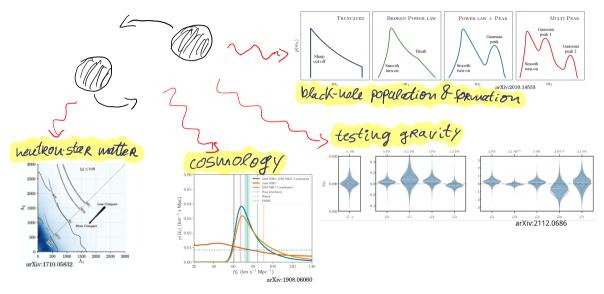
Gravitational waves from a quantum-field-theory perspective


Jan Steinhoff

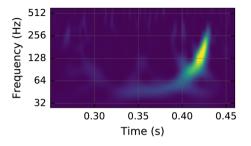
Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Germany

String Theory as a Bridge between Gauge Theory and Quantum Gravity Rome, February 18, 2025

Gravitational waves and their applications

Frequency of gravitational waves

sensitive frequency range


 $f\sim 40-400 {
m Hz}$

3rd Kepler: $r^3(2\pi f)^2 = GM$

GW150914: binary black hole

$$\rightarrow \frac{v}{c} \sim \frac{GM}{c^2 r} \sim 0.12 \dots 0.5$$

need numerical simulations

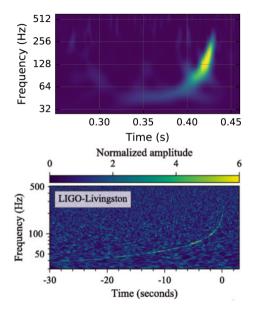
Frequency of gravitational waves

sensitive frequency range

 $f\sim 40-400 {
m Hz}$

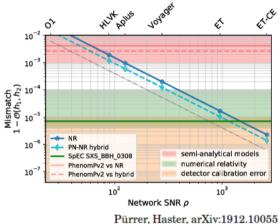
3rd Kepler: $r^3(2\pi f)^2 = GM$

GW150914: binary black hole


$$\rightarrow \frac{v}{c} \sim \frac{GM}{c^2 r} \sim 0.12 \dots 0.5$$

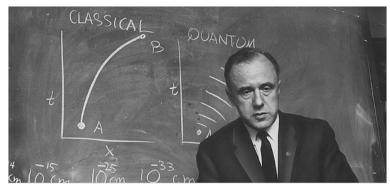
need numerical simulations

GW170817: binary neutron star


$$ightarrow rac{v}{c} \sim rac{GM}{c^2 r} \sim 0.01 \dots 0.07$$

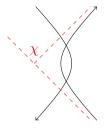
weak field and slow motion (post-Newtonian) approximation

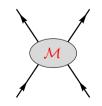
"Ready for what lies ahead?"


[M. Pürrer, C.-J. Haster, arXiv:1912.100]

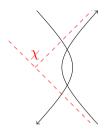
 \rightarrow need better analytic (and numeric) predictions!

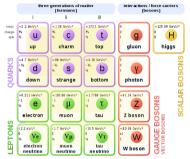
on top of that, include more physical effects (eccentricity+precession, tides, ...)

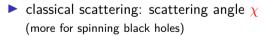

Look at the relativistic binary problem from a quantum perspective!

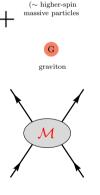

J. A. Wheeler

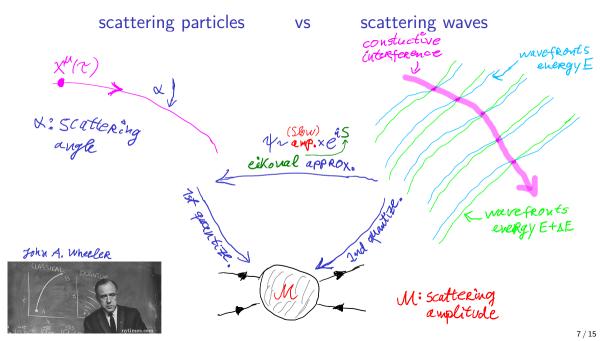
nytimes.com


"The Hamilton-Jacobi description of motion: natural because ratified by the quantum principle" Box 25.3 in [*Gravitation*, Misner, Thorne, Wheeler (MTW)] Particle physics perspective: scattering black holes are natural!

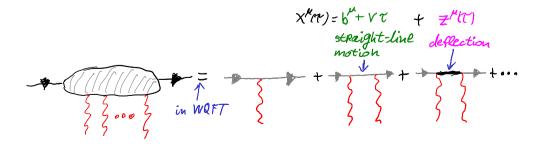


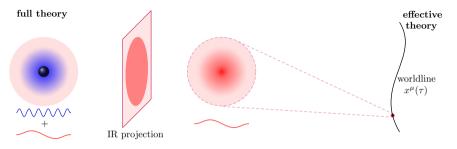

- classical scattering: scattering angle χ (more for spinning black holes)
- quantum scattering: probability amplitude M


Particle physics perspective: scattering black holes are natural!



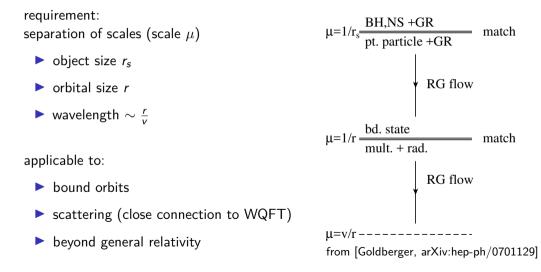
- quantum scattering: probability amplitude M
- black holes ~ higher-spin massive particles ?
 e.g. [Arkani-Hamed, Huang, Huang (2017)]

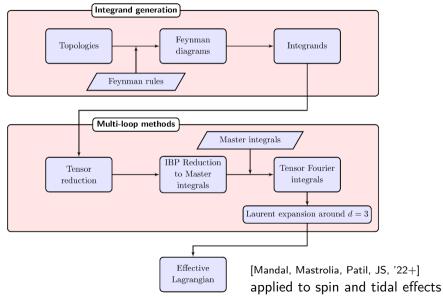

black holes


Worldline quantum field theory (WQFT)

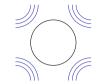
[Jakobsen, Mogull, Plefka, Sauer, JS, '20+]

- connecting quantum fields to worldlines:
 - \rightarrow Schwinger-Feynman dressed massive propagator
- scattering: expansion around straight worldline
 - \rightarrow Feynman rules with manifest \hbar counting
 - \rightarrow classical limit $\hbar \rightarrow 0$ and eikonal exponentiation manifest
- \blacktriangleright calculate classical ($\hbar
 ightarrow 0$) scattering observables: scattering angle, waveform


Black holes as particles? Effective field theory (EFT)!


[adopted from arXiv:1906.08161]

- \blacktriangleright black holes have pprox minimal coupling in amplitudes / quantum fields
- black holes have nonminimal couplings in worldline action
- ► EFT framework can be applied to larger scales: → binary dynamics, gravitational waves


Continuing the EFT to larger scales: binaries / post-Newtonian approx. [Goldberger, Rothstein, PRD **73** (2006) 104029; Goldberger, arXiv:hep-ph/0701129]

Conservative binary potential from EFT and Feynman integral calculus

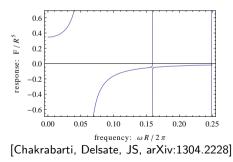
Dynamical tidal response of neutron stars

response F

external quadrupolar field \longrightarrow deformation \longrightarrow quadrupolar response

Dynamical tidal response of neutron stars

response F



external quadrupolar field \longrightarrow deformation \longrightarrow quadrupolar response

oscillation modes

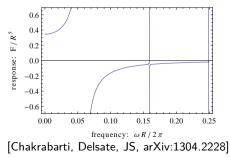
- \rightarrow harmonic oscillator response
- \rightarrow (transient) resonances!

Dynamical tidal response of neutron stars

response F

external quadrupolar field \longrightarrow deformation \longrightarrow quadrupolar response

oscillation modes


- \rightarrow harmonic oscillator response
- \rightarrow (transient) resonances!

 $\mathsf{resonance} \leftrightarrow \mathsf{gravitational} \text{ wave phase shift}$

gravitational wave spectroscopy!

matching F is difficult: high loop order, divergences [Goldberger, Ross, arXiv:0912.4254]

EFT modeling tides of spinning compact objects

black-hole horizon absorption (tidal heating):

 calculated absorption in binaries to 1.5PN [Saketh, JS, Vines, Buonanno, arXiv:2212.13095]

 disagreement with previous result [Chatziioannou, Poisson, Yunes, arXiv:1608.02899] agreement with small mass ratio case [Tagoshi, Mano, Takasugi, arXiv:gr-qc/9711072.]

EFT modeling tides of spinning compact objects

black-hole horizon absorption (tidal heating):

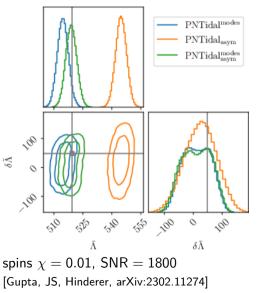
 calculated absorption in binaries to 1.5PN [Saketh, JS, Vines, Buonanno, arXiv:2212.13095]

 disagreement with previous result [Chatziioannou, Poisson, Yunes, arXiv:1608.02899] agreement with small mass ratio case [Tagoshi, Mano, Takasugi, arXiv:gr-qc/9711072.]

neutron-star gravitomagnetic tides: [Gupta, JS, Hinderer, arXiv:2011.03508]

adiabatic + inertial-mode effects

sensitive to: spin, microphysics


EFT modeling tides of spinning compact objects

black-hole horizon absorption (tidal heating):

- calculated absorption in binaries to 1.5PN [Saketh, JS, Vines, Buonanno, arXiv:2212.13095]
- disagreement with previous result [Chatziioannou, Poisson, Yunes, arXiv:1608.02899] agreement with small mass ratio case [Tagoshi, Mano, Takasugi, arXiv:gr-qc/9711072.]

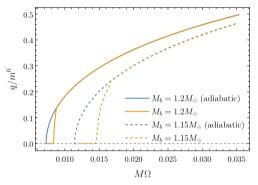
neutron-star gravitomagnetic tides: [Gupta, JS, Hinderer, arXiv:2011.03508]

- adiabatic + inertial-mode effects
- sensitive to: spin, microphysics
- plot: effect on data analysis

Beyond general relativity

Ideally, consider realistic modifications:

- ► higher curvature corrections, → strong-field effects from:
 - modified spin-induced multipoles
 - modified tidal response
- adding scalar fields
 - \rightarrow strong-field effect from scalarization
 - \rightarrow dipole radiation

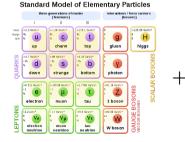

Beyond general relativity

Ideally, consider realistic modifications:

- ► higher curvature corrections, → strong-field effects from:
 - modified spin-induced multipoles
 - modified tidal response
- ▶ adding scalar fields
 → strong-field effect from scalarization
 → dipole radiation

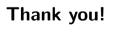
scalarization:

- spontaneous scalarization:
 → linearly unstable scalar mode $\omega^2_{mode} < 0$
- ▶ dynamical scalarization: → barely stable scalar mode $\omega_{mode}^2 \sim small > 0$

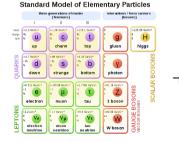

scalar charge q over orbital frequency Ω [Khalil, Mendes, Ortiz, JS, arXiv:2206.13233]

Gravitational waves from a quantum-field-theory perspective

- need more accurate gravitational waveforms
- EFT and Feynman diagrammatic expansion are powerful tools
 - to predict gravitational waves
 - to include spin and tides
 - to go beyond general relativity
- connecting GW to scattering amplitudes may allow application of modern "on-shell" methods



black holes (\sim higher-spin massive particles


Gravitational waves from a quantum-field-theory perspective

- need more accurate gravitational waveforms
- EFT and Feynman diagrammatic expansion are powerful tools
 - to predict gravitational waves
 - to include spin and tides
 - to go beyond general relativity
- connecting GW to scattering amplitudes may allow application of modern "on-shell" methods

graviton