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Introduction

Strongly coupled QFT are mostly inaccessible to analytic methods

—p ook for simpler limits

Examples: @ large rank of the gauge group [tHoof, ...]
® |arge Spiﬂ [Alday - Maldacena, Komargodski-Zhiboedov,
]
® Iarge charge [Alday - Maldacena, Alvarez-Gaume, Maeda, Hellerman,

Orlando, Reffert, Watanabe - Monin, Pirtskhalava, Rattazzi,
Seibold ... ]



Introduction

In this talk we will study a class of correlators in the limit of a

“large number of insertions” — large R charge

=P Emergence of a “dual" description in terms of matrix
models where the rank of matrices is related to the

“"number of insertions”



Introduction

I the matrix model we discuss in this talk are different from the ones appearing

e usually in susy localization

=P In susy localization (eg Pestun or AdS/CFT) we typically have one

matrix model where rank of matrices = rank of gauge group.

=$ |n our framework we multiple matrix models where the rank of matrices = nb

of operator insertions

K “types” of operators — K matrix models (or possible multi-cuts)

coupled in a non trivial way



Our examples

Our two examples:

e W =2,5U(N)SQCD: a vector multiplet and N, = 2N fundamental hypermultiplets

e N =4, SU(N)SYM: a vector multiplet and an adjoint hypermultiplet

Within these theories, we can consider extremal or integrated correlators. Today | will

mostly focus on extremal correlators of Coulomb branch operators:

N
=] (Trieh)™
k=2

where @ is the complex scalar in the vector multiplet. Hence we have N-1 independent

generators

¢, =Tr(p") k=2,...N



Extremal correlators

N
These theories have a global u(1) R symmetry and O H Tr(qok) “ satisfy:
k:
R(O;)
—  A0;) = =) mk
s k=2
scaling dimension R-charge

We study extremal correlators of coulomb branch operators

(07 (x)) 07 (x2)++- 07 (%,)05())s

where ,; A <@7k> = A (6;)



Extremal correlators

It is possible to show that the x; and y dependence is completely fixed

[Papadodimas, Baggio et al, ...]

(07 (x))07 () 07 (%,)0;(3))gs

47 0
7 is the coupling of the theory: 7 = —i1 + —

M 2

&

&

L
'.

we are interested in these objects



Extremal correlators

Detine: 0, (c0) := lim |y|2A"@k(Y)

y—>0

(0: (0007 (0)+0; (0)0(c0))gs = G; 7 Ar.7)
\_—\,——_J

7 (0)

klk

[OPE+ suitable normalisation]

We reduce the computation of extremal correlators to the

computation of a minimal set of two point functions

N
How do these correlators behave when Z nk is large?

k=2



Extremal correlators

Next:

=P Review of rank 1 case [AG-Komargodski-Tizzano]

-  (Generalization to higher rank case [AG-lossal

- Semiclassical interpretation  [Brown-Galvagno-AG-lossa-Wen]



Rank 1 example - SU(2)

For rank 1 theories the Coulomb branch operators are: 0, = (ngﬂz)n

We have [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

dety s {OLN)OLS))s:

Gn(’l', f) — <@n(0)@n(00)>[R4 — detk,Lﬂ:O,,..n—1<@k(N)5l(S)>S4

where (O, (N)O/(S))q: are the correlation functions on the sphere which, for the

theories of interest to us, are known explicitly thanks to supersymmetric localization

Q: where do the determinants in (1) come from?



Rank 1 example - SU(2)

Although R*and S*are conformally equivalent, the dictionary between the correlation

functions on S*and the correlation functions on R*is highly nontrivial because of
gnly

operator mixing
[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

Indeed, on the sphere, a Coulomb branch operatorof dimension A, can mix with
any other operator of dimension A = 2k, k=1, 2, 3, .. because of the presence of

a scale, i.e. the radius of the sphere.

Opn = Op+RO,_,+R*Op_4+ - + RO

R: Ricci scalar

For example 0, = Trgp? mixes with the identity i.e.

<(Tf€02)>54 # 0



Rank 1 example - SU(2)

To compute correlators on R?starting from §* we need to disentangle
this mixing. This can be achieved by identitying a suitable basis of
operators, where those with different scaling dimensions are
orthogonal. This is done by performing a Gram-Schmidt (GS)
orthogonalization with operators of lower dimension. The scalar

oroduct in GS is the two point function on S*.

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]



Rank 1 example - SU(2)

The result of this GS procedure is

dety oo {OUN)OLS))gs

Gn(T’ f) — <@n(0)@n(00)>|R4 = detkfzo,_,_n—1<@k(N)5l(S)>S4

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

where (O,(N)O/S))q are the correlation functions on the sphere which are known

explicitly thanks to supersymmetric localization

Example /4 =2 SU(2) SQCD

6 13¢3) 1 1575(5) | 1
D= T T mor T am dmep O ((Im T)6>
tcos 0 e-lmT <L IR S E'<C) N N 0( 1 >> 4 0 (e-2my
(Im7)? 7 (Im7)3 272 (Im7)* (Im 7)°



Rank 1 example - SU(2)

The result of this GS procedure is

dety oo {OUN)OLS))gs

Gn(T’ f) — <@n(0)@n(00)>|R4 = detkfzo,_,_n—1<@k(N)51(S)>S4

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

—> Next: we need to find a way of studying the large n regime.

—> QOur strategy: rewrite these determinant as matrix models

[AG, Tizzano,Komargodski, .. ]



From determinants to matrix models

It

n—1
My = [ x"w(x)ydx, D, = det <Mi+j>_ » (Hankel determinant)
R i.j=

+

Then D, has the following multidimensional representation (Andréief-Gram-Hein identity)

Dn=%u d"x H <x—x> Hw(x)

1<i,j<n




From determinants to matrix models

In the rank 1 example the relevant matrix models are of the form

Z(n) = [[DW]e‘V(W)

where W are Wishart matrices: W = ATA, with A an n X n complex matrix.

This can be written as a multidimensional integral over the eigenvalues x; of W:

Z(n) = j d™x H(x —x)2H —Vix)

1<j



From determinants to matrix models

confining potential

| L Vs
Z(n) = — [ anH (x; — xj)2H e~ Vi)
n.Jo i<J i=1 \/

When n is large, the two interactions reach an equilibrium and the eigenvalues

distribute according to [Marchenko-Pastur]

3 (x)
p(x) = —1 (b —x)(x —a)
27X \/
ad b

where a and b depend on the potential V(x)



[AG,Tizzano,Komargodski]
Rank 1 example - SU(2)

When we apply the Andréief-Gram-Hein identity to the determinants appearing in
G (r,7) = (0,(0)0, (c0))ps , we find that these are Wishart matrix models where n is the

rank of the Wishart matrices and the potential is

1 - .
SU2), /' =4 SYM V(x) = nx — E log x confining potentials

N

1
SU(2), &/ =2 SQCD V(x) = nx - logx — log Y(v/Ax)

G(1 +2ix)G( = 2ix) |

G(1 +ix)*G(1 — ix)*

where A = n/Im7 and Y(x) =

G are Barnes functions.



[AG,Tizzano,Komargodski]

Rank 1 example - SU(2)

SU(2), /' =4 SYM

3
7V =4 + 1) 1\
N=4 __ _
G: 7\ i \/ 27 (—Im) r(2n + 2)

exact

Ot ————

SU(2), #/ =2 S5QCD

N=4
Y
e 20D (YWin)
" ZN=2 n N=4
7\ (n) <Y( ﬂx)>
emergent \”

large n analysis using matrix model tools



[AG,Tizzano,Komargodski]

Rank 1 example - SU(2)

Let us focus on SU(2), #/ = 2 SQCD. We can study the matrix model in 2 limits

1) n large, Imz fixed:

5
log G, = 2logImz + 2n (1 — 2logImz) + log I’ 2n+ =

+0 (eﬁ)

—> We can prove EFT prediction [Maeda, Hellerman, Orlando, Reffert,
Watanabe]

This simplicity is a consequence of non trivial identities Y(x). For example

J log <68x21°g2x_1Y(x)) dx =0
0



[AG,Tizzano,Komargodski]

Rank 1 example - SU(2)

Let us focus on SU(2), #/ = 2 SQCD. We can study the matrix model in 2 limits

2)nlarge, A =n/Imr fixed: logG, = Z ni=*C,(4)
k>0

—> In this limit we get new non-perturbative predictions beyond EFT

The fact that this double scaling limit even exists in the SCFT is non trivial
[Bourget, Gomez, Russo]

Example: Cy(A) =2logld—2
3 .
Ci(4) = 5 log A + [dxp(x)(G Barnes functlons)

~ Bessels K functions



Rank 1 example - SU(2)

What can we do with this matrix models (MM)?

® perform a systematic large n expansion and prove the prediction of large

charge EFT + double scaling limit

® go beyond and compute analytically some non-perturbative effects

® The MM techniques can be extended to higher theories, where we do not

have EFT type predictions yet \\

This is what | want to discuss now



Next: matrix models for higher rank

An example: SU(3)

ArXiv 2408.07391 with Cristoforo lossa




Rank 2 example - SU(3)

In SU(3) theories Coulomb branch operators are built from these two generators

$y = Trp>, ¢, = Tre*

More precisely we have operators of the form: @' = (Tr(pz)n (Trg03)m

R(®D))
—  A@}) = =3m +2n
b:.: "“N
scaling dimension R-charge

Any other CB operator can be written as a combinations of @'



Rank 2 example - SU(3)

Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu:

—p to compute correlators on R* we go on $* and disentangle
the operator mixing by applying Gram-Schmidt with

operator of lower and equal dimensions

To analyze the large m and/or n regime it, we need to make this systematic.

For this is convenient to work in another basis of operators.

o = (¢)" (¢3)" — O,



Example: SU(3) /' =4 SYM

Let me first focus on SU(3) /" = 4 SYM. It is convenient to work with
= 4307

where O is constructed starting with (¢3)™ and then do a GS orthogonalization

procedure wrt operator with the same dimension. This gives (eg m even)

_am 2i 1 3(m2—))
=¢5' + Z ¢; 939,

7>j20 T

determined by GS on operators with the same dimension

1
eg: Op = ¢y — ¢23¢3 5764)6

Recall: ¢p; = Trgp>, ¢, = Tre?



Example: SU(3) /' =4 SYM

... after some algebra ....

(OmODAT™ = 6,48,,G(z. )

Z(m)(n) is a Wishart matrix model

with - - -
| ( %J): Z(m)(n+1)«

G (t,7) = —
( % )/\ 2 )(n) [AG-lossal]

—

-

Z,(n) is a Jacobi matrix model



Example: SU(3) /' =4 SYM

More precisely the two matrix models are
n: s1ze of matrices

5

" o_m

/ / Recoll : Ovv:\=92‘ O,

(1) 27w = I ay] ] oi- yj)zl_[ Z”Im”yymL/V O:«:%m 65
i<j

m- anxe of motace S

™
T

= ZJ(gJ)ZQ%lJ)![M? %XH<X_’C>H _‘1 AR




Example: SU(3) /' =4 SYM

These two matrix models are exactly solvable and we obtain

“ <1 i {%D Zm(n + 1)
Z Q%J) Zne

- I'n+ DI'Gm+n +4)
 YmH106mA2n+ 1 3mA2n ]y 32N

G™(1,%) =

Therefore the large m, n asymptotic follows easily

[AG-lossal]



Example: SU(3) /' =4 SYM

One key insight from this simple example is the existence of a class of operators
O’ whose correlation functions exhibit behavior analogous to those in SU(2)

theories at all orders in the 1/m expansion.
[AG-lossal

Gy = (OO )=t = 27071371 7=3"Im(2) " (3m + 4)

|

NN -1
4 = (2 ) 11

3m = R/2

Recall: OF = ¢3" + GS



Example: SU(N) ./ =4 SYM
This can be generalize to any SU(N) [Brown-Galvagno-AG-lossa-Wen]
O" = " + GS

m T <5 +ay + 1)
Go' = (0500 )i = v L+ o)
(NImo)™™ T (ay+ 1)

1
where ¢y = Tr(p™) and R = 2mN, Ay = EN(N_ 1)

These operators provide a promising starting point to extend the EFT techniques of

Hellermann et al. at higher rank



Next: SU(3) A/ =2 SQCD



[AG-lossa]

Example: SU(3) 4/ = 2 SQCD

Punchline: correlators of # = 2 are expectation values of Z; within the

N = 4 matrix models

m: controlled by Jacobi matrix model  ~ (Tr(ga3))m

n: controlled by Wishart matrix model  ~ (Tr(goz))n

Zg ~ couple the two models

3
where Zg(ay,a,) = HH(i(ai - aj))HH(ial-)‘6, H(a) = G(1 + a)G(1 — a) and

I#] i=1
a3 —_ (al + a2)

g systematic large m, n expansions with different phases

(happy to discuss after the talk if interested)



Example: SU(3) #/ = 2 SQCD

m

Casel n=0,m— o0, Imr— 0, 1= fixed. [AG-lossa]

27lmz

1
log Gy’ = (@81@_’61)‘”/%?2 = J dxoj(x)log (ZG(x,3/1)) + O(1/m)

2

eigenvalue density of Jacobi model ~ bunch of Barnes functions
(x) :
O-J X) =
ﬂ\/x(l — X)

o O(= 12442 (3 1) 241k + DI (k+2 )
weak coupling: logGy'= )’
= vk + 1)2k!




Example: SU(3) #/ = 2 SQCD

fixed. [AG-lossa]

Casel n=0,m—-> co,Imr—> 0, 1=
2xlmt

1
log G = [ dxoy(x)log (Z5(x,34)) + O(1/m)
0

strong coupling: logG" = —91log3 +logA— €, (\/64)+ 36, (\/24)
g pPlng 0 np np

GV = Y —— <KO(2nn\/_ 1)+ 201K @nry/2) ) = eV 6\/_ 33\[ < <i>3,4>

n>1
\ )




From matrix models to semiclassics

ArXiv 2502.xxxx with A Brown, F Galvagno, C lossa, C Wen



Semiclassics

Thanks to the matrix model structure, we are able to derive the large m

and n behavior of such correlators and see some nice and simple

structure emerging.

Can we derive this by semiclassical analysis of the path integral?

J@[ﬁelds] e Ssym O OM

In the following we study this question for /" =4 SYM



Semiclassics

One difficulty for higher ranks was that it was not clear what the “nice

operators” were.

The nice operators are
Brown-Galvagno-

AG-| -W —
ossa-Wen @igt — ¢Klfl + GS

T

determined by GS on operators

Recall: ¢y = Tr(p™) with the same dimension



Semiclassics

When considering these operators, our results are compatible with the following

classical configuration of the scalar field: [Brown-Galvagno-AG-lossa-Wen]

@ = _Im (e°QN +e7YQN), 6 € [0,27]
mt

i¥14

where Q]k\; = §,,6 V. This configuration breaks SUN) — U(1)N~!

This implies that

(0500 )rs =

13 ['(Nm + 1)(Nm)aN<1 + O <i>>
Imz>" m

1
ay = EN(N— 1) —Pp compatible with our results



More general correlators

We can use this insight and go beyond extremal correlators

J@[ﬁelds] e~>sm O OF(....)

\

not necessarily coulomb branch operators

=P ArXiv 2502.xxxx with A Brown, F Galvagno, C lossa, C Wen



Summary and Outlook

Using the guideline coming from matrix models, we start the exploration of the large

charge regime of 1/2BPS correlators for higher rank theories:

—) emergence of a multiple matrix model description where the size of the
matrices in each model corresponds to the maximal number of insertions of

each generator.

2 this allows to study make new prediction for the behavior in the large charge

sector of higher rank theories.

-—> we identified a class of operator whose behavior is similar to the rank 1 case.

—) partial interpretation from semiclassics in /" = 4



Summary and Outlook

Many open questions

- EFT-type description at higher rank?
- connection to integrability
- Matrix model for SU(N) with N>3

- gravity meaning of our special operators
- study more general observables

- how general is the statement that regimes of large

quantum numbers behave as matrix models?

- matrix models beyond SCFT



Thank you for your attention



More general correlators

For example, we consider the following 4 point function of 1/2 BPS operators in

N =4 (not extremal)

(O0 (X1, YOG (x5, Vo) (3, Y3) b (X4, Yy) s

G,(xY)=
m(x ) <@61(x1, Yl)@gfl(xza Y2)>IR4

Y:: polarization vectors, if we align them in a certain way we get Coulomb branch

operators.
fixed by superconformal symmetry [Eden,

Petkou, Schubert, Sokatchev]

}

G,(x,Y)=GIruxY)+ Ii(x, )T, (u,v, 1,7)

2.2 2.2
_ X12X3 _ X14X23
3424 X{3X3

Interesting part, coupling dependent




More general correlators

Our semiclassical approach implies that [Brown-Galvagno-AG-lossa-Wen]

27TS‘

I, (U, v,1,7) = ZL(u Vi 4& sin N

s=1

where ) _

2
L(u,v;a) = l ( Z (—a)! PO (u, v)) —

=0

masses associated to

£—loop ladder Feynman integral, known the massive fluctuations

in closed form [Usyukina-Davydychev] around our classical

configuration



Extra technicalities

Standard Normalization: QOur Normalization:
<OI(O)6J(°°)> =0 <OI(O)5J(°O)> = G2151,J
(0/0)0k(0)0x, ((c0)) = Cg; (0/0)0k(0)0k((00)) = Gy

(structure constants)

Y~

Ok = Ogy/ Gy

G2(1+K)
CI,K —
G Gok



[AG-lossal]

Example: SU(3) #/ = 2 SQCD

m n , n
, K = fixed, f=—
2rlmt 2rlmt m

Casell m,n— oo, Imzt - 0, A=

b 1
log G, = (1 + K0, + ﬁaﬁ) (J dprP(y)J dxoy(x)log (Zg(x. w))) +06(1/m)
a 0

(/
density of Jacobi model
\ 1
density of Wishart model oy(x) =
| JZ'\/X(I — X)
PyvpX) = 2_7'[)6\/ (b —x)(x—a) v
a=2+3p""1— 2\/1 + 3571 ~ bunch of Barnes functions

b=2+3p"+2/1+3p"



[AG-lossal]

Example: SU(3) #/ = 2 SQCD

m n , n
, K = fixed, f=—
2rlmt 2rlmt m

Casell m,n— oo, Imzt - 0, A=

At strong 't Hooft coupling (4, k large) we find 4 instantons actions

2\/67: \/Z

APV =37
\/2,3 + 20 /BB+3) +3

20r

B(fnA =37 264 |

\/<2ﬁ—2\/m+3) 10/ "

7\ 0. ) 03

if # — 0: we recover Case | and 4,0) = B,0)




[AG-lossal]

Example: SU(3) #/ = 2 SQCD

m n , n
Case ll m,n—>oo,|m7—>oo,/1= , K = f|xedlﬂ=—
2rzlmt 2rzlmt m
AP =37 2vor NG B(pr/x =3 226 NG
VB 25+ 2B +3) +3 \/B\/(zﬁ—z RT3 +3)
20:— .
15 — B;
\ A,
10:— A

if f — o0o: two instanton actions vanishes A/ — 0 r

=J» new perturbative series

emerging VO



[AG-lossal]

Example: SU(3) #/ = 2 SQCD

n

n
Indeed in the limit f = — — o0 a new perturbative series at large k =

emerges
m 2rlmt

lim log Gg“m = log (L) — bxlog(3) — 2 + FP(x) + @(e‘BiKU2

3
3 931 (3"+% _ 1>(n + D23 5¢(2n + 3)T <n + %)

C(n+1)

FP() = ),

n>0

This is in fact a divergent sum. Its Borel transform has poles on the real axis but its

median Borel summation agree with the following exact answer.

(

0 e* 2K
lim loe G = — 12 2+ I\ 26)? = 3J, [ x4/ —
poco Cbm L e — 1z |2 HvEO 0( V 3)

\ )

2)




