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® The analysis of the strong-coupling regime in an interacting theory is a
very difficult problem but, when there is a high amount of symmetry,
remarkable progress can be made.

® |n particular this happens for M =4 SYM theory, where many exact
results have been found over the years, especially in the planar limit

N— oo and \=giy, N fixed

Less is known about exact results in 4d A/ = 2 gauge theories

® Main tools: supersymmetric localization, holography and
integrability.




Simplest case: N =4 SYM

® We can recast NN =4 SYM asa N =2 gauge theory

® |t is a Lagrangian theory, whose field content is

Vector multiplet Hypermultiplet

1 vector field A, 4 real scalars g, g + c.c.

2 real scalars ¢, ¢ 2 fermions \*

2 fermions zpﬁ (A=1,2) \in the adjoint representation of SU(N)J

® Some of the simplest operators are single-trace superconformal
primaries

On(x, Y) = tr (Cbll(xl) . ..CD'”(X,,)) Y,...Y, I=1,...,6

These are local, gauge invariant, 1/2-BPS operators



Simplest case: N =4 SYM

2-point functions

I>(Y)
x — y[4"

(On(x1, Y1) On(x2, Y2)) = G,

3-point functions

(Om (31, Y1) On,y (52, Y2) Ons (x5, 3)) =
Gnl,nz,n3 13( Y)

‘X _ Z|”1‘|‘”2_”3|X — Z|n1+n3—n2|y — Z|n2—i—n3—n1

C ~ Grymans VN1 M2 3
n,n2,n3 — -
\/Gry Gy Gy N300 N
they dO not depend on the Coup|ing! [Lee, Minwalla, Rangamani, Seiberg, 1998]
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Simplest case: N/ =4 SYM

What about four-point functions of primary operators?

Conformal invariance is not sufficient to fix space-time dependence, much

more complicated perturbatively — difficult to explore high orders and
find exact results

Ta(Y)

[ x12|* [x34*

(Oa2(x1, Y1) ... Oa(xa, Ya)) = x |T(u,v;g)

cross-ratios,coupling

superconformal symmetry

2 2 2 2
X102 X34 _ X14%23
U= X2 X2 , V= X2 X2
13%24 13%24

It turned out that an efficient strategy to get exact results for four-point
correlators is to consider integrated four-point functions.
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Integrated correlators

/Hd4x, ({xi}) T(u,v;g) = 0,070;, log Zrr—o

=0

Where T —1T1 —+ |7_2 — 287_‘_ -+ |g42—ﬂ- [Binder, Chester, Pufu, Wang, 2019]
YM

4
/Hd4x,- W ({xi}) T(u,vig) = Oy log Zn=2+|m=0
=1

[Chester, Pufu, 2020]

N =2* ——> massive deformation of N =4 SYM

pw({x}) . ' ({x;}) —— fixed by superconformal symmetry
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Integrated correlators

Where does this result come from?

e Consider the N = 2 flavor current multiplet: it is made up of three
scalars 7MW = 77! (1,J = 1,2), two chiral fermions X, two

. . . N, & Y
anti-chiral fermions X, , two real scalars K and K and one
conserved current j,.

® This multiplet can be realized in terms of the hypermultiplet.

® Then consider supersymmetry-preserving deformations realized by
operators of this multiplet.

® |n SUSY theories the easiest way of studying action deformations
involving a specific multiplet is by coupling it to a background off-shell
mU|t|p|et [Festuccia, Seiberg, 2011]




Integrated correlators

® |n this case the off-shell multiplet that we can consider is a vector
multiplet, so that the deformation becomes

AS:/d4x (AMJ'M—¢K—$R+ D,Jj“+¢,x’+@,7>

which preserves A/ = 2 superconformal symmetry.

® Vector multiplet as a background = give its fields expectation values
but superconformal symmetry is broken unless one takes

_I _
A,=v'=¢ =Dy=0, ¢=¢d=-m
so that

A5—>5m:m/d4x (K + K)

[Binder, Freedman, Pufu, Zan, 2021]

preserves Poincaré supersymmetries.



Integrated correlators

® One can do the same procedure on the sphere S*. In this case the
deformed action is

Sm:m/d4x\/§ (K+K+Il?j) , J =011+ J»

If one realizes the fields of the flavor current multiplet in terms of the
hypermultiplet fields

J =trqq+tr§g+trgq+tr§g moment-map € 20’ of SU(4)r
K=—ittnh) N, K=—itry X,

this deformation correponds to the mass-deformation of NV = 4
SYM, called N = 2* SYM theory, obtained by giving a mass to the
adjoint hypermultiplet of N = 4.
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Integrated correlators

e By taking derivatives with respect to m one gets integrated
correlators of moment-map operators J and their descendants K

o / Difields]e 55| = / Difields]e S ( / d*x g (K + K + ij)>4

4
/f[d“x,-\/g(x,-) < (K + K+ ij)4>
4

/ﬁd4x’m<ﬂ—jz (K+K)*+ (K+K)")
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Integrated correlators

® Exploiting superconformal Ward identities one can express these
correlators only in terms of 4-point functions of the moment-map
operators integrated over a certain measure

/ f[ d*x; 1/ ({xi}) <jjjj>

J =0

® The final step is to understand why supersymmetric localization is
such a useful tool to evaluate these integrated four-point functions.




Summary of the strategy

Deform the original theory preserving N = 2 supersymmetry

Y

Place the deformed theory on the sphere S*

Y

Take derivatives with respect to the parameters of the deformation




Summary of the strategy

Deform the original theory preserving N = 2 supersymmetry

Y

Place the deformed theory on the sphere S*

Y

Take derivatives with respect to the parameters of the deformation

Y

Apply localization to compute the deformed partition function
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| ocalization and matrix model




| ocalization

Supersymmetric localization maps the computation of the partition
function Z of a 4d N = 2 gauge theory to a matrix model on S*

[Pestun, 2007]

Path integrals —  Finite dimensional integrals
/D[fieldS]e_S_Sm — /da e_traz_m252_m454+---

where a = a? T}, are N x N traceless Hermitian matrices and e.g.

> & (20 +1)! AN\
[ZZ( 1) n(, %_)),sz (8W2N> tra*’ tra]

/=1 n=0




| ocalization

Hence for instance we get

(9,2,, log Z‘mzo = /da e_trazsz = (S7)

Basic ingredients for the partition function in the matrix model:
expectation values of multitrace operators in the Gaussian theory for which
there exist recursion relations easy to implement in the planar limit.

Take-home message

The computation of the derivatives of the partition function and then of
integrated four-point functions of primary operators are reduced to the
computation of Gaussian integrals.
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Matrix model

This is a very important result because

® Matrix model computations led to exact results both in the planar
expansion and also for any value of N for these kind of correlators in

N =4 SYM.

® |n the large-N limit the strong-coupling expansions of these
integrated four-point functions of superconformal primary operators
determine useful constraints on higher derivative corrections of closed
string scattering amplitudes of 4 massless string states (gravitons

and their superpartners).




N =2 superconformal gauge theories




N = 2 superconformal gauge theories

Much progress has also been made in N/ = 2 superconformal gauge
theories.

In particular, integrated correlators were studied in a NV =2 SCFT
with Sp(N) gauge group, one anti-symmetric hypermultiplet and four
fundamental ones W|th SO(8) ﬂaVOI’ Symmetry. [Behan, Chester, Ferrero, 2022]

This theory is dual to N D3 branes, 4 D7 branes, and an O7 plane in
Type |IB string theory.

Specifically, in the large-N limit the four-point function of flavour
multiplets is dual to the scattering of SO(8) open string gluons on

Ad55 X S3 [Alday, Chester, Hansen, Zhong, 2024]
[Alday, Hansen, 2024]
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The D theory

® We consider a N =2 SCFT, dubbed D theory, with SU(N) gauge
group, two anti-symmetric hypers, four fundamental and U(4)
flavour symmetry (5 = 0)

® |n Type IIB string theory this model can be engineered with N
fractional D3-branes in a Z-orbifold probing an O7-orientifold
background and with four D7 branes plus their orientifold images.

® Flavour group of the four fundamental hypers

—> U(4
® Gauge group of the D7 branes world-volume theory — (4)

® Also in this case the D7-sector consists of open string states which in
the large-N limit propagate on AdSs x S3. Among these states there
are the U(4) gluons.




The D theory

® The U(4) gluons are dual to the moment-map operators J belonging
to the flavor current multiplet.

® |ntegrated 4-point functions can be studied exploiting localization

Oy Oy O Omp 108 Z | m) = / de, (D) (TA0a) .. TP ()

1 ({x;}) fixed by superconformal symmetry

Holographically similar to Sp(N) theory, but different SCFTs. We expect a
similar behaviour at strong coupling for these correlators, but this is very
tough to verify » much more involved matrix model!
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The massless matrix model

We now have a non-trivial interaction action

2
ZD:/dae tr 8% —Sint

[Pestun, 2007]

where

> A\ k+1
Sint = Z ( ) (22K — 1)C’21<+1 tra®*™ <= like in Sp(N) theory

2
pt 8m<N k+1

2 Sie 1 Kl (2k 42\ Cokt1 tp 32014y g2k—20+1
i kzle_l( (87r2N) 260+1) k+1 07 e

-~

SE. = N =2 SU(N) SCFT with 1 symm-+1 antisymm hypers

Hence with respect to N/ = 4 we now have to deal with this term which
has non-trival dependence on the coupling.
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The massless matrix model

Solution: perform the change of basis
K Lk 1J
2

@ E () ae o

orthonormal for N—oco  VEV in free matrix model

[Beccaria, Billo, Galvagno, Hasan, Lerda, 2020]

so that one gets an exact expression for S;,; for all values of A

1 0. @) oo
Sint =~ > Pars1 Xoks12e01 Paosr — Y Yok Pa
K t=1 k=1

t

Xip = —8(—1)%\/1‘_6/0OO it(ete_ 1)2 Jk(t2\7rf) <t2\7{)

t

A

© dt e VAt V2 log 2
You = (—1)k+1 2\/2k/ 1 )—5k,1 =
0

Jo (S
et +1)? 2N 4772



1- and 2-point functions

This result allows us to find

(Panp = Yan + o (Y2 —2>\8A]-“E>+O(%)

<7D2n 732m>D — <7D2n>D<P2n>D — 5n,m +

N N2
with
= ©dt et VONTRZVON: log 2
= 3" V2K Yq — VAEY| _log2
Y ; 2k /0 t (et—|—1)2[ T Jl( T )] 272
1 1
.F.E:Etrlog(l—X)—l—O(m)

They will be useful in a moment!
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The massive matrix model

We consider a mass-deformation of the D theory, giving mass to the four
fundamental hypers. The small-mass expansion of the massive matrix
model in the large-N limit becomes

ZD* — /da e—tr32 e_ant_Z?:1 mi2 52_2?:1 m? Sa+0(m°)

where S, and S, are single-trace deformations. We can have three different

mass combinations for the fourth order derivatives of Fp* = — log Zp*
2 2
— . Fb =28 +12(85%)p — 12(%)y,
2 92 2 2
R0, For| = 4(5,7)p - 4(S2)
—Omy Omo Oms Omy FD* o 0
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The massive matrix model

We need to compute the r.h.s. of these equations » write S, and S; in
terms of the P operators. We find exact expression in the coupling \ for
the first three 1/N orders

5 = N AT S5 Z( 1)k v2k 280 Py

12 /) 1 —
1 [V (5) VN2 _(6) 1
24N[ 6(%) 22 +O(N3)
S =Y (~1)"V2k ) Pas
k=1

with

Z(p)_/oodt e P (\ft>
o 0 t (et—].) 2T
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® Weak coupling = Completely different from Sp(N) theory

— 0 Fo ~ N(12¢G—60¢s A +210¢7 A% +--)

m=0 X\—0
+(54¢2 32 +360 (3 (s A2 — 4725 C3 Gr A% + )

. i X 1
+N(60C5)\—525C7)\2+252OC9)‘3+'”) +O(W)

® Strong coupling = Similar to Sp(N) theory (overall coefficient)

1672

m=0 A—0o0 A

3 2log 2 1
-2 ) o)
+4N( 2 A) O N2

[Billo, Frau, Lerda, Pini, PV, 2024]

These results furnish constraints for the dual gluon amplitudes in AdS

~ O, F*

N + 3log A + 6y — 6log(4mw) —3(3+ 11

[Alday, Chester, Hansen, Zhong, 2024]
[Alday, Hansen, 2024]
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Conclusions and outlook

We studied the derivatives of the free energy of the D* theory in the
large-N expansion, obtaining exact expressions in A\ and derived their strong

coupling limit.

® |t would be interesting to find a systematic way to compute higher
orders in the 1/N expansion.

® |t would be important to explore the planar limit at fixed YM
coupling, where the instantons cannot be neglected, to check if
provide completion of perturbative results into modular functions.

e Extend this approach to other N/ = 2 superconformal gauge theories
and to other kind of integrated correlators (with determinant
operators, Wilson loop, ...).
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Thanks for your attention!




Backup slides




U(4) flavour group

Let us show how the Z,-orbifold projection acts on the initial SO(8) gauge
group of the eight D7-branes in the orientifold background. Let A be a
Hermitian anti-symmetric 8 x 8 Chan-Paton matrix in the so(8) algebra.
Under the Z»-orbifold it transforms as

/\%7/\7_1 with Vz(iol _(')1>

[Gimon, Polchinski, 1996]
where we have written the matrix in 4 x 4 blocks. Thus, A is invariant
under the orbifold only if it takes the form

A IS _ e . - .
(—iS A) with A*=-A, A*x=-A, S'=S, S =S

Matrices of this form represent the embedding into s0(8) of a u(4)
Hermitian matrix A + S.
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U(4) mass combinations

In the D* theory we restrict the masses to be along the four Cartan
directions of U(4) labeled by i =1,...,4. To find the U(4) invariant mass
combinations, recall that the four Cartan generators A’ in the defining
representation of U(4) must be embedded into 8 x 8 matrices as

PN
—iX 0

So we can consider the combination of these embedded Cartan generators

I m 0 0 0
( 01 im2 0 0 \

0 0 img O

—1 mi 0 0 0
0 —I mo 0 0
0 0 —im3 0
\ 0 0 0 —imy )




U(4) mass combinations

This matrix satisfies

4
trM?* Tl =0 trM?k =2 Z m?%  Pfaff(M) = my mo mz my
i=1

From this we see that at order 4 in the masses, there are three independent
U(4)-invariant structures, which we can take to be

4

1
g m? — ~—trM?
=1 2

§ m? m> = —1 trM* + 1 (trM2)2
R o 4 3
I<j=1

m1 my m3 my = Pfaff(M)
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Matrix model E theory

At leading order in the large-N expansion

2k X O\F
° <P2n>E:_\/_N)\ E

¢ <anFbm>E::‘&Lm

_ (1
® | (Pant1Pomt1)g = D2nt1,2m+1 Dnm = (ﬁ)
n,m
[Beccaria, Billo, Frau, Lerda, Pini, 2021]
Von+2m+2
° | (Pant1Pomt1Ponyomi2)g = N d2n+1d2m1
dk — Zk/ \V/ k’Dk)k/ [Billo, Frau, Lerda, Pini, PV, 2022]
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Evaluate VEVs in the D theory matrix model

For instance for the 1-point functions

<772n exp (Zk Yok sz) >E
< exp <Zk Yok sz) >E

<P2”>D —

Expanding in Y5, we get

(Pan)p = (Pan)g + Z Yok (Pon Pak)g + = Z Yok You (Pan Pok Par)g +
_ k£ 1

Same strategy for 2-point functions.




Details on the strong coupling

Let us present an example. Z&p) is defined as

ng):/OOO dt e’tt”)2 Jn(\f)\t)

t (et —1 27

for n>1 and p > 1. In order to study its strong coupling expansion, we
use the Mellin-Barnes integral representation of the Bessel function

tioo ds [(—s) X\ 25+n
Inlx) = /_,-OO 2wi (s +n+1) (5)

and obtain

Z(p)_/oo dt et tP /+ioo ds [(—s) (\ﬂt)25+n
o t(et—=1)2 ) i 2miT(s+n+1)\ 4r
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Details on the strong coupling

Evaluating the t-integral, we get

7(P) — /+ioo ds [(—s)I(2s+ n+ p) Cos+ntp-1 (\5\)25+n
" _ico 2T F(s + n + 1) A7

When X\ — oo this integral receives contributions from poles on the
negative real axis of s. Summing the residues over such poles, one finds

ng)

S —

A— 00 2

1 &N (2k — 1) Bog T(™52 + k — 1) / 4 p+2k—2
Z (2k)! r(éjtz—k) (\ﬂ)

where B, are the Bernoulli numbers. When n and p are both even or
both odd, this asymptotic expansion terminates after a finite number of
(6)

terms or even disappears as for example in Z( ) or Zs
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Strong coupling expansions

The log 2 terms can be removed by introducing a shifted 't Hooft coupling
defined as

I 1_|_ log 2
NN 2meN

In terms of X we have

167
_aﬁv;}—D* ~ W

m=0 N —o0 N\

N+ 3log N + 3f(N) —8log2 +3(3

— O, O FD* ~ log N + f(N)

m=0 M\ —o0

where

11 1 1
F(N) =2y — 2log(4m) —2G + 5 + 7 + O(W)
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