the prepotential (10) as

Gij = �
1

3
@i@j ln = �2

✓
ij


�

3

2

ij

2

◆
, (11)

where i = dijkt
j
t
k and ij = dijkt

k. The resulting
geodesic equation (decoupling five-dimensional gravity)
is

b̈
i + �i

jk ḃ
j
ḃ
k = 0 , (12)

where the dot denotes the derivative, d/ds, with respect
to an a�ne parameter s parameterizing the geodesic
curve and �i

jk = 1
2G

il
@lGjk is the connection. This equa-

tion should be solved subject to the constant volume con-
straint (10).

Using standard relations of very special geometry it is
straightforward to show that the geodesic equation (12)
has the first integral

1

2
Gij ḃ

i
ḃ
j = E , (13)

where E is a non-negative constant. This means the
geodesic distance �⌧ of a path b

i(s) with s 2 [s1, s2]
and �s = s2 � s1 can be computed as

�⌧ =

Z s2

s1

ds

r
1

2
Gij(b(s))ḃiḃj =

p

E�s . (14)

This provides us with the relevant ingredients of the five-
dimensional theory as long as the moduli bi remain in
the interior of the Kähler cone.

What happens when a flop boundary, say b
1 = 0, is

approached? First, such a flop boundary can be reached
in a finite geodesic distance. Further, at the boundary we
have to consider a number of additional hyper multiplets
which originate from membranes wrapping the shrink-
ing curves Ci. Their mass is proportional to b

1, so they

2
Of the h1,1

(X) vector fields and fermions one combination each

becomes part of the gravity multiplet.

FIG. 3. The mapping (in blue) into a single Kähler cone
K(X) of a constant volume geodesic (dashed) which traverses
an infinite number of Kähler cones connected by symmetric
flops.

become massless at the transition and will be referred
to as transition states. A five-dimensional e↵ective the-
ory including the transition states has been developed in
Refs. [34–36]. Ref. [18] shows that the transition states
lead to one-loop corrections which change the intersec-
tion numbers dijk of X to the intersection numbers d0ijk
of X 0, as given in Eq. (2), when the flop boundary b

1 = 0
is crossed. This means that we can think of the five-
dimensional theory as a theory on the extended Kähler
cone, as long as we adapt the intersection numbers to the
Kähler cone under consideration.
More concretely, suppose we would like to consider a

geodesic bi(s) which is contained in the Kähler coneK(X)
for s < 0, crosses the flop boundary at s = 0 and extends
into the Kähler cone K(X 0) for s > 0. From the above
discussion, this geodesic should satisfy Eq. (12) for s < 0
and for s > 0 it should satisfy the same equation but
with the intersection numbers dijk in Eq. (10) (as well as
in Gij and �i

jk) replaced by d
0
ijk. At the flop transition

we should require continuity of bi(s) and ḃ
i(s).

We can say a bit more if the flopX ! X
0 under consid-

eration is symmetric, that is, if X and X
0 are isomorphic

CY threefolds and are related by an involution described
by a matrix M . In this case, the intersection numbers are
related as in Eq. (3) and the involution becomes a sym-
metry of the five-dimensional supergravity (understood
as a theory on the extended Kähler cone, as discussed
above) which acts as

b
i
! M

i
jb

j
, (15)

and similarly on the gauge fields Ai and the gauginos �i,
while leaving all other fields invariant.

We can apply this symmetry to the s > 0 part of the
geodesic (which is within K(X 0)) to map it back into the
Kähler cone K(X), i.e. M i

jb
j(s) with s > 0 solves the

original geodesic equation (12) with intersection num-
bers dijk. Moreover, since we have imposed continuity
of bi(s) and ḃ

i(s) across the flop and the flop boundary
is invariant under M , the geodesics bi(�s) and M

i
jb

j(s)
for s > 0 have the same initial conditions. Hence, they

[Brodie, AC, Lukas, Ruehle ’21]



Why should one care?

The existence of line bundle cohomology formulae / generating functions greatly simplifies 

the analysis of heterotic line bundle models. Calculations that would otherwise take minutes 

or hours, are now virtually instantaneous. 


Moreover, these expressions are of mathematical interest in themselves. We have examples in 

arbitrary dimension  including varieties of Fano, semi-Fano, CY and general type, 

including also non-Mori dream spaces and complex structure dependence. 

Aim: convert geometry into algebraic data. 


Two surprises: 

           1. evidence that such generating functions exist 

           2. the same generating function, expanded around different points, encodes the zeroth and higher

                       cohomology of all line bundles. 


Generating functions carry a lot of numerical information about the variety. 

Do they uniquely determine the variety? A similar question has been asked for the regularised 

quantum period of Fano varieties, which is a generating function for certain Gromov-Witten invariants.   


                                                    [Coates, Kasprzyk, Pitton, Tveiten ‘21]
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Thank you for listening!





Connecting String Theory and particle Physics: a hard, but worthwhile problem.

AI tools likely to bring the solution within reach.


The size of the string landscape: the spectacular success of heuristic search methods seems to indicate

that this is no longer a problem.


Fast line bundle cohomology computations: an essential tool for model building.


Computation of physical parameters (quark and lepton masses): now feasible in realistic string models.


       Summary



ML Tutorial



• One should think of Machine Learning in terms of fitting functions with a large number of 

parameters. AlexNet: millions of parameters. GPT-4: (estimated to) trillions of parameters. 

Us: ~80 billion neurons. 


• Neural networks provide a versatile and structured recipe for constructing such functions

by composing linear (affine) and non-linear functions:


• The free parameters are placed in the linear (affine) parts. Parameter optimisation is often 

carried out using first order algorithms such as gradient descent.

Basic Neural Network Technology

• Neurons correspond to input/intermediary/output variables.

The neurons in the input layer correspond to the input values. The

neurons in the hidden layers correspond to the values computed by

the intermediary functions. The output neurons correspond to the

output values for the neural network.

y = f(x) = fn � fn�1 � . . . � f2 � f1(

=z(0)

z}|{
x )| {z }

=z(1)

| {z }
=z(2)

| {z }
=z(n�1)

| {z }
=z(n)

2

ML and Neural Network basics



Linear regression with a linear model

Data: D = {(1, 1.9), (2, 4.1), (3, 6.0), (4, 8.1)}; N = 4.

Linear model f✓(x) = ax + b. Parameters: ✓ = {a, b}.

Mean square loss function:

L(✓, D) = h(y � (ax + b))2iD =
1

N

NX

↵=1

(y↵ � (ax↵ + b))2

Vanishing partial derivative w.r.t. a: h(y � (ax + b))xi = 0

Vanishing partial derivative w.r.t. b: h(y � (ax + b))i = 0

Solve the linear system for a and b:

b = hyi � ahxi and a =
hxyi � hxihyi
hx2i � hxi2 .

28

Baby version NN: linear regression with a linear model

net = NetChain[LinearLayer[1],

"Input" -> "Scalar", "Output" -> "Scalar"];

trainedNet = NetTrain[net, data, MaxTrainingRounds->10000]

30

"rounds"

"l
o
ss
"

2000 4000 6000 8000 10000

10-2

10-1

1

10

Linear Regression with Linear Model

Baby version NN: the loss landscape and gradient descent

✓1 = a, ✓0 = b.

L(✓, D) = h(y � (ax + b))2iD =
1

N

NX

↵=1

(y↵ � (ax↵ + b))2

Parameter update with gradient descent (⌘ 2 R+ is the learning rate):

✓ ! ✓ � ⌘r✓L

Gradient descent: first-order iterative algorithm for minimising

di↵erentiable multivariate functions in unconstrained optimisation. 31
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Non-Linear Regression



Neural Network Regression: Example 2, wider net

net = NetChain[LinearLayer[10], Tanh, LinearLayer[10],

Tanh, LinearLayer[1],

"Input" -> "Scalar", "Output" -> "Scalar"];

trainedNet = NetTrain[net, trainingData,

MaxTrainingRounds -> 10000, ValidationSet -> testData]

37



Neural Network Regression: Example 2, wider net

net = NetChain[LinearLayer[10], Tanh, LinearLayer[10],

Tanh, LinearLayer[1],

"Input" -> "Scalar", "Output" -> "Scalar"];

trainedNet = NetTrain[net, trainingData,

MaxTrainingRounds -> 10000, ValidationSet -> testData]

37

Neural Network Regression: Example 2, wider net

This net has 141 trainable parameters. It takes a bit longer to train, but

it’s worth waiting! Wider networks are more expressive, they can

learn more intricate input-output relationships/finer patterns. The first

network was too narrow and it under-fitted the data.

38



Classification

Supervised Learning: Classification

• MNIST: Modified National Institute of Standards and Technology

dataset. Classic benchmark dataset in ML and computer vision.

• 70, 000 grayscale images of handwritten digits (0 through 9).

• Each image is 28 ⇥ 28 pixels (total 784 pixels per image).

• Training set: 60, 000 images. Test set: 10, 000 images.

  4,  3,  9,  3,  2,  8,  9,  6,  7,  7,

 1,  3,  6,  6,  6,  6,  3,  5,  7,  0,

 0,  5,  4,  0,  6,  0,  6,  9,  9,  7,

 2,  1,  7,  2,  8,  3,  3,  6,  1,  6,

 9,  2,  7,  9,  3,  5,  9,  1,  1,  0,

 1,  8,  7,  1,  3,  4,  6,  1,  7,  2,

 9,  2,  6,  5,  3,  7,  6,  4,  5,  1,

 9,  2,  3,  1,  0,  3,  9,  7,  4,  6,

 4,  7,  7,  8,  4,  6,  3,  8,  6,  7,

 8,  5,  5,  9,  2,  1,  1,  1,  1,  4

43

Supervised Learning: Classification

• Each image is 28 ⇥ 28 pixels (total 784 pixels per image).

• Here is an example:

NetEncoder["Image", 28, 28, "Grayscale"][imageName]

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.8 0.376471 0.00784314 0.376471 0.803922 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.811765 0.0666667 0.0117647 0.0117647 0.0117647 0.0705882 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.788235 0.109804 0.00784314 0.0117647 0.0627451 0.0862745 0.0117647 0.776471 0.976471 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.960784 0.764706 0.121569 0.0117647 0.00784314 0.0117647 0.207843 0.670588 0.0117647 0.00784314 0.521569 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.360784 0.0117647 0.0117647 0.0117647 0.00784314 0.0117647 0.0117647 0.623529 0.258824 0.00784314 0.345098 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.8 0.0666667 0.00784314 0.00784314 0.254902 0.552941 0.00784314 0.105882 0.815686 0.690196 0. 0.341176 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 0.811765 0.0666667 0.0117647 0.0117647 0.298039 0.952941 0.705882 0.52549 0.917647 1. 1. 0.00784314 0.0470588 0.803922 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 0.85098 0.352941 0.00784314 0.0862745 0.184314 0.670588 1. 1. 1. 1. 1. 1. 0.00784314 0.0117647 0.352941 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 0.972549 0.301961 0.0117647 0.0588235 0.721569 0.92549 0.890196 1. 1. 1. 1. 1. 1. 0.00784314 0.0117647 0.235294 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 0.776471 0.0117647 0.0117647 0.752941 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.00784314 0.0117647 0.235294 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 0.223529 0.00784314 0.254902 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.00784314 0.231373 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.701961 0.0352941 0.0117647 0.560784 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.00784314 0.0117647 0.419608 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.666667 0.0117647 0.0980392 0.901961 1. 1. 1. 1. 1. 1. 1. 1. 0.972549 0.470588 0.00784314 0.270588 0.952941 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.666667 0.0117647 0.12549 1. 1. 1. 1. 1. 1. 1. 1. 0.972549 0.486275 0.0117647 0.117647 0.721569 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.666667 0.0117647 0.431373 1. 1. 1. 1. 1. 1. 1. 0.811765 0.352941 0.0117647 0.321569 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.662745 0.00784314 0.117647 1. 1. 1. 1. 1. 1. 0.552941 0.0666667 0.00784314 0.364706 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.666667 0.0117647 0.0235294 0.427451 0.811765 0.886275 0.666667 0.301961 0.117647 0.00784314 0.12549 0.345098 0.780392 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.666667 0.0117647 0.0117647 0.0117647 0.101961 0.156863 0.0117647 0.0117647 0.0117647 0.231373 0.490196 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0.890196 0.219608 0.0117647 0.0117647 0.00784314 0.0117647 0.0117647 0.0862745 0.431373 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 0.901961 0.498039 0.0117647 0.00784314 0.0117647 0.447059 0.854902 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
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Supervised Learning: Classification

net = NetChain[FlattenLayer[], LinearLayer[10], Ramp,

LinearLayer[10], SoftmaxLayer[],

"Input" -> NetEncoder["Image", 28, 28, "Grayscale"]],

"Output" -> NetDecoder["Class", Range[0, 9]];

trainedNet = NetTrain[net, trainingData,

ValidationSet -> testData, MaxTrainingRounds -> 200,

Method -> "ADAM", BatchSize -> 100]
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Differential Equations

Solving differential equation (LHS = RHS, BCs = 0) with neural networks: 

• no training data is available 

• instead, train on LHS-RHS = 0 (evaluated on a sample of points) and BCs = 0

• the neural network is simply an ansatz for the solution 

• as usual, optimise the parameters with gradient descent

• avoid finite differences: the NN can be automatically differentiated w.r.t. the inputs


The simple NN from the previous examples can be successfully used to solve most 

undergraduate level DEs.   


