Integrated correlators in a $\mathcal{N} = 2$ SYM theory with fundamental flavors

Paolo Vallarino

University of Torino

Sapienza University, 18th February 2025 Based on: 2407.03509 with Billò, Frau, Lerda, Pini and other works (2404.03466, 2207.08846,...)

- 1. Motivation
- 2. Integrated correlators in $\mathcal{N}=4$ SYM
- 3. Localization and matrix model
- 4. Integrated correlators in $\mathcal{N}=2$ SYM theories
- 5. Conclusions and outlook

- The analysis of the strong-coupling regime in an interacting theory is a very difficult problem but, when there is a high amount of symmetry, remarkable progress can be made.
- In particular this happens for $\mathcal{N} = 4$ SYM theory, where many exact results have been found over the years, especially in the planar limit

 $N \to \infty$ and $\lambda \equiv g_{YM}^2 N$ fixed

Less is known about exact results in $4d \mathcal{N} = 2$ gauge theories

• Main tools: **supersymmetric localization**, holography and integrability.

Simplest case: $\mathcal{N} = 4$ SYM

- We can recast $\mathcal{N} = 4$ SYM as a $\mathcal{N} = 2$ gauge theory
- It is a Lagrangian theory, whose field content is

Vector multiplet

- 1 vector field A_{μ}
- 2 real scalars $\phi, \overline{\phi}$
- 2 fermions ψ^{A}_{α} (A = 1, 2)

Hypermultiplet

4 real scalars $q, \tilde{q} + c.c.$

2 fermions $\lambda_{\alpha}^{\mathcal{A}}$

in the adjoint representation of SU(N)

 Some of the simplest operators are single-trace superconformal primaries

$$O_n(x,Y) = \operatorname{tr} \left(\Phi^{I_1}(x_1) \dots \Phi^{I_n}(x_n) \right) Y_{I_1} \dots Y_{I_n} \quad I = 1, \dots, 6$$

These are local, gauge invariant, 1/2-BPS operators

2-point functions

$$\langle O_n(x_1, Y_1) O_n(x_2, Y_2) \rangle = G_n \frac{\mathcal{I}_2(Y)}{|x - y|^{2n}}$$

3-point functions

$$\left\langle O_{n_1}(x_1, Y_1) \, O_{n_2}(x_2, Y_2) \, O_{n_3}(x_3, Y_3) \right\rangle = \\ \frac{G_{n_1, n_2, n_3} \, \mathcal{I}_3(Y)}{|x - z|^{n_1 + n_2 - n_3} |x - z|^{n_1 + n_3 - n_2} |y - z|^{n_2 + n_3 - n_1}}$$

$$C_{n_1,n_2,n_3} = \frac{G_{n_1,n_2,n_3}}{\sqrt{G_{n_1}G_{n_2}G_{n_3}}} \underset{N \to \infty}{\sim} \frac{\sqrt{n_1 n_2 n_3}}{N}$$

they do not depend on the coupling!

[Lee, Minwalla, Rangamani, Seiberg, 1998]

What about four-point functions of primary operators?

Conformal invariance is not sufficient to fix space-time dependence, much more complicated perturbatively \implies difficult to explore high orders and find exact results

$$\langle O_2(x_1, Y_1) \dots O_2(x_4, Y_4) \rangle = \quad \left| \frac{\mathcal{I}_4(Y)}{|x_{12}|^4 |x_{34}|^4} \right|$$

$$\times \mathcal{T}(u,v;g)$$

cross-ratios, coupling

superconformal symmetry

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

It turned out that an efficient strategy to get **exact** results for four-point correlators is to consider integrated four-point functions.

$$\int \prod_{i=1}^{4} d^{4}x_{i} \mu(\{x_{i}\}) \mathcal{T}(u,v;g) = \partial_{\tau}\partial_{\bar{\tau}}\partial_{m}^{2} \log \mathcal{Z}_{\mathcal{N}=2^{*}}|_{m=0}$$

where $\tau = \tau_1 + i\tau_2 \equiv \frac{\theta}{2\pi} + i\frac{4\pi}{g_{YM}^2}$

[Binder, Chester, Pufu, Wang, 2019]

$$\int \prod_{i=1}^4 d^4 x_i \mu'(\{x_i\}) \mathcal{T}(u,v;g) = \partial_m^4 \log \mathcal{Z}_{\mathcal{N}=2^*}|_{m=0}$$

[Chester, Pufu, 2020]

$$\mathcal{N} = 2^* \longrightarrow \text{massive deformation of } \mathcal{N} = 4 \text{ SYM}$$

 $\mu(\{x_i\})$, $\mu'(\{x_i\}) \longrightarrow$ fixed by superconformal symmetry

Where does this result come from?

- Consider the *N* = 2 flavor current multiplet: it is made up of three scalars *J^{IJ}* = *J^{JI}* (*I*, *J* = 1, 2), two chiral fermions *X_{Iα}*, two anti-chiral fermions *X^ά*, two real scalars *K* and *K* and one conserved current *j_µ*.
- This multiplet can be realized in terms of the hypermultiplet.
- Then consider supersymmetry-preserving deformations realized by operators of this multiplet.
- In SUSY theories the easiest way of studying action deformations involving a specific multiplet is by coupling it to a background off-shell multiplet.

 In this case the off-shell multiplet that we can consider is a vector multiplet, so that the deformation becomes

$$\Delta S = \int d^4 x \left(A_{\mu} j^{\mu} - \phi K - \overline{\phi} \overline{K} + D_{IJ} \mathcal{J}^{IJ} + \psi_I X^I + \overline{\psi}_I \overline{X}^I \right)$$

which preserves $\mathcal{N}=2$ superconformal symmetry.

 Vector multiplet as a background ⇒ give its fields expectation values but superconformal symmetry is broken unless one takes
 A_μ = ψ^I = ψ^I = D_{IJ} = 0, φ = φ̄ = −m
 so that

$$\Delta S \longrightarrow S_m = m \int d^4 x \, \left(K + \overline{K} \right)$$

[Binder, Freedman, Pufu, Zan, 2021]

preserves Poincaré supersymmetries.

One can do the same procedure on the sphere S⁴. In this case the deformed action is

$$S_m = m \int d^4 x \sqrt{g} \left(K + \overline{K} + rac{i}{R} \mathcal{J} \right), \quad \mathcal{J} = \mathcal{J}_{11} + \mathcal{J}_{22}$$

If one realizes the fields of the flavor current multiplet in terms of the hypermultiplet fields

$$\mathcal{J} = \operatorname{tr} qq + \operatorname{tr} \tilde{q}\tilde{q} + \operatorname{tr} \overline{q}\overline{q} + \operatorname{tr} \overline{\tilde{q}}\overline{\tilde{q}} \text{ moment-map} \in \mathbf{20'} \text{ of } SU(4)_R$$
$$K = -i\operatorname{tr}\lambda_I\lambda^I, \quad \overline{K} = -i\operatorname{tr}\overline{\lambda}_I\overline{\lambda}^I,$$

this deformation correponds to the mass-deformation of $\mathcal{N} = 4$ SYM, called $\mathcal{N} = 2^*$ SYM theory, obtained by giving a mass to the adjoint hypermultiplet of $\mathcal{N} = 4$.

By taking derivatives with respect to *m* one gets integrated
 correlators of moment-map operators *J* and their descendants *K*

$$\partial_{m}^{4} \int \mathcal{D}[\mathsf{fields}] e^{-S-S_{m}} \Big|_{m=0} = \int \mathcal{D}[\mathsf{fields}] e^{-S} \left(\int d^{4}x \sqrt{g} \left(\mathcal{K} + \overline{\mathcal{K}} + i\mathcal{J} \right) \right)^{4}$$

$$\downarrow$$

$$\int \prod_{i=1}^{4} d^{4}x_{i} \sqrt{g(x_{i})} \left\langle \left(\mathcal{K} + \overline{\mathcal{K}} + i\mathcal{J} \right)^{4} \right\rangle$$

$$\downarrow$$

$$\int \prod_{i=1}^{4} d^{4}x_{i} \sqrt{g(x_{i})} \left\langle \mathcal{J}^{4} - \mathcal{J}^{2} \left(\mathcal{K} + \overline{\mathcal{K}} \right)^{2} + \left(\mathcal{K} + \overline{\mathcal{K}} \right)^{4} \right\rangle$$

• Exploiting superconformal **Ward identities** one can express these correlators only in terms of 4-point functions of the moment-map operators integrated over a certain measure

$$\int \prod_{i=1}^{4} d^4 x_i \, \mu'(\{x_i\}) \left\langle \mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\mathcal{J}\right\rangle$$

 $\mathcal{J}\equiv \mathcal{O}_2$

• The final step is to understand why supersymmetric localization is such a useful tool to evaluate these integrated four-point functions.

Localization and matrix model

Supersymmetric localization maps the computation of the partition function Z of a 4*d* $\mathcal{N} = 2$ gauge theory to a matrix model on \mathbb{S}^4 [Pestun, 2007]

Path integrals \implies Finite dimensional integrals $\int \mathcal{D}[\text{fields}]e^{-S-S_m} \implies \int da e^{-\text{tr}a^2 - m^2S_2 - m^4S_4 + ...}$

where $a \equiv a^b T_b$ are $N \times N$ traceless Hermitian matrices and e.g.

$$S_{2} = -\frac{1}{2} \left[\sum_{\ell=1}^{\infty} \sum_{n=0}^{2\ell} (-1)^{\ell+n} \frac{(2\ell+1)!}{n!(2\ell-n)!} \zeta_{2\ell+1} \left(\frac{\lambda}{8\pi^{2}N} \right)^{\ell} \mathrm{tr} a^{2\ell-n} \mathrm{tr} a^{n} \right]$$

Hence for instance we get

$$\partial_m^2 \log \mathcal{Z}\big|_{m=0} = \int da \, e^{-\mathrm{tr} a^2} S_2 = \langle S_2 \rangle$$

Basic ingredients for the partition function in the matrix model: expectation values of multitrace operators in the Gaussian theory for which there exist recursion relations easy to implement in the planar limit.

Take-home message

The computation of the derivatives of the partition function and then of integrated four-point functions of primary operators are reduced to the computation of Gaussian integrals.

This is a very important result because

- Matrix model computations led to exact results both in the **planar** expansion and also for **any** value of *N* for these kind of correlators in $\mathcal{N} = 4$ SYM.
- In the large-*N* limit the **strong-coupling** expansions of these integrated four-point functions of superconformal primary operators determine useful constraints on higher derivative corrections of **closed string scattering amplitudes** of 4 massless string states (gravitons and their superpartners).

$\mathcal{N} = 2$ superconformal gauge theories

$\mathcal{N}=2$ superconformal gauge theories

- Much progress has also been made in $\mathcal{N}=2$ superconformal gauge theories.
- In particular, integrated correlators were studied in a $\mathcal{N} = 2$ SCFT with Sp(N) gauge group, one anti-symmetric hypermultiplet and four fundamental ones with SO(8) flavor symmetry. [Behan, Chester, Ferrero, 2022]
- This theory is dual to N D3 branes, 4 D7 branes, and an O7 plane in Type IIB string theory.
- Specifically, in the large-N limit the four-point function of flavour multiplets is dual to the scattering of **SO(8)** open string gluons on $AdS_5 \times \mathbb{S}^3$. [Alday, Chester, Hansen, Zhong, 2024]

The **D** theory

- We consider a *N* = 2 SCFT, dubbed D theory, with SU(N) gauge group, two anti-symmetric hypers, four fundamental and U(4) flavour symmetry (β = 0)
- In Type IIB string theory this model can be engineered with N fractional D3-branes in a Z₂-orbifold probing an O7-orientifold background and with four D7 branes plus their orientifold images.
- Flavour group of the four fundamental hypers ——
- Gauge group of the D7 branes world-volume theory
- Also in this case the D7-sector consists of open string states which in the large-N limit propagate on AdS₅ × S³. Among these states there are the U(4) gluons.

U(4)

The **D** theory

- The U(4) gluons are dual to the moment-map operators *J* belonging to the flavor current multiplet.
- Integrated 4-point functions can be studied exploiting localization

$$\partial_{m_A} \partial_{m_B} \partial_{m_C} \partial_{m_D} \log \mathcal{Z}_{\mathbf{D}^*}|_{m=0} = \int \prod_{i=1}^4 dx_i \mu'(\{x_i\}) \langle \mathcal{J}^A(x_1) \dots \mathcal{J}^D(x_4) \rangle_{\mathbf{D}}$$

$\mu'(\{x_i\})$ fixed by superconformal symmetry

Holographically similar to Sp(N) theory, but **different** SCFTs. We expect a similar behaviour at strong coupling for these correlators, but this is very tough to verify \rightarrow much more involved **matrix model**!

The massless matrix model

We now have a non-trivial interaction action

$$\mathcal{Z}_{\mathsf{D}} = \int da \, \mathrm{e}^{-\mathrm{tr}\, a^2 - S_{\mathrm{int}}}$$

[Pestun, 2007]

where

$$S_{int} = 4 \sum_{k=1}^{\infty} \left(-\frac{\lambda}{8\pi^2 N} \right)^{k+1} (2^{2k} - 1) \frac{\zeta_{2k+1}}{k+1} \operatorname{tr} a^{2k+2} \iff \text{ like in Sp(N) theory}$$
$$+ 2 \sum_{k=1}^{\infty} \sum_{\ell=1}^{k-1} (-1)^k \left(\frac{\lambda}{8\pi^2 N} \right)^{k+1} \binom{2k+2}{2\ell+1} \frac{\zeta_{2k+1}}{k+1} \operatorname{tr} a^{2\ell+1} \operatorname{tr} a^{2k-2\ell+1}$$
$$\underbrace{S_{int}^{\mathsf{E}} \Rightarrow \mathcal{N} = 2 \text{ SU(N) SCFT with 1 symm+1 antisymm hypers}}$$

Hence with respect to $\mathcal{N} = 4$ we now have to deal with this term which has non-trival dependence on the coupling.

The massless matrix model

X

Solution: perform the change of basis

$$\operatorname{tr} a^{k} = \left(\frac{N}{2}\right)^{\frac{k}{2}} \sum_{\ell=0}^{\lfloor \frac{k-1}{2} \rfloor} \sqrt{k-2\ell} \left(\begin{array}{c}k\\\ell\end{array}\right) \underbrace{\mathcal{P}_{k-2\ell}}_{\text{orthonormal for } N \to \infty} + \underbrace{\langle \operatorname{tr} a^{k} \rangle_{0}}_{\text{VEV in free matrix model}}$$

[Beccaria, Billò, Galvagno, Hasan, Lerda, 2020]

so that one gets an exact expression for S_{int} for all values of λ

$$S_{int} = -\frac{1}{2} \sum_{k,\ell=1}^{\infty} \mathcal{P}_{2k+1} X_{2k+1,2\ell+1} \mathcal{P}_{2\ell+1} - \sum_{k=1}^{\infty} Y_{2k} \mathcal{P}_{2k}$$

$$X_{k,\ell} = -8(-1)^{\frac{k+\ell+2k\ell}{2}} \sqrt{k\ell} \int_{0}^{\infty} \frac{dt}{t} \frac{e^{t}}{(e^{t}-1)^{2}} J_{k} \left(\frac{t\sqrt{\lambda}}{2\pi}\right) J_{\ell} \left(\frac{t\sqrt{\lambda}}{2\pi}\right)$$

$$Y_{2k} = (-1)^{k+1} 2\sqrt{2k} \int_{0}^{\infty} \frac{dt}{t} \frac{e^{t}}{(e^{t}+1)^{2}} J_{2k} \left(\frac{\sqrt{\lambda}t}{\pi}\right) - \delta_{k,1} \frac{\sqrt{2}\log 2}{4\pi^{2}} \lambda$$

1- and 2-point functions

This result allows us to find

$$\langle \mathcal{P}_{2n} \rangle_{\mathsf{D}} = \mathsf{Y}_{2n} + \frac{\sqrt{2n}}{2\mathsf{N}} \left(\mathsf{Y}^2 - 2\lambda \partial_\lambda \mathcal{F}_{\mathsf{E}} \right) + O\left(\frac{1}{\mathsf{N}^2}\right)$$

$$\left\langle \mathcal{P}_{2n} \mathcal{P}_{2m} \right\rangle_{\mathbf{D}} - \left\langle \mathcal{P}_{2n} \right\rangle_{\mathbf{D}} \left\langle \mathcal{P}_{2n} \right\rangle_{\mathbf{D}} = \delta_{n,m} + \frac{\sqrt{2n} \sqrt{2m} \mathbf{Y}}{N} + O\left(\frac{1}{N^2}\right)$$

with

$$Y \equiv \sum_{k=1}^{\infty} \sqrt{2k} Y_{2k} = \int_{0}^{\infty} \frac{dt}{t} \frac{e^{t}}{(e^{t}+1)^{2}} \left[\frac{\sqrt{\lambda} t}{\pi} J_{1} \left(\frac{\sqrt{\lambda} t}{\pi} \right) \right] - \frac{\log 2}{2\pi^{2}} \lambda$$

$$\mathcal{F}_{\mathbf{E}} = \frac{1}{2} \operatorname{tr} \log \left(1 - \mathsf{X} \right) + O\left(\frac{1}{N^2} \right)$$

They will be useful in a moment!

We consider a mass-deformation of the D theory, giving mass to the four fundamental hypers. The small-mass expansion of the massive matrix model in the large-N limit becomes

$$\mathcal{Z}_{\mathbf{D}^*} = \int da \ e^{-\mathrm{tr}a^2} \ e^{-S_{int} - \sum_{i=1}^4 m_i^2 S_2 - \sum_{i=1}^4 m_i^4 S_4 + O(m^6)}$$

where S_2 and S_4 are single-trace deformations. We can have three different mass combinations for the fourth order derivatives of $\mathcal{F}_{D^*} = -\log \mathcal{Z}_{D^*}$

$$-\partial_{m_{i}}^{4} \mathcal{F}_{\mathbf{D}^{*}}\Big|_{m=0} = -24 \langle S_{4} \rangle_{\mathbf{D}} + 12 \langle S_{2}^{2} \rangle_{\mathbf{D}} - 12 \langle S_{2} \rangle_{\mathbf{D}}^{2}$$
$$-\partial_{m_{i}}^{2} \partial_{m_{j}}^{2} \mathcal{F}_{\mathbf{D}^{*}}\Big|_{m=0} = 4 \langle S_{2}^{2} \rangle_{\mathbf{D}} - 4 \langle S_{2} \rangle_{\mathbf{D}}^{2}$$
$$-\partial_{m_{1}} \partial_{m_{2}} \partial_{m_{3}} \partial_{m_{4}} \mathcal{F}_{\mathbf{D}^{*}}\Big|_{m=0} = 0$$

The massive matrix model

We need to compute the r.h.s. of these equations \rightarrow write S_2 and S_4 in terms of the \mathcal{P} operators. We find exact expression in the coupling λ for the first three 1/N orders

$$S_{4} = -\frac{N}{12} \frac{4\pi}{\sqrt{\lambda}} Z_{1}^{(3)} - \frac{1}{12} \sum_{k=1}^{\infty} (-1)^{k} \sqrt{2k} Z_{2k}^{(4)} \mathcal{P}_{2k}$$
$$- \frac{1}{24} \frac{\sqrt{\lambda}}{4\pi} Z_{1}^{(5)} + \frac{1}{6} \left(\frac{\sqrt{\lambda}}{4\pi}\right)^{2} Z_{2}^{(6)} + O\left(\frac{1}{N^{3}}\right)$$
$$S_{2} = \sum_{k=1}^{\infty} (-1)^{k} \sqrt{2k} Z_{2k}^{(2)} \mathcal{P}_{2k}$$

with

$$Z_n^{(p)} = \int_0^\infty \frac{dt}{t} \, \frac{e^t \, t^p}{(e^t - 1)^2} \, J_n\left(\frac{\sqrt{\lambda} \, t}{2\pi}\right)$$

Results

• Weak coupling \implies Completely different from Sp(N) theory

$$-\partial_{m_i}^4 \mathcal{F}_{\mathbf{D}^*}\Big|_{m=0} \sim N\left(12\zeta_3 - 60\zeta_5\,\hat{\lambda} + 210\zeta_7\,\hat{\lambda}^2 + \cdots\right) \\ + \left(54\zeta_3^2\,\hat{\lambda}^2 + 360\zeta_3\,\zeta_5\,\hat{\lambda}^3 - 4725\,\zeta_3\,\zeta_7\,\hat{\lambda}^4 + \cdots\right) \\ + \frac{1}{N}\left(60\zeta_5\,\hat{\lambda} - 525\,\zeta_7\,\hat{\lambda}^2 + 2520\,\zeta_9\,\hat{\lambda}^3 + \cdots\right) + O\left(\frac{1}{N^2}\right)$$

Strong coupling ⇒ Similar to Sp(N) theory (overall coefficient)

$$\begin{aligned} -\partial_{m_i}^4 \mathcal{F}_{\mathbf{D}^*} \Big|_{m=0} & \sim \frac{16\pi^2}{\lambda} N + 3\log\lambda + 6\gamma - 6\log(4\pi) - 3\zeta_3 + 11 \\ & + \frac{3}{4N} \Big(1 - \frac{2\log 2}{\pi^2} \,\lambda \Big) + O\Big(\frac{1}{N^2}\Big) \end{aligned}$$

[Billò, Frau, Lerda, Pini, PV, 2024]

These results furnish constraints for the dual gluon amplitudes in AdS

[Alday, Chester, Hansen, Zhong, 2024] [Alday, Hansen, 2024] We studied the derivatives of the free energy of the D^* theory in the large-N expansion, obtaining exact expressions in λ and derived their strong coupling limit.

- It would be interesting to find a systematic way to compute higher orders in the 1/N expansion.
- It would be important to explore the **planar limit at fixed YM coupling**, where the **instantons** cannot be neglected, to check if provide completion of perturbative results into **modular functions**.
- Extend this approach to other $\mathcal{N} = 2$ superconformal gauge theories and to other kind of integrated correlators (with determinant operators, Wilson loop, ...).

Thanks for your attention!

Backup slides

U(4) flavour group

Let us show how the \mathbb{Z}_2 -orbifold projection acts on the initial SO(8) gauge group of the eight D7-branes in the orientifold background. Let Λ be a Hermitian anti-symmetric 8 × 8 Chan-Paton matrix in the $\mathfrak{so}(8)$ algebra. Under the \mathbb{Z}_2 -orbifold it transforms as

$$\Lambda \to \gamma \Lambda \gamma^{-1} \quad \text{with} \quad \gamma = \begin{pmatrix} 0 & -i \mathbb{1} \\ i \mathbb{1} & 0 \end{pmatrix}$$

[Gimon, Polchinski, 1996]

where we have written the matrix in 4×4 blocks. Thus, Λ is invariant under the orbifold only if it takes the form

$$\begin{pmatrix} \mathsf{A} & \mathsf{i}\,\mathsf{S} \\ -\mathsf{i}\,\mathsf{S} & \mathsf{A} \end{pmatrix} \quad \text{with} \quad \mathsf{A}^t = -\mathsf{A} \ , \ \ \mathsf{A}^* = -\mathsf{A} \ , \ \ \mathsf{S}^t = \mathsf{S} \ , \ \ \mathsf{S}^* = \mathsf{S}$$

Matrices of this form represent the embedding into $\mathfrak{so}(8)$ of a $\mathfrak{u}(4)$ Hermitian matrix A + S.

U(4) mass combinations

In the D^{*} theory we restrict the masses to be along the four Cartan directions of U(4) labeled by i = 1, ..., 4. To find the U(4) invariant mass combinations, recall that the four Cartan generators λ^i in the defining representation of U(4) must be embedded into 8 × 8 matrices as

 $\begin{pmatrix} 0 & i \,\boldsymbol{\lambda}^i \\ -i \,\boldsymbol{\lambda}^i & 0 \end{pmatrix}$

So we can consider the combination of these embedded Cartan generators

$$M = \begin{pmatrix} i m_1 & 0 & 0 & 0 \\ 0 & 0 & i m_2 & 0 & 0 \\ 0 & 0 & 0 & i m_3 & 0 \\ 0 & -i m_1 & 0 & 0 & 0 \\ 0 & -i m_2 & 0 & 0 & 0 \\ 0 & 0 & -i m_3 & 0 & 0 \\ 0 & 0 & 0 & -i m_4 & 0 \end{pmatrix}$$

This matrix satisfies

$$\operatorname{tr} M^{2k+1} = 0 \quad \operatorname{tr} M^{2k} = 2 \sum_{i=1}^{4} m_i^{2k} \quad \operatorname{Pfaff}(M) = m_1 m_2 m_3 m_4$$

From this we see that at order 4 in the masses, there are three independent U(4)-invariant structures, which we can take to be

$$\sum_{i=1}^{4} m_i^4 = \frac{1}{2} \operatorname{tr} M^4$$
$$\sum_{i< j=1}^{4} m_i^2 m_j^2 = -\frac{1}{4} \operatorname{tr} M^4 + \frac{1}{8} \left(\operatorname{tr} M^2 \right)^2$$

$$m_1 m_2 m_3 m_4 = \operatorname{Pfaff}(M)$$

Matrix model **E** theory

At leading order in the large-N expansion

•
$$\langle P_{2n} \rangle_{\mathbf{E}} = -\frac{\sqrt{2k} \lambda \partial_{\lambda} \mathcal{F}_{\mathbf{E}}}{N}$$

• $\langle P_{2n} P_{2m} \rangle_{\mathbf{E}} = \delta_{n,m}$
• $\langle P_{2n+1} P_{2m+1} \rangle_{\mathbf{E}} = D_{2n+1,2m+1}$ $D_{n,m} \equiv \left(\frac{1}{1-X}\right)_{n,m}$
[Beccaria, Billò, Frau, Lerda, Pini, 2021]
• $\langle P_{2n+1} P_{2m+1} P_{2n+2m+2} \rangle_{\mathbf{E}} = \frac{\sqrt{2n+2m+2}}{N} d_{2n+1} d_{2m+1}$
 $d_{k} = \sum_{k'} \sqrt{k'} D_{k,k'}$ [Billò, Frau, Lerda, Pini, PV, 2022]

For instance for the 1-point functions

$$\langle \mathcal{P}_{2n} \rangle_{\mathbf{D}} = \frac{\left\langle \mathcal{P}_{2n} \exp\left(\sum_{k} \mathsf{Y}_{2k} \mathcal{P}_{2k}\right) \right\rangle_{\mathbf{E}}}{\left\langle \exp\left(\sum_{k} \mathsf{Y}_{2k} \mathcal{P}_{2k}\right) \right\rangle_{\mathbf{E}}}$$

Expanding in Y_{2k} , we get

$$\left\langle \mathcal{P}_{2n} \right\rangle_{\mathsf{D}} = \left\langle \mathcal{P}_{2n} \right\rangle_{\mathsf{E}} + \sum_{k=1}^{\infty} \mathsf{Y}_{2k} \left\langle \mathcal{P}_{2n} \mathcal{P}_{2k} \right\rangle_{\mathsf{E}}^{\mathsf{c}} + \frac{1}{2} \sum_{k,\ell=1}^{\infty} \mathsf{Y}_{2k} \mathsf{Y}_{2\ell} \left\langle \mathcal{P}_{2n} \mathcal{P}_{2k} \mathcal{P}_{2\ell} \right\rangle_{\mathsf{E}}^{\mathsf{c}} + \dots$$

Same strategy for 2-point functions.

Let us present an example. $Z_n^{(p)}$ is defined as

$$\mathsf{Z}_n^{(p)} = \int_0^\infty \frac{dt}{t} \, \frac{e^t \, t^p}{(e^t - 1)^2} \, J_n\!\left(\frac{\sqrt{\lambda} \, t}{2\pi}\right)$$

for $n \ge 1$ and p > 1. In order to study its strong coupling expansion, we use the Mellin-Barnes integral representation of the **Bessel function**

$$J_n(x) = \int_{-i\infty}^{+i\infty} \frac{ds}{2\pi i} \frac{\Gamma(-s)}{\Gamma(s+n+1)} \left(\frac{x}{2}\right)^{2s+n}$$

and obtain

$$Z_n^{(p)} = \int_0^\infty \frac{dt}{t} \, \frac{e^t \, t^p}{(e^t - 1)^2} \, \int_{-i\infty}^{+i\infty} \frac{ds}{2\pi i} \, \frac{\Gamma(-s)}{\Gamma(s + n + 1)} \left(\frac{\sqrt{\lambda} \, t}{4\pi}\right)^{2s + n}$$

Evaluating the *t*-integral, we get

$$\mathsf{Z}_{n}^{(p)} = \int_{-i\infty}^{+i\infty} \frac{ds}{2\pi i} \frac{\Gamma(-s)\,\Gamma(2s+n+p)\,\zeta_{2s+n+p-1}}{\Gamma(s+n+1)} \left(\frac{\sqrt{\lambda}}{4\pi}\right)^{2s+n}$$

When $\lambda \to \infty$ this integral receives contributions from poles on the negative real axis of *s*. Summing the residues over such poles, one finds

$$Z_n^{(p)} \sim_{\lambda o \infty} -rac{1}{2} \sum_{k=0}^{\infty} rac{\left(2k-1
ight) B_{2k}}{\left(2k
ight)!} \, rac{\Gamma\left(rac{n+p}{2}+k-1
ight)}{\Gamma\left(rac{n-p}{2}+2-k
ight)} \left(rac{4\pi}{\sqrt{\lambda}}
ight)^{p+2k-2}$$

where B_{2k} are the **Bernoulli numbers**. When *n* and *p* are both <u>even</u> or both <u>odd</u>, this asymptotic expansion terminates after a finite number of terms or even disappears as for example in $Z_1^{(5)}$ or $Z_2^{(6)}$.

Strong coupling expansions

The log 2 terms can be removed by introducing a shifted 't Hooft coupling defined as

$$rac{1}{\lambda'} = rac{1}{\lambda} + rac{\log 2}{2\pi^2 N} \; .$$

In terms of λ' we have

$$-\partial_{m_i}^4 \mathcal{F}_{\mathbf{D}^*}\Big|_{\substack{m=0 \quad \lambda' \to \infty}} \frac{16\pi^2}{\lambda'} N + 3\log\lambda' + 3f(N) - 8\log 2 + 3\zeta_3$$
$$-\partial_{m_i}^2 \partial_{m_j}^2 \mathcal{F}_{\mathbf{D}^*}\Big|_{\substack{m=0 \quad \lambda' \to \infty}} \log\lambda' + f(N)$$

where

$$f(N) = 2\gamma - 2\log(4\pi) - 2\zeta_3 + \frac{11}{3} + \frac{1}{4N} + O\left(\frac{1}{N^2}\right)$$