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AdS-CFT

4 B
Quantum Gravity [non-gravitational]
in AdSaq:1 ~ CFT in M¢
N y
Observables ?! «—> Correlation functions
Constrained non-perturbatively by
CFTa on the the Conformal Bootstrap:
boundary AW

time

e Conformal symmetry

e Unitarity

e Associative OPE

(0102) O3 = 01 (0203)



AdS-CFT

CFTq on the
boundary \

Can we extend this understanding to our own universe?



Holography for all As?

The maximally symmetric cousins of AdS

A > 0 de Sitter A = 0 Minkowski
T+ o
A
(§D".
-
e Cosmological scales e intermediate scales

e Primordial inflation



Holography for all As?

The maximally symmetric cousins of AdS

A > 0 de Sitter

I+

-
Cosmological Bootstrap

[Arkani-Hamed and Maldacena ’15]

[Arkani-Hamed and Benincasa ’'17]
[Arkani-Hamed, Baumann, Lee and Pimentel ’18]

[Sleight and Taronna ’19] [Pajer et al '20] [...]

awi

A = 0 Minkowski

Celestial
sphere

Celestial holography
[de Boer and Solodukhin '03]

[Strominger ’17] [Pasterski, Shao, Strominger ’17]
[Pasterski, Shao ’17] [...]



Holography for all As in Euclidean AdS?




Holography for all As in Euclidean AdS?

Xas = 1 XEAdS

)
L = 2

[2007.09993 CS MT, 2109.02725 CS MT,
[2301.01810 CS MT, 2401.16591 LI CS MT] 2407.16652 AC CS MT]

Based on work with: A. Chopping, L. lacobacci, M. Taronna



Outline

A <O

A>0



A <O



X 0

Anti-de Sitter space-time
AdSg.1 C R%? :

_ (X0)2 B (Xd+1)2 —I—; (Xi)2 — _R2.




Particles in AdS

[Particles in AdSq+1  «—— unitary irreducible representations of SO (d, 2) J

Labelled by a scaling dimension A and spin J. constrains A:
Im [A]
A Notes:
e ANeR
— » Re [A]

e Bounded from below A > g —1




Particles in AdS

[Particles in AdSq+1  «—— unitary irreducible representations of SO (d, 2) J

Labelled by a scaling dimension A and spin J. Can be realised by fields in AdSq.1:

(C2) = A (A —d)

Im [A] | (V2 — mz) p=0 << (C2—{(C2))p=0
mzRidS = A (A — d)

Boundary behaviour (A_ =d — AL):

I S > Re[A]

d fd
PR : A A_
R lim ¢ (2,2) = Oa, ()27 +0a_(2)2
z—0
" Dirichlet " Neuman
boundary condition boundary condition

N.B. A_ may be ruled out by unitarity

Oa, (z) transform as primary fields with scaling dimension AL in Minkowski CFTg4



AdS boundary correlators

-

, |
lim 2z

z—0

U

¥1 (CCl,Z)...gOn (CUn,Z)> — <OA1 (5131)

Feynman rules:

Bulk-to-bulk propagator, AL boundary condition:

Ay
Ay
Bulk-to- propagator, AL boundary condition:

>




A >0



de Sitter space-time .

X~ X+ ¥
dSq+1 C M —
2 s 2
— (X9 + > (X)) = R
i—=1 _de_H
Isometry group: SO (d+ 1,1) = conformal group in R
RY =0
Poincaré coordinates:
—di? + dx? ]
d32 — R?is il ;I_
n
N = —00

Expanding patch X° > xd+1



de Sitter space-time .

X~ X" e
dSq+1 C M —
2 s 2
— (X9 + > (X)) = R
i—=1 _de_H
Isometry group: SO (d+ 1,1) = conformal group in R
contracting patch xX° < x9+!
1 = OO
Poincaré coordinates:
—dn? + dx? 3
d32 — R?is il 5
n




Particles in dS

[Particles in dSa+1  «—— unitary irreducible representations of SO (d + 1, 1)}

Labelled by a scaling dimension A and spin J. Unitarity constrains A :

Im [A
A” A AL Notes:

e Both A, and A_ are unitary

Complementary Series

d

e /\ can be complex -




Particles in dS

[Particles in dSa+1  «—— unitary irreducible representations of SO (d + 1, 1)}

Labelled by a scaling dimension A and spin J. Can be realised by fields in dSq.1.

(C2) = A(d— A)

Im [A]

e (VP=m?)p=0 <+ (Coa—{C2))p=0

Complementary Series

—--o--- ——> Re[A] Boundary behaviour:

lim ¢ (n,7) = Oa, (X) 7™ +O0a_ (x) 0"

n—0
AN Vel
Determined by
the initial state

O, (X) transform as primary fields with scaling dimension AL in Euclidean CFT4



dS Boundary Correlators

[in-in formalism for late-time correlators]

lim <Q‘<701 (X17 7-) e o Pn (Xna 7_) ‘Q>

T—0C0

P2 (X27 OO) Yn (Xna OO)
901 (Xl? OO) o
- o
Y A
— branch : : + branch
[anti-time-ordered] [time-ordered]
(0] 0)

Take |0) to be the free theory vacuum

time T




dS Boundary Correlators

[in-in formalism for late-time correlators]

[Maldacena ’02, Weinberg '05]

lim <Q‘<701 (X17 7-) ce - Pn (Xm 7_) ‘Q>

T—0C0

Feynman rules:

+ bulk-to- & bulk propagator:

Boundary
at future infinity

m
+ 1
+ bulk-to- propagator:
Boundary
at future infinity
/

+

Sum contributions from each branch (+) of the time (in-in) contour!



From dS to Euclidean AdS

Euclidean AdS dS
/ Rd
....... R¢
------- /
________ B — .
Z2 =00 <« z=20
2 1 dx? —dn? + dx?
dS2 = Rids dz _|_2 = - d82 — RC%S 77 772
z

EAdS and dS are identified under:

Rags = £1Rgs z = 4i(—n)

time




From dS to Euclidean AdS

[Bunch-Davies vacuum]

Wightman function is defined as having the same light-cone singularities as in Minkowski space:

at short distances

A—HA—. ) ¢ 1 F(%)

G(U):AzFl( % O 2 2(d — 1) r(d+1)/2

R’ + X (x)-Y (y)
2R?
Propagators in the in-in formalism correspond to different € prescriptions:

o(x,y) = . X?*=R?* Y?=R%

° ° p— G(O' QF Zg) : ® ® — G(O:I:i€sgn (77:F _T]Z'I))

These are obtained from G (o) by replacing: 71— = n— (1 +i€), ne = ny (1 —ie)



From dS to Euclidean AdS

[Bunch-Davies vacuum]  [C.S. and M. Taronna *19 "20 "21]

+ bulk-to- £ bulk propagator:

2
m X i X AT
—

Dirichlet Neumann
boundary condition boundary condition
+ bulk-to- A 7
ZA
propagator: =e' 2
+

Ay

A;

+ bulk integrals:

As

— (anti-time-ordered) branch




From dS to Euclidean AdS

[Bunch-Davies vacuum] [C.S. and M. Taronna ’20 ’'21]

dS boundary correlators are perturbatively recast as Witten diagrams in EAdS:

e.g. four-points

Combines contributions from
each branch of the in-in contour

Sum over boundary conditions
for exchanged particles

Notzs:

® Contributions from both A modes, which is not always possible in AdS

e A,+ € Unitary Irreducible Representation of dS isometry group



From dS to Euclidean AdS

[Generic dS invariant vacuum]

The Wightman function now has a singularity for antipodal points:

AL A A A
G(O’):AQFl( _g—l-l ;0>+BQF1( —E—I—l ;O')

2 2

Bunch-Davies solution Antipodal transform

where & (z,y) = 0 (Z,y) with antipodal transformation X (z) = —X (x)

X Xt In Poincaré coordinates: = = (n,x), == (—n,X)
— O
N // Upshot:

e 2pt functions are a combination of Bunch-Davies (BD) ones
with points to the contracting patch.

e Inturn, perturbative late time correlators are a combination
of BD ones with
|.e. to the past boundary.




From dS to Euclidean AdS

[Generic dS invariant vacuum]

Under analytic continuation n — =1z to EAdS:

Points in the expanding patch of dS continue to the upper sheet ( X" > 0) of EAdS.

Their antipodes in the contracting patch continue to the lower sheet ( X" < 0) of EAdS.

2

2
XEAdS T

L
X%>0
s — .
x/

XY <0

Perturbative late-time correlators are a
combination of EAdS Witten diagrams, but with
some points to
the boundary of the lower sheet of EAdS!

In momentum space the antipodal transformation
corresponds to a sign change in the modulus:

k— e ™k, k=K

see e.g. mode function:






Hyperbolic slicing of Minkowski space

(d+2)-dimensional Minkowski space M%"2 | coordinates X*, A=0,...d+1

Ar: X? = —¢?> (i.e. EAdSq:1, radius t )

D: x2_p2  (i.e. dSa.,radius R )

Q*=0
NG Conformal boundary:

Q*’=0, Q=XQ, )Rt
Introduce projective coordinates:

E=0/Q°, i=1,...,d+1

Celestial sphere

A_ g% N €§+1 —1 { d-dimensional

SO (d + 1,1) acts on the celestial sphere as the Euclidean conformal group!



Minkowski boundary correlators

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

OAl (Ql)
° OA2(Q2)
C dt; : 3
IR [ () ot )
X—>Qz z
OAn(Qn) T

radial coordinate

Celestial correlators then arise in the boundary limit X; — Q; !

Celestial correlators are celestial amplitudes
which are scattering amplitudes in a conformal basis. In particular:

celestial amplitudes ~ LSZ ( celestial correlators )



Minkowski boundary correlators

0A1 (Ql)
° OAQ (QQ)
° . dt; A ) .
- H Ahm / _tiAz <¢1(t1X1) ¢n(tan)>
T Xi—Qi Jo b
OAn (Qn)

( ] . .
radial coordinate

Feynman rules:

Bulk-to-bulk propagator:

Gr ()(7 Y) — @ PS
X Y
Bulk-to- propagator:
fat : Tdt A ’
GAY (X,Q) = lim —t= GF (X,tY)

Y—QJo



Minkowski boundary correlators

0A1 (Ql)
° OAQ (QQ)
° . > dtz A A ~
= H Ahm _tz’ ’ <¢1(t1X1) ¢n(tan)>
S Xi-Q Joo b
O, (@n) t

( ] . .
radial coordinate

Feynman rules

Bulk-to-bulk propagator:

Gr ()(7 Y) — @ PS
X Y
Bulk-to- propagator:

Q
G (X, Q) = lim [ %tA Gr (X, tf/) = K (\/X2 —|—i6> X Xy

Y—QJo




Minkowski boundary correlators

OA1 (Ql)
* OAQ (QQ)
. |  dti A . X
= T.m [ e (atiX) . on(taXn) )
OAn (Qn) T
* radial coordinate
Feynman rules
Bulk-to-bulk propagator:
B 1 27T A (m) 5 (m) 5 A
GF(X,Y):;( ; _2/3@'00 %ICA (\/X —I—ZE)ICd_A(\/Y +ze) ;(—-

Bulk-to- propagator:

A
> dt ~ m /
Ggat (AXV7 Q) — Ahm YtA GF (Xa tY) — IC(A ) (\/X2 + ZE) X Xe

Y—QJo



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23; L. lacobacci, C.S. and M. Taronna ’24]
In general, for exchanges of particles of mass m;, 1=1,...,n

Unitary Principal Series
representations of SO(d+1,1)

Ona,
. 0A3 . d . . — —
¢ 21100 dAl dAn
O, — L | 2—7” o CAlAn (ml,...,mn)
° 0A4 §—ZOO
: Yt

Minkowski exchanges are a continuum
of EAdS exchanges |

Makes manifest
conformal symmetry



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23; L. lacobacci, C.S. and M. Taronna ’24]
In general, for exchanges of particles of mass m;, 1=1,...,n

Unitary Principal Series
representations of SO(d+1,1)

Ona,
- OA?’ . d . . _ —
® 2 1100 dAl dAn
on :L SR Caya, ()
° OA4 §—ZOO
: v

Minkowski exchanges are a continuum
of EAdS exchanges

Makes manifest
conformal symmetry

Compare with de Sitter:

= E: Ca,, ..
A At

14 ...
vt

dS exchanges are a discrete sum
of EAdS exchanges




Outlook

® Perturbative dS and celestial correlators have a similar analytic structure to AdS.

— (Conformal partial wave expansion:

2—|—zoo dA
(0 (x1) O (x2) O (x Z / A2 0 (A) Fa s (x1, %2, X3, X1)

271 |

Conformal Partial Wave

Non-perturbative Bootstrap of Euclidean CFTs dual to physics in dS/Minkowski space?

SO (d+1,1) Unitarity: ps(A) >0

® Probe non-perturbative structure with integrable models?



Thank you.



