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Symmetry Breaking from Monopole Condensation in 3d QED

Phase Diagrams and the End of the Conformal Window

➤ QCD4 = 4d SU(Nc) + Nf fundamental Dirac fermions

1 What is N∗
f as a function of Nc ? N∗

f (3) ∈ (9, 10)
2 What happens for Nf < N∗

f ?
SU(Nf )L × SU(Nf )R × U(1)V → SU(Nf )V × U(1)V via ⟨ψ̄ψ⟩ ✓

➤ QED3 = 3d U(1) + (even) Nf charge-1 Dirac fermions

1 What is N∗
f ? N∗

f ∈ (2, 4)
2 What happens for Nf < N∗

f ? ✍
Naively: SU(Nf ) → SU(Nf /2)× SU(Nf /2)× U(1)f via ⟨ψ̄σ⃗ψ⟩ ✗
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Symmetry Breaking from Monopole Condensation in 3d QED

Preliminaries: U(1) Maxwell Theory in 3d

L = − 1

4e2
f µν fµν , f = da , [e2] = 1 .

Global U(1)m magnetic symmetry: ⋆jm = f
2π

Operators with charge qm are monopoles, disorder point-like
operators Mqm(x) such that

∫
S2(x)

f = 2πqm

Can be dualized to the theory of a compact scalar (`dual photon'):

L̃ = − e2

8π2
(∂µσ)(∂

µσ) , σ ∼ σ + 2π .

U(1)m is the shift symmetry of σ: jm = e2

(2π)2 dσ

Monopole operators are Mqm = exp (iqmσ) ⇒ ⟨Mqm⟩ ≠ 0

U(1)m is spontaneously broken by monopole condensation

3d Coulomb phase = massless photon = S1 sigma model
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Symmetry Breaking from Monopole Condensation in 3d QED

Preliminaries: Dirac Fermions in 3d

L = −iψ̄(γµ∂µ − iγµAµ +m)ψ , Aµ = U(1) global .

U(1) global symmetry: ψ → e iαψ

Charge conjugation C: ψ → ψ∗

Time reversal (at m = 0) T : ψ → γ0ψ

U(1) and T have a mixed 't Hooft anomaly [Niemi, Semeno�; Redlich]

Can be expressed as a θ = π term via anomaly in�ow

Sanomaly =
π

8π2

∫
X4

dA ∧ dA , ∂X4 = M3

U(1) cannot be gauged and simultaneously preserve T
Can be canceled for an even number of fermions
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Symmetry Breaking from Monopole Condensation in 3d QED

Preliminaries: QED3 at Large (even) Nf

L = −Nf

4λ
f µν fµν − i

Nf∑
i=1

ψ̄iγ
µ (∂µ − iaµ)ψ

i , λ ≡ e2Nf .

Massless point is protected by T (assume Nf even)

Exact propagator at large Nf : ⟨aµ(p)aν(−p)⟩ = − iηµν
Nf

{
λ/p2 UV

16/|p| IR

∃ non-trivial strongly coupled CFT in the IR, amenable to a systematic
1/Nf expansion [Appelquist, Nash, Wijewardhana]

What is the fate of massless QED3 in the IR?

From bootstrap analysis: strong indication that ∃ CFT ∀Nf ≥ 4
[Chester, Pufu; He, Rong, Su; Albayrak, Erramilli, Li, Poland, Xin]

and that Nf = 2 is not a symmetry-preserving CFT [Li]
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Symmetry Breaking from Monopole Condensation in 3d QED

QED3 with Nf = 2: Global Symmetries and Anomalies

U(2) =
SU(2)f × U(1)m

Z2
, C , T

Flavor SU(2)f , Magnetic U(1)m, Quotient by Z2: (−I2,−1)

Naively, SO(3)f = SU(2)f /Z2 (gauge-invariant op's = bosons)

Non-monopole operators (qm = 0) are in reps of SO(3)f , e.g.

O⃗ = iψ̄σ⃗ψ is in the adjoint of SU(2)f

Monopole operators (qm ̸= 0) are in reps of SU(2)f , e.g.
Mi (x) is in the fundamental of U(2) [Borokhov, Kapustin, Wu]

Mixed 't Hooft anomaly between U(2) and T [Benini, Hsin, Seiberg]

Sanomaly = π

∫
X4

c2(U(2)) =
π

8π2

∫
X4

[trF ∧ trF − tr(F ∧ F)]

There must be gapless dof's in the IR to match the anomaly
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Symmetry Breaking from Monopole Condensation in 3d QED

Previous Proposals

1 Condensation of the fermion bilinear ⟨iψ̄σ⃗ψ⟩ ≠ 0 [Pisarski] induces
SSB of SO(3)f → U(1)f leading to an S2 sigma model

What is the fate of U(1)m? Is it broken or unbroken?

If unbroken, anomaly for the unbroken U(1)f × U(1)m?

If broken, by which monopole operator? Where is its NGB?

2 There is an IR �xed point with unbroken U(2) symmetry, possibly
described by a self-dual CFT with enhanced O(4) global symmetry
[Xu, You; Hsin, Seiberg]

Assume the bootstrap results and exclude this scenario ⇒

It leads to consider (at least some) symmetry breaking of U(2)
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Symmetry Breaking from Monopole Condensation in 3d QED

Symmetry Breaking Scenario

⟨Mi ⟩ ≠ 0: Spontaneous Symmetry Breaking U(2) → U(1)unbroken, via
the condensation of the qm = 1 monopole (as Higgsing in SM)

⇒ 3 NGBs parametrizing U(2)/U(1) = S3

Hopf Map: given v2 ≡ ⟨M†
i ⟩ ⟨Mi ⟩, construct the map π : S3 → S2

Mi → n⃗ =
M†σ⃗M

v2
, n⃗ 2 = 1

Given n⃗ (triplet of SU(2)f and singlet of U(1)m), one gets

Mi (n⃗, σ) = v ξi (n⃗)e iσ , σ ∼ σ + 2π , ξ†σ⃗ξ = n⃗

σ parametrizes the S1 �ber over each point of the S2 base

ds2(S3) = R2dn⃗ · dn⃗ +
e2
e�

8π2
(dσ − α)2 ,

∫
S2

dα

2π
= 1

3 NGBs: n⃗ ∈ S2 (triplet breaking) and σ ∈ S1 (dual photon)
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Symmetry Breaking from Monopole Condensation in 3d QED

Fermion Bilinear and Small Triplet Mass

Example: n⃗ = ± ẑ , preserving U(1)f

U(1)± ≡ 1
2 (U(1)m ± U(1)f )

N pole: Mi (+ẑ , σ) = ve iσ(1 0)t

q+ = 1 and q− = 0

S pole: Mi (−ẑ , σ) = ve iσ(0 1)t

q+ = 0 and q− = 1

Roles of U(1)± reversed ⇒ �bration

Fermion bilinear is aligned with U(1)f singled out by ⟨Mi ⟩:
⟨iψ̄σ⃗ψ⟩ RG−−→ Cn⃗ (no further symmetry breaking)

Triplet Mass (T -invariant) :

Lm⃗ = i m⃗ · ψ̄σ⃗ψ RG−−→ Cm⃗ · n⃗ ⇒ n⃗ ∥ m⃗
Mass perturbation selects a single point on S2: at low energies we
get a Coulomb phase, parametrized by the dual photon σ ∈ S1
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Symmetry Breaking from Monopole Condensation in 3d QED

't Hooft Anomaly Matching

C and T are unbroken (T follows from Vafa-Witten theorem)

T /U(2) anomaly needs to be matched in the S3 sigma model:
it admits a conventional theta term, since π3(S

3) = Z

Sθ =
θ

24π2

∫
M3

Tr
(
U−1dU

)3
, U ∈ U(2)/U(1)

T allows only θ = 0, π : θ = π matches the anomaly

Technically, coupling to A ∈ U(2): Sθ[A] = θ
∫
X4

c2(U(2))
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Symmetry Breaking from Monopole Condensation in 3d QED

Perturbative Regime: Large Triplet Mass

Couple to U(1)f with Jµf = ψ̄γµσzψ and U(1)m with ⋆Jm = f /2π

L = − 1

4e2
f µν fµν − iψ̄i

[
(/∂ − i/a)δij − i /Af (σz)

i
j

]
ψj +

1

2π
da ∧ Am

Fermion charges: q1g = q2g = 1, q1f = −q2f = 1, q1m = q2m = 0

Add m⃗ = m ẑ : Lm⃗ = im ψ̄σzψ = im
(
ψ̄1ψ

1 − ψ̄2ψ
2
)

Integrate out fermions at |m| ≫ e2: Coulomb phase (1 NGB)

LIR = − 1

4e2m
f µν fµν + · · ·+ 1

2π
da ∧ (Am + sign(m)Af )

{
m > 0 : condensing M1 and unbroken U(1)−

m < 0 : condensing M2 and unbroken U(1)+

(same result as |m| ≪ e2 in our symmetry-breaking scenario)
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Symmetry Breaking from Monopole Condensation in 3d QED

Non-Perturbative Bound on Electrical Matter

CS levels are quantized and cannot vary smoothly at any order in
perturbation theory [Coleman, Hill]

Previous conclusions persist for any |m| ≠ 0 as long as there is no
phase transition (that would make CS levels jump)

Electrically charged matter would need to become massless to
trigger the jump in the levels (or Higgs the gauge group), but

Non-perturbative bound on electrically charged matter

⟨O†
q(y) e

iq
∫ y
x
a Oq(x)⟩ ≤ e−|q||m||x−y | ∀|m| ≠ 0

for any fundamental/composite operator O of gauge charge q

No elementary/bound states become massless! (Coulomb repulsion)

The behavior found for |m| ≫ e2 persists smoothly to all |m| ≠ 0
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Symmetry Breaking from Monopole Condensation in 3d QED

Non-Perturbative Constraints on Symmetry Breaking

The Vafa-Witten theorem imposes constraints on the allowed
patterns of symmetry breaking in time-reversal invariant theories
[Vafa, Witten]

E.g. applied to massless QCD4 (at θ = 0) it states that time reversal
and SU(Nf )V × U(1)V ⊂ SU(Nf )L × SU(Nf )R × U(1)V cannot be
spontaneously broken

Subtlety for massless QED3: naively, U(1)f ⊂ SU(2)f is unbroken,
but there is a mixing between U(1)f and U(1)m

Applying Vafa-Witten arguments to QED3:

1 Time-reversal T is unbroken

2 If no monopole operator condenses, U(1)f × U(1)m is unbroken

3 If a (qm, qf ) monopole operator condenses, the linear combination
qmU(1)f − qfU(1)m is unbroken
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Symmetry Breaking from Monopole Condensation in 3d QED

Extrapolating to m⃗ = 0

∀m⃗ ̸= 0: SSB of the residual symmetry U(1)f × U(1)m → U(1)unbroken
via monopole condensation of Mi = v ξi (m⃗)e iσ , with ξ†σ⃗ξ = m⃗/|m⃗|
and the low-energy theory is a 3d Coulomb phase (1 NGB)

What happens when m⃗ = 0?

1 Gapped Phase ✗
Incompatible w/ anomaly matching and Coulomb phase

2 Gapless CFT with (at least) U(2) Symmetry ✓
Implausible (bootstrap results), but realized if 2 > N∗

f

3 U(2) → U(1)f × U(1)m ⇒ S2 sigma model ✗
Incompatible w/ anomaly matching: it needs S2 × T
Incompatible w/ Coulomb phase (small |m⃗| would lead to T)

4 U(2) → U(1)unbroken ⇒ S3 sigma model ✓
Our proposed scenario (see also [Chester, Komargodski]),
compatible w/ anomaly matching (θ = π) and Coulomb phase
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Symmetry Breaking from Monopole Condensation in 3d QED

Phase Diagram with Singlet Mass for Nf = 2

[Chester, Komargodski] also proposed S3 sigma-model, motivated by
adding the T -odd mass operator to the Lagrangian as LM = iMψ̄iψ

i

Integrating out fermions for |M| ≫ e2, one gets U(1)sign(M) pure
Chern-Simons theory, which has a single trivially gapped vacuum

Agreement between anomalous dimensions in the O(4) model (from
bootstrap) and in large Nf QED3 extrapolated to Nf = 2: φq ∼ Mq

Massless QED3 cannot �ow to standard O(4) model due to anomaly

Proposal: there are two special points M ∼ ±e2 (related by time
reversal), where the theory �ows to the O(4) model

Matching of phases requires S3 sigma-model at M = 0, equipped
with a theta term with θ = π for anomaly matching
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Symmetry Breaking from Monopole Condensation in 3d QED

Outlook

Symmetry breaking in 3d QED is driven by monopoles,
which carry both magnetic and �avor quantum numbers,
and not only by fermion bilinears (as in 4d QCD)

Using Vafa-Witten theorems and 't Hooft anomaly matching, we can
uniquely determine the scenario realized for Nf < N∗

f to be SSB

One of the NGBs is (for any even Nf ) the dual photon.
Generic SSB pattern is U(Nf ) = SU(Nf )× U(1)m −→
SU(Nf /2)× SU(Nf /2)× U(1)unbroken = SU(Nf /2)× U(Nf /2),
s.t. U(1)f and U(1)m mix in a broken and unbroken combination

? How to analytically estimate N∗
f ?

Or at least support the symmetry-breaking scenario for Nf = 2?

? What can be said for odd Nf or in presence of CS terms (no time
reversal symmetry), or for non-Abelian theories?

? Applications to phases of matter and lattice systems
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