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Content

D =10 FEg x Eg Heterotic string D=4 N =1 Effective field theory
compactified on a Calabi-Yau threefold with known matter content accessible via
Candelas, Horowitz, Strominger, Witten’85 topological data

h

Gauge structure

encoded in a vector Fully fledged model requires also
bundle V' differential geometry data
The Ricci-flat
Calabi-Yau metric
Yab

In this talk

1. Calabi-Yau manifolds
2. Machine learning CY metrics
3. Yukawa couplings




1. Calabi-Yau manifolds

A (compact) Calabi-Yau manifold m of
complex dimension 7 is a Kahler (M,g,J) - o /-
manifold satisfying any ( = all ) of the following S
properties: Calabi’57, Yau'77 . ﬁ**;“:;f“f:“":'*‘g
< “'*.5*«@ '3.31-"3”""' ‘»;.-i‘j‘ ¥ 7
- M has vanishing first Chern class. < g
- M has a nowhere vanishing holomorphic
top form
- M has a Ricci-flat Kahler metric in each E
Kahler class
- M has a Kahler metric with local holonomy X(M) = 2(h1! = p21)
SU(3) cf Kreuzer, Starke’02

The parameter space of CY threefold has dimensionality "' (M) + h**(M). They come
IN Mirror pairs.



2. Machine Learning the Metric (refs)

To date we do not have an analytic expression for a Ricci flat Calabi Yau metric.
With the exception of K3. Kachru, Tripathy, Zimmet’20°21

-The metric can be accessed numerically.

Headrick, Wiseman’05 Anderson, Braun Karp, Ovrut’10
Headrick, Nassar’13, Cui, Gray’19

-More recently, Machine Learning techniques have been used for this

endeavour. Ashmore, Ovrut, He’19 Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruhle’20
Douglas, Lakshminarasimhan, Qui’20, Jejjala, DM, Mishra’20, Ashmore, Riuhle’21

Ashmore, Deen, He, Ovrut’21, Larfors, Lukas, Ruhle, Schneider’21

Ashmore, He, Heyes, Ovrut’23, Gerdes, Krippendorf’23,...

Being a Kahler manifold, the Hermitian metric 9 can be derived from a Kahler potential

Gup = OuOp K (2%, 2°)

Simplest case: The Fubini-Study

The Kahler form is given by: . metric in the ambient space
: _
J =g, dz* N2 1
gJab e A% Krpg = ;log(z - Z)

The Ricci tensor is obtained as restricted to the hypersurface

R_; = 0,05 log detg (CICY).



2. Machine Learning the Metric

Donaldson’s Algortithm

1)

Start with a basis of holomorphic polynomials of  {s,}3*
degree k over M.

. . 1 3
Build Kahler potential with an initial seed matrix pe8  K® = —log(h*"sa5p)
Ny / 80‘55
' H 7 = dVol ;
Compute the quantity B = Volg /o, olg (haﬁsasﬁ)
Obtain et = (Hop) ™"
Plug back in
Repeat until »*# stabilises. This is the best Tian'90

Donaldson’05
Headrick, Wiseman’05

L . - Douglas, Karp, Lukic, Reinbacher’06
In the limit £ — oo, the metric converges to the Ricci Braun, Brelidze, Douglas, Ovrut'07

: Ashmore, He, Ovrut’19
flat metric.

approximation for the flat metric at degree .



2. Machine Learning the Metric
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A paradigm in ML are Artificial Neural Networks: arrays of
artificial neurons that emulate the human brain.
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2. Machine Learning the Metric

In this work we focus on a semi-supervised ML paradigm

Raissi, Perdikaris, Karniadakis, George’17

More flexible (than Mathematica and Matlab) packages to
develop your models include:

1F TensorFlow (") PyTorch

The training is subject to a minimisation of a
loss function

L(fnn(inputs))

via a gradient descent procedure

Initial

Weicht ! Gradient
’ Ill/
/
Incremental

Cost

Minimum Cost
Derivative of Cost




2. Machine Learning the Metric

Spectral Neural Networks

. ) 7 17 0 1
Input layer  Spectral layer Fully connected layer KXy Pri — CriThTT
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2.1. Generating the Data

e.g. the Dwork quintic Shiffman, Zelditch’98
. 4 Braun, Brelidze, Douglas, Ovrut’07

E Zi 5¢21 ZORIRARE — 0 C P Anderson, Braun, Karp, Ovrut’10

; Ashmore, He, Ovrut’19

) Start wzith random lines in the ambient
space.

i) Intersect each line with the hypersurface.

i) The distribution of points is uniform with
respect to the FS metric.

Iv) There is a preferred patch for each point.

N

Sampling points in the torus _ 1) |

20+ 25 + 25 =0 C P? -

(1,2)

For the torus we have six patches
fixed upon choice of the affine :

coordinate and the dependent |
coordinate. For each pointin the il

Im( z1)
o
Im( z1)

torus there is a preferred patch.

|
N




2.1. Generating the Data

Numerical Integration

- Patches intersect over zero measure sets, hence numerical integration would be a sum over points
in different patches if these would be uniformly distributed with respect to the Calabi-Yau metric.

- The sampling method provides points uniformly distributed with respect to the Fubini-Study
metric restricted to the Calabi-Yau.

- Numerical integration requires to weight the sample points in order to obtain meaningful
quantities

dVOlQ
dVol 7) = dVol 2
/_/\/( Vo Q2 f(Z7 Z) /j\/l Vo FS (dVOlF5> f(Z7 Z)

gLy ~ dVolg(pr)
/M dVolg f(2,z) = N ;w(z?z)f(l?z) w(p;) = dVol;ZS(Zil)



2.2. Examples of Metrics

Probing the Cefalu Pencil

3 3 2
PP D Xy = {pA(z) :O} : pA(z)::sz — % (Z z?)

Transversality fails at: Xo/Zo [24] S . tion 2]
Vo % T )
A=3/2 5

/ A
A=3
Chern classes: Euler Number:
Co — 1 , 1 : 2
. X :/ C2 = / (TrR* — (Tr'R)*)
c1 = %TrR , 2 K3 2(277)2 3
1

(Tr R? — (TrR)?) ,

©2 = 2(27)?
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2.2. Examples of metrics
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2.2. Examples of metrics

The Euler Number:
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2.2. Examples of metrics

-I—'1_O1Ie3I | | | -I—'1_O1Ie3I | | | | -I—'1_O1Ie3I | | | | | | | | | | | | | | | |
% ! ] FS3 1 % ! ] FSS 1 % ! ] FSS 1
O _ f Taori Cim - o Cim - O  f Tari C
O 0_8__Tor|c o : 'S 0_8__CICY o : O 0_8__Tor|c Fermat o |
1 i 1 1
0.6 - 0.6 - 0.6 -
0.4 .
0.2 .
O1900 -50 0 50 100
C3
]

We can train on various quintics, one with
generic parameters, the Fermat quintic as well
as Its toric version.



3. Yukawa couplings

Upon compactification on a Calabl Yau threefold X the 4D spectrum of left chiral superfields is in one-to-
one correspondence with H (X, V) where V is a holomorphic vector bundle with a given structure

group G C Ejg. The corresponding unnormalised trilinear couplings enter the superpotential weighted by a
factor

/%z'jk:/ Q/\Q(ai,aj,a,k)
X

where {az}h (V) denotes a basis for Hl(X V') . This expression is accessible as it is quasi-
topological, smce it only depends on the cohomology classes of the respective matter fields. The relevant

coupling, however, is the kinetically normalised coupling

Rijk

VANV

Rijk —

Given in terms of a new orthogonal basis with respect to the metric

GaEN/ a/\;vb
X



3. Yukawa couplings

The simplest case is when the vector bundle is taken to be the holomorphic tangent bundle 1x . In this

case the structure group SU(3) breaks the symmetry to its commutant Eg . Additionally one has the
isomorphism HY (X, Tx) = H(21) (X). The number of chiral generators in this case is given by

1
Ngen — §|X| — |h1’1_h2,1‘

In the standard embedding the metric (G _; becomes:

Gag — / a/\;gb
X

And matches the Weil-Petersson metric (up to a conformal factor). For the standard embedding we can
distinguish three different avenues to derive the kinetic normalisations.



3. Yukawa couplings

CICY threefold with few complex
structure moduli in the standard
embedding

Generic compactification on 1-11 -1

CICY threefold, with generic
vector bundle V
||

Generic compactification on CICY
threefold in the standard embedding
I -1l




3. Yukawa couplings

l. Period computations (only available in a few examples)

Thorough knowledge of periods enables computation of Weil-Petersson metric and Yukawa couplings. This
technology is only available for Calabi-Yau manifolds with few complex structure parameters.

Il. Special geometry computations

Thorough knowledge of periods enables computation of Weil-Petersson metric and Yukawa couplings. This
technology is only available for Calabi-Yau manifolds with one complex structure parameters. To account
for complex structure deformations we write ¢ = (¢%,...,t™), m = h*(X). Locally, we interpret this
construction as a fibration of X over a base B in the vicinity of a reference point £y .

The Well--Petersson metric on the complex structure moduli space can be directly obtained as

5’Qt 8Qt 1 aﬂt aSzt
E— 0 N @ el
Gap (ata’ atb> (2, Q) ( ’ ata> " ( ’ 8tb>

to

to

The problem is then reduced to the calculation of various integrals over X, numerically computed via Monte
Carlo integration in local coordinates



3. Yukawa couplings

lll. Explicit harmonic representative computations
Recall that X is covered by an atlas {U;}.On overlaps U; N U; , we can use the transition functions
fij L 2 — Z;

The Kodaira-Spencer map p : 1:, B — Hl(X; Tx) is given by

P(a> [ 0fii(z,t) 0 |

o) |\ ot 0%

-\

Having the harmonic representatives and a harmonic projection H : H?(X;Tx) — H?(X;Tx) , the Weil-
Petersson metric can be computed as follows

G = /X Q(Hp(0/0t%)) A Q(Hp(0]01))

lere, 2(-) denotes the interior product with )



3.1. Machine learning harmonic one forms

The “man with a hammer” approach

0

Construct H'(X,V) representatives via the Kodaira-Spencer map &% = p (@)

And then use a spectral network to work out the harmonic completion

with the Ansatz

ij kI

NN O 20 2 0

N e ]
17kl

where o dz¥ =17 (2'dz’ — 27dz2")

One neural network per form representative, outputs of the network are the coefficients w;,lle

The idea Is to minimise the loss

L= (n* An*) = |0ryn®|?
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3.1. More examples

The mirror of P°[3, 3]
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3.1. More examp|es

The mirror of P°[3, 3]
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3.1. More Examples

The Tian - Yau manifold

114, 23

; 1 3 1 3 3 3
g 1 Z 2_§Z Z%yaJrGZ%ya:O
a=0 a=0 a=0 a=2

_ X:—]_8

_ ]P)3
]P>3

o W

There is a freely acting Zs involution

—1

(o, 1, T2, 3) > (To, w3 T1, W3T2, W3T3)

(Y0, Y1, Y2, Y3) — (Yo, wWay1, Wz Yo, Wa  Y3)

with W3 = 6271‘1/3

Modding out this symmetry breaks the Eg further down to SU(S)3 (suitable choice of discrete Wilson line)

>

23 27 -plets 7 states (3,3,1) denoted by @;

Quotient trinification model

Parent £ model o states (1,3,3) denoted by \;

7 states (3,1,3) denoted by Q,



3.1. More examples

Tian-Yau pencil becomes singular at four points in thereal ¢ axis
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Berglund, Butbaia, Hubsch, Jejjala, MP, Mishra, Tan’24



3.1. More examples

Tian-Yau pencil becomes singular at four points in thereal ¢ axis

ec{—1, —1-271/3 —2 —1-21/3)

10 —
Og —  Yo99(€) -
i — Yiss(e) -
I B —— —  Yass(e)
B S A gy N 2 N
10_1:— B o
_l |/l | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | l—
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

€

Berglund, Butbaia, Hubsch, Jejjala, MP, Mishra, Tan’24



3.1. More examples

Tian-Yau pencil becomes singular at four points in thereal ¢ axis

ec{—1, —1-271/3 —2 —1-21/3)
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3.1. More examples

Q5Q7 A5
Q1QGAs
Q1Q5A5
(3Q3A5

We can also access potential CP violating phases

Magnitude
—
L2 1 — Qs 3 ~L0ge
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4. The code

(1 README 33 License

CYMYC

https://github.com/Justin-Tan/cymyc

arXiv:2410.19728 cymyc is a library for numerical differential geometry on Calabi-Yau manifolds written in JAX, enabling
performant:
e Approximations of useful tensor fields;
e Computations of curvature-related quantities;
¢ Investigations of the complex structure moduli space;
Douglas, Lakshminarasimhan, Qi’20 in addition to many other features.
Douglas’21
Larfors, Lukas, Ruehle, Schneider’21,’22 First, clone the project:
Larfors’24

git clone git@github.com:Justin-Tan/cymyc.git

Gerdes, Krippendorf’22 cd cymyc

Next, with a working Python installation, create a new virtual environment and run an editable install, which
permits local development.

pip install —--upgrade pip
python -m venv /path/to/venv
source /path/to/venv/bin/activate

python -m pip install -e .




5. Final Remarks

- Neural networks are good approximations for flat Calabi-Yau metrics, specially when Kahlericity can be built in
(spectral networks).

- So far applicable to CICYs only but extendable to Toric Calabi-Yaus, as well as non-standard embeddings.
- |deally we would like an analytic expressions for the metric, is that possible?

- Go beyond the standard embedding constantin et. al.’24

- Extensions to Spin7 or G2 manifolds? Heyes et. al. ongoing work

- Moduli dependence of Yukawas, are there generic patterns”? Connections to the Swampland program?

Casas, |Ibanez, Marchesano’24
- Fully guantum corrected metrics? Frasier-Taliente, Harvey, Kim'24

Grazie!



5. Final Remarks

| jax (cymyc) gpu@gpu-P55A-UD3 ~ $ python3 metric.py ||
"rom cymyc.calabi_yau 1 ’

key = jax.random.key(9)
keys = jax.random.split(key, 3)

cy DworkQuintic( )

pts = cy.sample_points/(
key = keys[1],
max_pts = int( ))

metric RicciFlatMetric(
key = keys[2],

Cy Cy,
tx = optax.adamw( ))

metric.fit(pts, epochs )

e X = metric.chern3(
pts.generator(
batch_size ,
include_pullbacks ),
pts.kappa)
print(cy.integrate(pts pts, func_vals




