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1. GKP Setup




Gidding-Kachru-Polchinski Mechanism

» GKP described moduli stabilization in Type |IB Flux Compactifications

» The 10D metric takes the form
ds3y = 62?(77uud$“d33 + e/iA@)gSf\dyzdy
Warp factor CY metric
» To stabilize CS moduli, turn on non-trivial 5-form flux
Fs = (1 +*)da A dz® A dat A da? A da®

» and non-trivial 1ISD 3-form flux
Gg :Fg—THg — *GGg :iGg



Gidding-Kachru-Polchinski Mechanism

» The 5-form flux and the warp tactor are related by

g Gk GU* i
et =a - —V?(e) = 1];11117' - 270 T35

~loc

|
Here, p5° = ZNiﬁ56(y -v:;) describes local D3 brane sources (e.g. O-
planes) i

» Imposing F-flatness gives the equations
1

T —T

0=D,W =

/Q/\EgZHTT](Fg—?Hg) < T =
X

0= DZW — / DzQ /\ G3 — DZHTT] (Fg — ’TH3)
X



Singular Bulk Problem and Warping
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Fmd Fg,Gg (Ca\cu\ate perlods So\ve erm EoI\A
D,W = /DQ/\Gg DHTn(Fg—THg) }

- Find (2,1)-forms that are harmonic w.r.t. g
(so\ve a set Of Coup\ed 1st Order PDES that mvo\ve the CY metrlc) )
e -
- Solve the Laplace egn with source for the warp factor (involves the CY metric,
the harmonic forms, flux quanta, o —aay G GUE N ]
L — | 2 T OC
 point in CS moduli space): Vi) 12Im7 107303 '
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2. Intro to NNs




Neural Networks

» NNs parameterize maps f: R™"» — IR""* as
compositions of affine maps f; : R"-* — R™
and component-wise non-linear functions

g; . R™ — R™

» The NN Is trained to approxin
function by updating the para

ate the desired
meters of the

affine maps. Typically linear nr

ethods

(gradient descent) are used to find a

optimum In parameter space

» The Universal Approximation Theorem

ensures that any function (with mild

assumptions) can be written that way in the

nfinite parameter limit
Cybenko "89; ...; Kidger, Lyons "19]

|




NINs for PDESs

» In the perhaps best-known applications, NNs are trained in a supervised
fashion: They get a bunch of images together with labels that describe the
images, and they learn from this combination to distinguish cats and dogs

» For PDE's we proposed three methods to use NN:

 Neural PDE: You obtain an approximate solution on a coarse set of points using classical
techniques (finite elements, Donaldson’s algorithm) and then train NNs to regress/
Interpolate these solutions

* Physics-Informed NN (PINN): Let the NN be the function that enters in the PDE. Take
derivatives of the NN, insert it in the PDE, and update its weights until the PDE Is satistied

 Neural operators: Like above, but in addition to the independent variables w.r.t. which
derivatives are taken, also supply parameters (like CY moduli) which the NN learns to

regress on
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3. CY Point Sampling




Finding points on the CY

4

We want a uniform sample of points on the CY (w.r.t. some known metric)

To obtain points on such CYs, a (too naive) approach wou

d be to take

points In the toric ambient space and solve the equations

D-K random

'or the remaining K

This Is too naive, since we will not know how the points will be distributed after

restriction to the Calabi-Yau

Instead, we use a theorem by Shiffman and Zelditch which allows us
whose distribution follows a measure that can be constructed from ar

[Shiffman,Zelditch 98]

0 find points

=S metric



Sampling points

» Find a basis of Kahler cone generators J) =Y "¢ D;, a=1,...,h"}(A)

(

» Calculate a basis of sections 3( Hg; vi:wi) ¢ in terms of the toric
coordinates x; i=1

» Define maps & from the toric coordinates into ’HO(J(O‘>, A) (nef

divisors in toric varieties are base point free)
[s(()a) : sga) S sgz‘)]

®,: |xo:z1:...] —

» One can endow )HO(J(O‘) A) with an FS metric obtained from the Kahler

potential K = log Z £O‘)H” (O‘) H hermitian (we take H = 1)
2,7=0



Sampling points - Random points with known distribution

» Construct random sections S = " a{®s9 with a§a> ~ N(0,1)
i=0

» By a theorem due to Shiftman and Zelditch, the zeros of such sections are distributed
w.r.t. the Fubini-Study measure on PHY(.J(%)  A)

» Restrict points to the CY by intersecting D-K random sections with the K equations
defining the CY

» The points obtained this way are then distributed w.r.t. the measure
D—K
o x [ TO [Shiffman,Zelditch "98; Douglas,Karp,Lukic,Reinbacher 06;
dA = /\ (I)Oé(‘] ) Braun,Brelidze,Douglas,Ovrut 08]

a=1

» An improved point sampling that leads to a better distribution of points was proposed
by Keller and Lukic. Instead of fixing the matrix H , one constructs a family of metrics
such that the new points are distributed in previously under-sampled regions [Keller,Lukic "09]




Sampling points - Random points with known distribution

» While we know the measure now, we introduced two complications
(%)

- The CY is written in terms of z, and not in terms of S

- There are more sections than toric coordinates = relations among sections

» This requires some computational algebraic geometry (find the primary decomposition of
the defining ideal of the non-CICY toric variety or identitying a primitive basis for a certain
Kernel of a matrix over the integers)

» To illustrate the improved point sampling, we sample from the cubic in P-

2320 — 420 + g2y 9325 =0 — =1, n=z=pWw), 2=y=g W)

The Eisenstein series have been chosen such that 7 =1

» We then map the points In P“ into the fundamental domain by numerically inverting the
Welerstrass ¢ function
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~ Find ¢Y: Find Ricci-flat metric
|

(solve MA-equation)

% F3, G5 (calculate periods, solve F-term EoM)
i D.W — / D, A Gs = DTy (Fg — 7Hs)
X

—-———'/

- Find (2,1)-forms that are harmonic w.r.t. ¢
(solve a set of coupled 1st order PDEs that involve the CY metric)
- Solve the Laplace eqgn with source for the warp factor (involves the CY metric,

the harmonic forms, flux quanta, _$2 (e-44) — Giir Gidk
point in CS moduli space): 12ImT

2 ~loc
F2Kk701303

4. Putting togetnher all ingredients




1.) Approximating the CY Metric

» We want to think of the metric as a map

: - |
]’ Mg X ./\/lcs X X L {Hermltlan d X d matrlx} )

—_— e ——
—

» Several conceivable ways to approximate the metric (most boost from -S Metric)

Name Ansatz
Free Jpr = gNN
Additive gpr = gFS T gNN
Multiplicative, element-wise | gpr = grs + grs © gnN
Multiplicative, matrix gpr = gFS + gFS * gNN
¢-model Jpr = grs + 00¢

» For some approximations, we need to impose conditions on top of the MA
equation, e.g. that the metric is Kahler, that the Kahler class is not changed, and/
or that it is well-defined on patch transitions




1.) Approximating the CY Metric

» Jotal loss L = C¥1£MA + OézﬁdJ + a3£transition + a4£Ricci + CVSL:Kclass

1 det gy,

» Monge-Ampere 0SS Lya = N
K

n

» Kahler loss  Lag = ) | |[Recijill, + [IIm cijill, — cijr = i — 0igi;
iik

m

. 1
g TransmOn ‘OSS [ftransition = 3 E , ||g;))r _ TL{V ) gZI;tr ) (TL{V)T
Uuy

» Ricci loss (redundant since equivalent to MA loss)  Lgicci = ||R||n = ||00 Indet gpe||
NS
" 2
» Ka&hler class 0SS Lielass = AT(X) > Ht(OX(ea))_/XJpr/\FFS,a )

a=1



1.) Approximating the CY Metric

» For CYs, the @ NN usually works best
» By construction, the NN is Kahler and well-defined at transitions
» However, we still need to ensure that ¢ is a section of @, ie, has weight O

» Instead of inputting the CY coordinates, we can input ratios of sections,
which automatically ensure the correct transformation of @ . This is
known as feature engineering [Berglund,Butbaia,Hubsch,Jejjala,Mayorga Pena,Mishra, Tan "22]

» We will use the simplest example (one-parameter quintic) since the
oroject already has a lot of moving pieces. Want to generalize to CYs
with orientifolds after




) Approximating the CY Metr
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2.) FInding the fluxes

» The solution of the Picard-Fuchs System for the quintic is well-known
[Candelas,De La Ossa,Green,Parkes 91]

» We expand the periods up to order 50 and search for solutions to the F-
flatness constraints for up to 2 flux quanta

1 I nF
0=D W = — /Q/\@P,:HTn(Fg—?Hg) > 7’=_Tn 5
X I1 ’I’]Hg

)
T —T

0= DZW — / DZQ /\ Gg — DZHTT] (Fg — ’TH3)
X

» We find a solution close to the conifold (¢ =1)
Fy=(3,2,-3,—1), Hy=(1,2,1,0) — Ngux =8, 1 = 1.035 —0.017i, 7 = —0.333 + 3.598i



2.) FInding the fluxes

» Close to the conifold singularity, numerical precision suffers

» [0 estimate the impact, we compute the Euler number

 The Euler number comes out only within 15% of the true value, both when using the
CY metric and the pullback of the FS metric (so the latter does not involve a NN)

* |[n contrast, away from the conifold, the Euler number is correct within the 1% range

» Since the error clearly comes from the numerical integration, we
checked with improved point sampling, which reduces the error from
15% to 2%




3.) Approximating the Harmonic (2,1)-forms

» A procedure to obtain a harmonic basis of (2,1)-forms for the FS metric
has been worked out previously: [Candelas,De La Ossa "91]

 The (2,1)-forms can be constructed from variations of the (3,0)-forms

]' O a
Xuvp,I = §Quwaﬁm adr

N

(2,1)-forms, (3.0)-form EXErinsic CS deformation of
’ curvature  defining polynomials

* The extrinsic curvature can be computed from pullbacks and metric derivatives

AUV 82;& 823 82]35 ~C 8—5 a 7 5 8pa 8]55
FA = qdr , —

0z¢

oom. =X-" qf = —H _; — —
M a v/ CLQI abg 853” (9:75‘“ aZABEB



3.) Approximating the Harmonic (2,1)-forms

» We then learn a correction Am*, s.t. m*, = m”* + Am”, Is harmonic wrt
the CY metric

» We impose dx; =90*xr =0
N 1
8XI =0 <+— a[’ﬁluXﬁZ] I — Ov 0 * XI — 0 <— g[aﬁy]ﬁ,l — g (50&67/77,[ =+ fuaﬁﬁ,] =+ f@uaﬁ,[) =0
faﬁyﬁ,l — 8y (QaﬁugﬁﬂgaﬁXﬁaaQ?)

» Thus the loss of the second NN Is determined from derivatives of the
metric NN



3.) Approximating the Harmonic (2,1)-forms

Training MAE for Different Architectures
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4.) Approximating the Warp Factor

» This Is still work

IN pProgress

» We will set up a NN that learns the solution A to the Laplace Equation

» For now, we wil

v — Gl k éijk ~loc
~V? (e7*) = 1‘721m7 210 T3

have to put In the source term by r

parameter quin’

Ic does not have an orientifold Invo

and (since the one-
ution), or accept that

the solution is only correct within the order of the source term.



Outlook

» Want to study more realistic setups that allow orientitold involution

» For CICYs In projective spaces, orientifolds have been classified
[Carta,Moritz,Westphal 20]

» For numerical control over the metric, want small »'!

» For moduli stabilization (solve the PF equation, find harmonic forms),
want small r*!

» The manifolds with the smallest »'' and r*! are larger codimension,
which means that their mirror is a Cl in toric varieties




Conclusions

GKP

» Approximate CY
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mate correction to harmonic (2,1)-forms by a NN

monic forms, approximate solution to the warp tactor with a NN

»  Stabilize near conifold = CY nearly singular = improve point sampling for better numerics

Results

Accu
Resu

‘or good, more rea

CY metric approximation gains multiple orders of magnitude

racy to harmonic (2,1)-form approximation shows improvement by 60%
t fo
_ooking

rwarp factor pending = stay tuned
IStic models
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Conclusions

GKP

» Approximate CY metric with a NN

» Using the CY metric, approximate correction to harmonic (2,1)-forms by a NN

» Using the CY metric and harmonic forms, approximate solution to the warp tactor with a *
» Stabilize near conifold = CY nearly singular = improve point sampling for better

Results

» CY metric approximation gains multiple orders of magnituc™

» Accuracy to harmonic (2,1)-form approximation show “0
» Result for warp factor pending = stay tuned "

» Looking for good, more realistic models



