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Scattering Amplitudes for Classical Gravity
On-Shell Off-Shell

• Gauge independent
• Higher order calculations
• Four dimensions

• Gauge dependent
• Control over degrees of freedom
• Higher dimensionsKMOC & Eikonal Phase

Gauge dependent quantities
e.g. the metric

[Bjerrum-Bohr, Damgaard, Festuccia, Plantè, Vanhove, 1806.04920]
[Kosower, Maybee, O’Connell, 1811.10950]

[Buonanno, Khalil, O'Connell, Roiban, Solon, Zeng, 2204.05194]

Gravitational Observables
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Spinning Off-Shell Amplitudes

S = ∫ dd+1x ( −
2
κ2

−gR + ℒm(Φs, gμν) + ℒGF(gμν))
gμν = ημν + κ hμν

κ2 = 32πG

Canonical quantization of gravity:

S → ⋯++++

[Donoghue, gr-qc/9405057]
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q
s

s

µω = (τΦ2h)μν
a,b(q)

−
iκ
2

(2m)ϵ Tμν(q)δσσ′ 
= a⟨p2; s, σ′ | (τΦ2h)a,b

μν |p1; s, σ⟩b = ̂τμν
Φ2h(q, S)δσσ′ 

+ O(ℏ)

As in any gauge theory, the gauge 
boson emission is associated with the 
conserved current of the theory

 for bosonsϵ = 1

 for fermionsϵ = 0
Dressed
Vertex

Quantum 
Corrections

[Bern, Luna, Roiban, Shen, Zeng, 2005.03071]
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Tμν(q) = m uμuν(1 + F2,1( − q ⋅ S ⋅ S ⋅ q)) + m F2,2(S ⋅ q)μ(S ⋅ q)ν

From the action it is possible to 
derive the 2 massive - 1 graviton 
dressed vertex

Energy-Momentum Tensor 
at quadrupole order

q ⋅ S ⋅ S ⋅ q ≡ qμSμ
νSν

σqσ

uμ = δμ
0

Sμνuν = qμuμ = 0

Gauged fixed Stationary Source

[CG, Pani, Riccioni, 2403.16574]

Spin-1
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•  is the anti-symmetric spin-densitity tensorSμν = Jμν/m

• The action from which the EMT is derived is a  
low-energy/long-range effective action

e.g. d = 3 Sij = (
0 a 0

−a 0 0
0 0 0) = εijksk

Tμν(q) → Tμν(q) + O(q2)

Local terms
• Valid in arbitrary  

spacetime dimensions
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Inspired by Amplitudes

By writing the most generic conserved rank-2 tensor up to local terms, 
we can generalize the momentum-space version of the linearized EMT 
to every order in the angular momentum expansion.

• The EMT is built out of ,  and 

•

• Localized matter sources

m Sμν uμ

qμTμν(q) = O(q2)
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ζ = − q ⋅ S ⋅ S ⋅ qWe define the gravitational Form Factors Fn,i

F0,1 = F1,3 = 1 Mass & Spin normalized 
to their ADM value

Tμν(q) = m uμuν(1 +
+∞

∑
n=1

F2n,1ζn) + m
+∞

∑
n=0

F2n+2,2(S ⋅ q)μ(S ⋅ q)νζn

+
i
2

m(uμ(S ⋅ q)ν + uν(S ⋅ q)μ)(1 +
+∞

∑
n=1

F2n+1,3ζn) + Local Terms

F0,2 = 0 No Stress Monopole
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Why momentum space?

• We can write a closed-form expression for the EMT at every order in the 
angular momentum expansion

• Separation of scales

• The same expression is valid in arbitrary spacetime dimensions

hμν(x) =
κ
2 ∫

ddq
(2π)d

e−iq⋅x

q2
Pμν,ρσTρσ(q )

Propagator in 
some gauge

Linearized Metric :

Once the EMT is defined, we can compute the linearized induced metric 
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Gravitational Multipoles in Higher Dimensions

g0i = 2(d − 2)
+∞

∑
ℓ=0

Gmρ(r)
rℓ

𝕁(ℓ)
i,Aℓ

NAℓ
+ ⋯

Mass Multipoles : 

Stress Multipoles : 

Current Multipoles : 

g00 = − 1 + 4
d − 2
d − 1

+∞

∑
ℓ=0

Gmρ(r)
rℓ

𝕄(ℓ)
Aℓ

NAℓ
+ ⋯

gij = δij + 4
d − 2
d − 1

+∞

∑
ℓ=0

Gmρ(r)
rℓ

�̃�(ℓ)
ij,Aℓ

NAℓ
+ ⋯

NAℓ
=

xa1
⋯ xaℓ

rℓ

𝔾(ℓ)
ij,Aℓ

= �̃�(ℓ)
ij,Aℓ

+
1
2

δij(𝕄(ℓ)
Aℓ

− �̃�(ℓ)
kk,Aℓ)Actual definition of 

Stress Multipole Tensor

[Heynen, Mayerson, 2312.04352]
[Bianchi, CG, Pani, Riccioni, 2412.01771]
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𝕄(2ℓ)
A2ℓ

=
(d + 4ℓ − 4)!!

(d − 2)!!
(−1)ℓ(F2ℓ,2 + (d − 2)F2ℓ,1)(−S ⋅ S)A2ℓ

STF

𝕁(2ℓ+1)
i,A2ℓ+1

=
(d + 4ℓ − 2)!!

(d − 2)!!
(−1)ℓF2ℓ+1,3 Sia1

(−S ⋅ S)A2ℓ
|ASTF

𝔾(2ℓ)
ij,A2ℓ

= (d − 1)
(d + 4ℓ − 4)!!

(d − 2)!!
(−1)ℓF2ℓ,2 Sia1

Sja2
(−S ⋅ S)A2ℓ−2

|RSTF

For a metric with a sufficiently rapid fall-off behaviour, the  
harmonic gauge is ACMC-∞

We can read the gravitational multipoles à la Thorne from the  
linearized metric described in terms of Form Factors and compare  

them with the previous expression

[Mayerson, 2210.05687]

[Geroch, ’70]
[Hansen,  ’74]
[Thorne, ’80]
[Gursel, ’83]
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• Multipoles are normalized such that  & 

• Mass & Stress multipoles are vanishing for odd powers of the spin and 
Current multipoles are vanishing for even powers

• ,  &  stand for different symmetries that gravitational 
multipole tensors need to respect

• Stress multipoles are vanishing in four-dimensional spacetimes!

𝕄(0) = 1 𝕁(1)
ia1

= Sia1

STF ASTF RSTF

𝕄(2ℓ+1)
A2ℓ+1

= 0 𝕁(2ℓ)
i,A2ℓ

= 0 𝔾(2ℓ+1)
ij,A2ℓ+1

= 0

What are the  
Stress multipoles ?

We just defined  
source mutlipoles!
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Stress Multipole Moments
In the original Thorne formalism Stress multipoles are not present,  
indeed they are vanishing in d = 3

However  is special since we 
can define a spin vector

d = 3 Sia1
Sja2

d=3

RSTF
= 0Sij = εijksk

Since Stress multipoles are vanishing, stress form factors are redundant and 
only the combination  is physical!F2ℓ,1 + F2ℓ,2

In  the stress form factor  becomes a gauge degree of freedomd = 3 F2ℓ,2
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Source Multipole Moments
We have established a 1-to-1 correspondence between form factors and 
gravitational multipoles.

Hence, since the form factors enter in the EMT, it means that we are now 
able to read gravitational multipoles directly from the source that generates 
the gravitational field, in complete analogy to Newtonian gravity.

Tμν gμν

Form Factors Gravitational Multipoles

15



Newtonian 
Gravity

General 
Relativity

Φ( ⃗x) = − G∑
ℓ,m

1
rℓ+1

4π
2ℓ + 1

Iℓm Yℓm(θ, φ)

Iℓm = ∫ ϵ( ⃗x) rℓYℓm(θ, φ)d3x

g00 = − 1 + 4
d − 2
d − 1

+∞

∑
ℓ=0

Gmρ(r)
rℓ

𝕄(ℓ)
Aℓ

NAℓ
+ ⋯

m(1 +
+∞

∑
n=1

F2n,1ζn) + ⋯ = ∫ ddxe−iq⋅xT00(x)
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Multipole Moments of  Myers-Perry BHs

The Myers-Perry solution is the higher dimensional generalization of the Kerr metric

𝒵(d)
n (ζ) = Ω(d) ζ− d − 2

2 Jn+ d − 2
2 ( d − 1

2
ζ)

F(d)
2 (ζ) = −

1
2

ζ 𝒵(d)
1 (ζ) F(d)

3 (ζ) = 𝒵(d)
0 (ζ)

F(d)
1 (ζ) = F(d)

2 (ζ) + F(d)
3 (ζ)

Myers-Perry Form Factors

Fi(ζ) =
+∞

∑
n=0

Fn,i ζn [Myers, Perry, ’86] 
[Bianchi, CG, Pani, Riccioni, 2412.01771]
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Black Hole Sources

Tμν(q) = m uμuνF(d)
1 (ζ) + m

F(d)
2 (ζ)
ζ2

(S ⋅ q)μ(S ⋅ q)ν +
i
2

m(uμ(S ⋅ q)ν + uν(S ⋅ q)μ)F(d)
3 (ζ)

ζ = ∑
k

q2
⊥,ka

2
k

 runs over the number of the angular momenta 
& 

 

k

q⊥,k = q2
x,k + q2

y,k

Replacing the MP form factors and evaluating the Fourier transform of the 
EMT we can derive the matter distribution sourcing rotating BHs! 
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In the Kerr case

Tμν(q)
d=3

= m uμuν(cos ζ − F(3)
2 (ζ)) + m

F(3)
2 (ζ)
ζ2

(S ⋅ q)μ(S ⋅ q)ν

−
i
2

m(uμ(S ⋅ q)ν + uν(S ⋅ q)μ) sin ζ
ζ

In  the stress form factor is a gauge parameter and can be suitably 
chosen without changing the multipolar structure of the source

d = 3

Tμν(x) = ∫
ddq

(2π)d
e−iq⋅xTμν(q )EMT in Position Space

19



Israel Source
A reasonable choice is to set , from which the Kerr EMT readsF(d=3)

2 = 0

Tij(q) = 0T00(q) = m cos aq⊥ T0i(q) = −
i
2

m(s × q)i sin aq⊥

aq⊥

T00(x) = −
m
2π

δ(z)
a

(a2 − ρ2)3/2
Θ(a − ρ) T0i(x) =

m
4π

δ(z)
( ̂s × r)i

(a2 − ρ2)3/2
Θ(a − ρ)

Performing the Fourier transform we recover the Israel source of Kerr BHs, 
describing a superluminal rotating disk of radius  with negative energy densityρ = a

[Israel, ’70]20



MP Source for  d = 4

T00(x) =
m

(2π)2 ( 4
9

A1 +
2
3

A0)

A1 =
4
3

δ(a2
1 ρ2

2 + a2
2 ρ2

1 − ( 3
2 a1a2)2)Θ( 3

2 a1 − ρ1)Θ( 3
2 a2 − ρ2)

A0 =
1
2 ( 4

3
π
a2

δ(y1)δ(x1)δ( 3
2 a2 − ρ2) +

4
3

π
a1

δ(y2)δ(x2)δ( 3
2 a1 − ρ1))

For MP the stress form factor is not redundant and has to be taken into account

Myers-Perry 
Energy Density

The mass-energy distribution is 

singular for , 

and vanishing everywhere else, 

describing a 3-ellipsoid embedded in 

 of semi-axis  and 

a2
1 ρ2

2 + a2
2 ρ2

1 = ( 3
2 a1a2)2

ℝ4 ρ1 =
3
2

a1 ρ2 =
3
2

a2

21



T00

d=even
∝

m

(2π)d
2

1
∏k a2

k
δ( ρ2

k

a2
k
−( d − 1

2 )2)∏
k

Θ( d − 1
2 ak − ρk) + ⋯

T00

d=odd
∝

m

(2π)d − 1
2

δ(z)
∏k a2

k
δ( ρ2

k

a2
k
−( d − 1

2 )2)∏
k

Θ( d − 1
2 ak − ρk) + ⋯

• The Israel EMT corresponds to the “pressureless” case of .

• Both Kerr and MP sources reproduce the structure of curvature 
singularities of the full non-linear solution:

F(d=3)
2 (ζ) = 0

• A tight relation between multipoles and curvature singularities is 
suggested.

• The minimal EMT we built leads to lower dimensional sources.
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Black Hole Mimickers

Tμν(q) = m uμuνF(d)
1 (ζ)K1(q2) + m

F(d)
2 (ζ)
ζ2

K2(q2)(S ⋅ q)μ(S ⋅ q)ν

−
i
2

m(uμ(S ⋅ q)ν + uν(S ⋅ q)μ)F(d)
3 (ζ)K3(q2)

Ki : Structure Functions 
(they do not modify the multipoles)

We now have a multipole-based framework to build black hole mimickers!

Setting  means to consider point-like fundamental objects, while a 
non-trivial choice gives an internal smeared structure

Ki(q2) = 1

[CG, 2502.XXXXX]
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The Idea: fix Kerr form factors and a non-trivial structure function that leads 
to a physically reasonable source. By construction this will be a BH mimicker 

with the exact same multipolar structure of Kerr.

Ki(q2) = e−q2R2
i = 1 − q2R2

i +
q4R4

i

2
+ ⋯

Gaussian 
Structure Functions

T0i(q) = −
i
2

m(s × q)i sin(aq⊥)
aq⊥

e−q2R2
3T00(q) = m cos(aq⊥)e−q2R2

1 Tij(q) = 0

Gaussian-Smeared Israel Source
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ℐc(ρ, z; Rc) = m
e− z2

4R2c

8π3/2R3
c

+∞

∑
n=0

(−1)n n!
(2n)! ( a2

R2
c )

n

1F1(n + 1; 1; −
ρ2

4R2
c

)

ℐs(ρ, z; Rs) = m
e− z2

4R2s

8π3/2R3
s

+∞

∑
n=0

(−1)n n!
(2n + 1)! ( a2

R2
s )

n

1F1(n + 1; 1; −
ρ2

4R2
s

)

T0i
I (x) =

1
2

(s × ∂x)i ℐs(ρ, z; R3)

In cylindrical coordinates  it is possible to analytically express the  
gaussian-smeared Israel source

(t, ρ, ϕ, z)

T00
I (x) = ℐc(ρ, z; R1)

Tij
I (x) = 0
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Source Phenomenology

Tμν = ϵ uμuν + pϕ lμ
ϕlν

ϕ
Rotating 

Anisotropic Fluid
R1 = R

R3 = αR

• Positive Energy Conditions:  &  

• Causality Conditions:  & 

• Real-Valued threshold: 

ϵ ≥ 0 ξϕ = ϵ + pϕ ≥ 0

0 ≤ |v | = |ρΩ | < 1 0 ≤ c2
n = ∂pn/∂ϵ < 1

0 < α < 1
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Non-Perturbative Generalization in the Static Limit

Tμν = (ϵ(r) + p(r))uμuν + p(r)gμν T̃μν = ϵ0(r)uμuν

ϵ0(r) = m
e− r2

4R2

8π3/2R3

G → 0

In the static limit  the problem is reduced to solve the TOV equations 
for a gaussian energy-density function.

a = 0

ϵ(r) = ϵ0(r)Instead of fixing the EOS we impose:
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Fr(r) = (1 −
2GM(r)

r )−1ds2 = Ft(r)dt2 + Fr(r)dr2 + r2(dθ2 + sin2 θdϕ2)

Analytic solution 
of the TOV

M(r) = mErf( r
2R ) −

mr

R π
e− r2

4R2
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Conclusions
• Inspired by scattering amplitudes we were able to define gravitational 

form factors through a momentum-space approach.

• We generalized the definition of gravitational multipoles in arbitrary 
dimensions and established a 1-to-1 relation with form factors defining the 
source multipoles in a relativistic context.

• For rotating black holes we found a closed-form expression for the form 
factors and derived the matter source inducing black hole metrics.

• Giving a non-trivial internal structure to the source we were able to build a 
physically reasonable EMT sourcing black hole mimickers.  
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Next Steps…

• Generalize the gaussian-smeared Israel source to non-perturbative level.

• Test other structure functions to get different mimicker models and regular 
black hole solutions.

• Generalize the definition of form factors to fundamental multipoles.  

• Investigate the nature of form factors computing gravitational scattering 
amplitudes.

Thank You!
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