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Introduction

Strongly coupled QFT are mostly inaccessible to analytic methods

 look for simpler limits

Examples: • large rank of the gauge group 

• large spin

• large charge

[’t Hooft, …]

[Alday - Maldacena, Komargodski-Zhiboedov, 
… ]

[Alday - Maldacena,  Alvarez-Gaume, Maeda, Hellerman, 
Orlando, Reffert, Watanabe - Monin, Pirtskhalava, Rattazzi, 
Seibold  … ]



In this talk we will study a class of correlators in the limit of a  

“large number of insertions”   large R charge→

Emergence of a “dual" description in terms of matrix 

models where the rank of matrices is related to the 

“number of insertions”

Introduction



Introduction

the matrix model we discuss in this talk are different from the ones appearing 
usually in susy localization

In susy localization (eg Pestun or AdS/CFT) we typically have one 
matrix model where rank of matrices = rank of gauge group.

!

In our framework we multiple matrix models where the rank of matrices = nb 
of operator insertions

K “types” of operators           K matrix models (or possible multi-cuts)
coupled in a non trivial way



• , SU(N) SQCD: a vector multiplet and  fundamental hypermultiplets   𝒩 = 2 Nf = 2N

• , SU(N) SYM: a vector multiplet and an adjoint hypermultiplet   𝒩 = 4

Our two examples:  

Within these theories, we can consider extremal or integrated correlators. Today I will 
mostly focus on extremal correlators of Coulomb branch operators: 

𝒪 ⃗n =
N

∏
k=2

(Tr(φk))nk

where  is the complex scalar in the vector multiplet. Hence we have N-1 independent 
generators

φ

Our examples

ϕk = Tr(φk) k = 2,…N



Extremal correlators

These theories have a global  R symmetry and  satisfy:u(1) 𝒪 ⃗n =
N

∏
k=2

(Tr(φk))nk

Δ(𝒪 ⃗n) = R(𝒪 ⃗n)
2 =

N

∑
k=2

nkk

scaling dimension R-charge

We study extremal correlators of coulomb branch operators

where
m

∑
k=1

Δ (𝒪 ⃗ik) = Δ (𝒪 ⃗n)

⟨𝒪 ⃗i1
(x1)𝒪 ⃗i2

(x2)⋯𝒪 ⃗im
(xm)𝒪 ⃗n(y)⟩ℝ4



⟨𝒪 ⃗i1
(x1)𝒪 ⃗i2

(x2)⋯𝒪 ⃗im
(xm)𝒪 ⃗n(y)⟩ℝ4 = G ⃗i1,…, ⃗im, ⃗n(τ, τ)

m

∏
k=1

1

|y − xk |2Δ(𝒪 ⃗ik)

 is the coupling of the theory: τ τ = 4π
g2YM

i + θ
2π

we are interested in these objects

It is possible to show that the  and  dependence is completely fixedxi y

[Papadodimas, Baggio et al, …]

Extremal correlators



Define:  𝒪k(∞) := lim
y→∞

|y |2Δk 𝒪k(y)

∼ 𝒪∑m
k=1

⃗ik
(0)

[OPE+ suitable normalisation]

We reduce the computation of extremal correlators to the 
computation of a minimal set of two point functions

⟨𝒪 ⃗i1
(0)𝒪 ⃗i2

(0)⋯𝒪 ⃗im
(0)𝒪 ⃗n(∞)⟩ℝ4 = G ⃗i1,…, ⃗im, ⃗n(τ, τ)

Extremal correlators

How do these correlators behave when   is large?
N

∑
k=2

nkk



Extremal correlators

Next: 

Review of rank 1 case

Generalization to higher rank case

Semiclassical interpretation

[AG-Komargodski-Tizzano] 

[AG-Iossa] 

[Brown-Galvagno-AG—Iossa-Wen] 



For rank 1 theories the Coulomb branch operators are: 𝒪n = (Trφ2)n

We have [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

Gn(τ, τ) = ⟨𝒪n(0)𝒪n(∞)⟩ℝ4 =
detk,ℓ=0,…n⟨𝒪k(N )𝒪l(S)⟩S4

detk,ℓ=0,…n−1⟨𝒪k(N )𝒪l(S)⟩S4

where  are the correlation functions on the sphere which, for the 
theories of interest to us, are known explicitly thanks to supersymmetric localization

⟨𝒪k(N )𝒪l(S)⟩S4

Q: where do the determinants in (1) come from?

Rank 1 example - SU(2)



Although  and  are conformally equivalent, the dictionary between the correlation 
functions on  and the correlation functions on  is highly nontrivial because of 
operator mixing

ℝ4 S4

S4 ℝ4

Indeed, on the sphere, a Coulomb branch operator of dimension ∆, can mix with 
any other operator of dimension ∆ − 2k, k = 1, 2, 3, .. because of the presence of 
a scale, i.e. the radius of the sphere.

Rank 1 example - SU(2)

For example  mixes with the identity i.e.𝒪2 = Trφ2

⟨(Trφ2)⟩S4 ≠ 0

𝒪Δ → 𝒪Δ + R𝒪Δ−2 + R2𝒪Δ−4 + ⋯ + RΔ/2𝕀

R: Ricci scalar

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]



To compute correlators on starting from  we need to disentangle 
this mixing. This can be achieved by identifying a suitable basis of 
operators, where those with different scaling dimensions are 
orthogonal. This is done by performing a Gram-Schmidt (GS) 
orthogonalization with operators of lower dimension. The scalar 
product in GS is the two point function on .

ℝ4 S4

S4

Rank 1 example - SU(2)

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]



The result of this GS procedure is

Rank 1 example - SU(2)

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

Example  SU(2) SQCD𝒩 = 2

G1(τ, τ̄) = 6
(Im τ)2 − 135ζ(3)

2π2
1

(Im τ)4 + 1575ζ(5)
4π3

1
(Im τ)5 + O ( 1

(Im τ)6 )
+cos θ e−Im τ ( 6

(Im τ)2 + 3
π

1
(Im τ)3 − 135ζ(3)

2π2
1

(Im τ)4 + O ( 1
(Im τ)5 )) + O (e−2Im τ)

Gn(τ, τ) = ⟨𝒪n(0)𝒪n(∞)⟩ℝ4 =
detk,ℓ=0,…n⟨𝒪k(N )𝒪l(S)⟩S4

detk,ℓ=0,…n−1⟨𝒪k(N )𝒪l(S)⟩S4

where  are the correlation functions on the sphere which are known 
explicitly thanks to supersymmetric localization

⟨𝒪k(N )𝒪l(S)⟩S4



Rank 1 example - SU(2)

Next: we need to find a way of studying the large n regime.

Our strategy: rewrite these determinant as matrix models
[AG,Tizzano,Komargodski, .. ]

The result of this GS procedure is

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu]

Gn(τ, τ) = ⟨𝒪n(0)𝒪n(∞)⟩ℝ4 =
detk,ℓ=0,…n⟨𝒪k(N )𝒪l(S)⟩S4

detk,ℓ=0,…n−1⟨𝒪k(N )𝒪l(S)⟩S4



If

Then  has the following multidimensional representation (Andrèief–Gram–Hein identity) Dn

μn = ∫ℝ+

xnw(x)dx, Dn = det (μi+j)
n−1

i, j=0

Dn = 1
n! ∫ℝn+

dnx ∏
1≤i,j≤n

(xi − xj)
2 n

∏
i=1

w(xi)

(Hankel determinant)

From determinants to matrix models



In the rank 1 example the relevant matrix models are of the form

Z(n) = ∫ [DW ]e−V(W)

where  are Wishart matrices: , with  an  complex matrix. W W = A†A A n × n

This can be written as a multidimensional integral over the eigenvalues  of  xi W :

Z(n) = 1
n! ∫

∞

0
dnx∏

i<j
(xi − xj)2

n

∏
i=1

e−V(xi)

From determinants to matrix models



Z(n) = 1
n! ∫

∞

0
dnx∏

i<j
(xi − xj)2

n

∏
i=1

e−V(xi)

repulsive interaction

confining potential

When  is large, the two interactions reach an equilibrium and the eigenvalues 

distribute according to [Marchenko-Pastur] 

n

ρ(x) = 1
2πx

(b − x)(x − a)

where  and  depend on the potential V(x)a b
a b

From determinants to matrix models



SU(2),  SYM𝒩 = 4

SU(2),  SQCD𝒩 = 2

V(x) = nx − 1
2 log x

V(x) = nx − 1
2 log x − log Y( λx)

G are Barnes functions.

where  and  λ = n /Imτ Y(x) = G(1 + 2ix)G(1 − 2ix)
G(1 + ix)4G(1 − ix)4

2

Rank 1 example - SU(2)
When we apply the Andrèief–Gram–Hein identity to the determinants appearing in 

  , we find that these are Wishart matrix models where n is the 

rank of the Wishart  matrices and the potential is

Gn(τ, τ) = ⟨𝒪n(0)𝒪n(∞)⟩ℝ4

confining potentials

[AG,Tizzano,Komargodski]



SU(2),  SYM𝒩 = 4

SU(2),  SQCD𝒩 = 2

G𝒩=4
n = Z𝒩=4(n + 1)

Z𝒩=4(n) = 2π ( 1
Imτ )

2n+ 3
2

Γ(2n + 2)

G𝒩=2
n = Z𝒩=2(n + 1)

Z𝒩=2(n) = G𝒩=4
n ×

⟨Y( λx)⟩
𝒩=4

n+1

⟨Y( λx)⟩
𝒩=4

n

Rank 1 example - SU(2)

large n analysis using matrix model tools

exact

emergent

[AG,Tizzano,Komargodski]



Let us focus on SU(2),  SQCD. We can study the matrix model in 2 limits𝒩 = 2

Rank 1 example - SU(2)

1)  large,   fixed:  n Imτ

We can prove EFT prediction [Maeda, Hellerman, Orlando, Reffert, 
Watanabe]

[AG,Tizzano,Komargodski]

This simplicity is a consequence of non trivial identities . For exampleY(x)

log Gn = 2 log Imτ + 2n (1 − 2 log Imτ) + log Γ [2n + 5
2 ] + 𝒪 (e− n)

∫
∞

0
log (e8x2 log 2x−1Y(x)) dx = 0



Let us focus on SU(2),  SQCD. We can study the matrix model in 2 limits𝒩 = 2

Rank 1 example - SU(2)

2)  large,    fixed:   n λ = n /Imτ log Gn = ∑
k≥0

n1−kCk(λ)

In this limit we get new non-perturbative predictions beyond EFT

The fact that this double scaling limit even exists in the SCFT is non trivial
[Bourget, Gomez, Russo]

[AG,Tizzano,Komargodski]

Example: 

C1(λ) = 3
2 log λ + ∫ dxρ(x)(G Barnes functions)

C0(λ) = 2 log λ − 2

 Bessels K functions∼



What can we do with this matrix models (MM)?

• perform a systematic large n expansion and prove the prediction of large 
charge EFT + double scaling limit

• go beyond and compute analytically some non-perturbative effects

•  The MM techniques can be extended to higher theories, where we do not 
have EFT type predictions yet

Rank 1 example - SU(2)

This is what I want to discuss now



Next: matrix models for higher rank

An example: SU(3)

 ArXiv 2408.07391 with Cristoforo Iossa



In SU(3) theories Coulomb branch operators are built from these two generators

Δ(Φn
m) = R(Φn

m)
2 = 3m + 2n

scaling dimension R-charge

Any other CB operator can be written as a combinations of  Φm
n

ϕ3 = Trφ3, ϕ2 = Trφ2

Rank 2 example - SU(3)

More precisely we have operators of the form: Φm
n = (Trφ2)n (Trφ3)m



to compute correlators on  we  go on  and disentangle 
the operator mixing by applying Gram-Schmidt with 
operator of lower and equal dimensions

ℝ4 S4

To analyze the large m and/or n regime it,  we need to make this systematic. 

For this is convenient to work in another basis of operators. 

Rank 2 example - SU(3)

Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu:

Φm
n = (ϕ2)n (ϕ3)m 𝒪m

n



 Let me first focus on SU(3)  SYM. It is convenient to work with𝒩 = 4

where  is constructed starting with  and then do a GS orthogonalization 
procedure wrt operator with the same dimension. This gives  (eg m even)

𝒪m
0 (ϕ3)m

𝒪m
0 = ϕm

3 + ∑
m
2 >j≥0

cj ϕ2j
3 ϕ3(m/2−j)

2

determined by GS on operators with the same dimension

Example: SU(3)  SYM𝒩 = 4

𝒪m
n = ϕn

2𝒪m
0

Recall: ϕ3 = Trφ3, ϕ2 = Trφ2

eg: 𝒪4
0 = ϕ4

3 − 1
8 ϕ3

2ϕ2
3 + 1

576 ϕ6
2



… after some algebra ….

⟨𝒪m
n 𝒪ℓ

k⟩𝒩=4
ℝ4 = δnkδmℓGm

n (τ, τ)

 is a Jacobi matrix modelZJ(n)

[AG-Iossa]

Gm
n (τ, τ) =

ZJ (1 + ⌊ m
2 ⌋)

ZJ (⌊ m
2 ⌋)

Z(m)(n + 1)
Z(m)(n)

with

Example: SU(3)  SYM𝒩 = 4

 is a Wishart matrix model Z(m)(n)



More precisely the two matrix models are

Z(m)(n) = 1
n! ∫ℝn+

dny∏
i<j

(yi − yj)2
n

∏
i=1

e−2πImτyiy3m+3
i

Example: SU(3)  SYM𝒩 = 4

1

ZJ (⌊ m
2 ⌋) = 1

(⌊ m
2 ⌋)! ∫[0,1]⌊ m

2 ⌋
d⌊ m

2 ⌋x∏
i<j

(xi − xj)
2 ⌊ m

2 ⌋
∏
i=1

1
xi

− 12



Example: SU(3)  SYM𝒩 = 4

Gm
n (τ, τ) =

ZJ (1 + ⌊ m
2 ⌋)

ZJ (⌊ m
2 ⌋)

Z(m)(n + 1)
Z(m)(n)

= Γ(n + 1)Γ(3m + n + 4)
3m+126m+2n+1π3m+2nImτ3m+2n

These two matrix models are exactly solvable and we obtain

[AG-Iossa]
Therefore the large m, n asymptotic follows easily



Example: SU(3)  SYM𝒩 = 4

One key insight from this simple example is the existence of a class of operators 
 whose correlation functions exhibit behavior analogous to those in SU(2) 

theories at all orders in the 1/m expansion.
𝒪m

0

Gm
0 = ⟨𝒪m

0 𝒪m
0 ⟩𝒩=4

ℝ4 = 2−6m−13−m−1π−3mIm(τ)−3mΓ(3m + 4)

3m = R /2
4 = N(N − 1)

2 + 1

[AG-Iossa]

Recall: 𝒪m
0 = ϕm

3 + GS



Example: SU(N)  SYM𝒩 = 4

This can be generalize to any SU(N)

𝒪m
0 = ϕm

N + GS

Gm
0 = ⟨𝒪m

0 𝒪m
0 ⟩𝒩=4

ℝ4 = N2m

(N Imτ)Nm

Γ ( R
2 + αN + 1)

Γ (αN + 1)
(1 + 𝒪(e−m))

where  and  ϕN = Tr(φN) R = 2mN, αN = 1
2 N(N − 1)

[Brown-Galvagno-AG-Iossa-Wen]

These operators provide a promising starting point to extend the EFT techniques of 
Hellermann et al. at higher rank



Next: SU(3)  SQCD𝒩 = 2



Example: SU(3)  SQCD𝒩 = 2

Punchline: correlators of  are expectation values of  within the 
 matrix models 

𝒩 = 2 ZG

𝒩 = 4

m: controlled by Jacobi matrix model

n: controlled by Wishart matrix model

  couple the two modelsZG ∼

where   and ZG(a1, a2) = ∏
i≠j

H(i(ai − aj))
3

∏
i=1

H(iai)−6, H(a) = G(1 + a)G(1 − a)
a3 = − (a1 + a2)

systematic large m, n expansions with different phases 

[AG-Iossa]

∼ (Tr(φ3))m

∼ (Tr(φ2))n

(happy to discuss after the talk if interested)             



Example: SU(3)  SQCD𝒩 = 2

log Gm
0 = ⟨𝒪m

0 𝒪m
0 ⟩𝒩=2

ℝ4 = ∫
1

0
dxσJ(x)log (ZG(x,3λ)) + 𝒪(1/m)

weak coupling :

 Case I n = 0, m → ∞ , Imτ → ∞ , λ = m
2πImτ

fixed.

log Gm
0 =

∞

∑
k=1

9(−1)k2k+2 (3k − 1) λk+1ζ(2k + 1)Γ (k + 3
2 )

π(k + 1)2k!

eigenvalue density of  Jacobi model 

 σJ(x) = 1
π x(1 − x)

 bunch of Barnes functions∼

[AG-Iossa]



Example: SU(3)  SQCD𝒩 = 2

log Gm
0 = ∫

1

0
dxσJ(x)log (ZG(x,3λ)) + 𝒪(1/m)

strong coupling: 

 Case I n = 0, m → ∞ , Imτ → ∞ , λ = m
2πImτ

fixed.

log Gm
0 = − 9λ log 3 + log λ − 𝒞np( 6λ) + 3 𝒞np( 2λ)

𝒞np( λ) = ∑
n≥1

6
n2π2 (K0(2nπ λ) + 2nπ λK1(2nπ λ)) = e−2π λ 6 4 λ

π
+

33 4 1
λ

8π2 𝒪 (( 1
λ )

3/4

)

[AG-Iossa]



From matrix models to semiclassics

 ArXiv 2502.xxxx with A Brown, F Galvagno, C Iossa, C Wen



Semiclassics

Thanks to the matrix model structure, we are able to derive the large m 
and n behavior of such correlators and see some nice and simple 
structure emerging.

Can we derive this by semiclassical analysis of the path integral?

∫ 𝒟[fields] e−SSYM 𝒪m
n 𝒪m

n

In the following we study this question for  SYM 𝒩 = 4



The nice operators are 

𝒪m
0 = ϕm

N + GS

determined by GS on operators 
with the same dimension

One difficulty for higher ranks was that it was not clear what the “nice 
operators” were.

}Brown-Galvagno-
AG-Iossa-Wen

Recall: ϕN = Tr(φN)

Semiclassics



When considering these operators, our results are compatible with the following 
classical configuration of the scalar field: [Brown-Galvagno-AG-Iossa-Wen]

φcl = m
Imτ (eiθΩN + e−iθΩN), θ ∈ [0,2π]

where .  This configuration breaks   ΩN
kℓ = δkℓeiπℓ

N SU(N ) → U(1)N−1

This implies that

⟨𝒪m
0 𝒪m

0 ⟩ℝ4 = 1
Imτ3m Γ (Nm + 1) (Nm)αN (1 + 𝒪 ( 1

m ))
αN = 1

2 N(N − 1) compatible with our results

Semiclassics



We can use this insight and go beyond extremal correlators

∫ 𝒟[fields] e−SSYM 𝒪m
0 𝒪m

0 (…)

not necessarily coulomb branch operators

 ArXiv 2502.xxxx with A Brown, F Galvagno, C Iossa, C Wen

More general correlators



Summary and Outlook

Using the guideline coming from matrix models, we start the exploration of the large 
charge regime of 1/2BPS correlators for higher rank theories:

emergence of a  multiple matrix model description where the size of the 
matrices in each model corresponds to the maximal number of insertions of 
each generator.

this allows to study make new prediction for the behavior in the large charge 
sector of higher rank theories. 

we identified a class of operator whose behavior is similar to the rank 1 case. 

partial interpretation from semiclassics in  𝒩 = 4



- EFT-type description at higher rank?

- connection to integrability

Many open questions

Summary and Outlook

- how general is the statement that regimes of large 
quantum numbers behave as matrix models?

- matrix models beyond SCFT 

- Matrix model for SU(N) with N>3

- study more general observables

…

- gravity meaning of our special operators



Thank you for your attention



More general correlators
For example, we consider the following 4 point function of 1/2 BPS operators in 

 (not extremal)𝒩 = 4

Gm(x, Y ) = ⟨𝒪m
0 (x1, Y1)𝒪m

0 (x2, Y2)ϕ2(x3, Y3)ϕ2(x4, Y4)⟩ℝ4

⟨𝒪m
0 (x1, Y1)𝒪m

0 (x2, Y2)⟩ℝ4

: polarization vectors, if we align them in a certain way we get Coulomb branch 
operators.
Yi

Gm(x, Y ) = Gfree
m (x, Y ) + I4(x, Y )𝒯m(u, v, τ, τ)

fixed by superconformal symmetry [Eden, 
Petkou, Schubert, Sokatchev]

u = zz̄ = x2
12x2

34
x2

13x2
24

, v = (1 − z)(1 − z̄) = x2
14x2

23
x2

13x2
24

Interesting part, coupling dependent



Our semiclassical approach implies that

masses associated to 
the massive fluctuations 
around our classical 
configuration

[Brown-Galvagno-AG-Iossa-Wen]

𝒯m(u, v, τ, τ) = K
2

K−1

∑
s=1

L(u, v; 4λ sin2 πs
N

)

where

L(u, v; a) = 1
u (

∞

∑
ℓ=0

(−a)ℓP(ℓ)(u, v))
2

− 1

−loop ladder Feynman integral, known 
in closed form [Usyukina-Davydychev]
ℓ

More general correlators



Extra technicalities

Standard Normalization:

⟨OI(0)OJ(∞)⟩ = δI,J

⟨OI(0)OK(0)OK+I(∞)⟩ = CK,I

(structure constants)

Our Normalization:

⟨OI(0)OJ(∞)⟩ = G2IδI,J

⟨OI(0)OK(0)OK+I(∞)⟩ = G2(K+I)

OK → OK G2K

CI,K =
G2(I+K)

G2IG2K



Example: SU(3)  SQCD𝒩 = 2

 Case II m, n → ∞ , Imτ → ∞ , λ = m
2πImτ

, κ = n
2πImτ

fixed, β = n
m

log Gm
βm = (1 + κ∂κ + β∂β) (∫

b

a
dyρMP(y)∫

1

0
dxσJ(x)log (ZG(x, κy))) + 𝒪(1/m)

density of Jacobi model 

 σJ(x) = 1
π x(1 − x)

density of Wishart model

ρMP(x) = 1
2πx

(b − x)(x − a)

a = 2 + 3β−1 − 2 1 + 3β−1

b = 2 + 3β−1 + 2 1 + 3β−1

 bunch of Barnes functions∼

[AG-Iossa]



Example: SU(3)  SQCD𝒩 = 2

 Case II m, n → ∞ , Imτ → ∞ , λ = m
2πImτ

, κ = n
2πImτ

fixed, β = n
m

Ai(β) λ = 3 i − 1
2

2 6π

2β + 2 β(β + 3) + 3
λ

Bi(β) λ = 3 i − 1
2

2π 6λ

(2β − 2 β(β + 3) + 3)

0.1 0.3

10

20

B2
B1
A2
A1

if : we recover  and β → 0  Case I Ai(0) = Bi(0)

At strong ’t Hooft coupling (  large) we find 4 instantons actionsλ, κ

[AG-Iossa]



Example: SU(3)  SQCD𝒩 = 2

 Case II m, n → ∞ , Imτ → ∞ , λ = m
2πImτ

, κ = n
2πImτ

fixed, β = n
m

Ãi(β) κ = 3 i − 1
2

2 6π

β 2β + 2 β(β + 3) + 3
κ B̃i(β) κ = 3 i − 1

2
2π 6

β (2β − 2 β(β + 3) + 3)
κ

2 4 6 8 10

5

10

15

20

25

B2
B1
A2
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if :  two instanton actions vanishes β → ∞ Ai(β) λ → 0

new perturbative series 
emerging

[AG-Iossa]



Example: SU(3)  SQCD𝒩 = 2

Indeed in the limit  a new perturbative series at large  emergesβ = n
m

→ ∞ κ = n
2πImτ

lim
β→∞

log Gm
βm = log ( κ

6 3 ) − 6κ log(3) − 2 + Fp(κ) + 𝒪(e−Biκ1/2)

Fp(κ) = ∑
n≥0

3 2−3n− 1
2 (3n+ 3

2 − 1)(n + 1)π−2n− 9
2 κ−n− 1

2 ζ(2n + 3)Γ (n + 1
2 )

3

Γ(n + 1)

This is in fact a divergent sum. Its Borel transform has poles on the real axis but its 
median Borel summation agree with the following exact answer. 

[AG-Iossa]

lim
β→∞

log Gm
βm = − 12∫

∞

0

ex

x(ex − 1)2 2 + J0(x 2κ)2 − 3J0 (x
2κ
3 )

2


