
Novel AdS vacua from dynamical open strings

Giuseppe Sudano

Università di Roma `Tor Vergata' & INFN Roma 2

Mostly based on [Balaguer, Bevilacqua, Dibitetto, Fernández-Melgarejo, GS `24,
Bevilacqua, Dibitetto, GS (to appear)]

Meeting PRIN `String Theory as a bridge
between Gauge Theories and Quantum Gravity'

17 Feb 2025, Sapienza University

1 / 33



E�ective �eld theory approach to String Theory

String Theory is a highly constrained framework. For instance, the absence of anomalies
imposes the number of spacetime dimensions to be D = 10, as also required in order for the
gravitons to be massless.

Realistic �eld theories in lower dimensions can be recovered with an e�ective �eld theory
approach:

Top-down: the extra dimensions curl up in a small enough compact space, called
internal manifold;

Bottom-up: to establish some criteria that a low energy theory should meet in order to
admit a UV completion in a Quantum Gravity theory (swampland program).
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The scalar potential and the vacua

Upon compacti�cation, the �elds of the theory give rise to:

scalars known as moduli, e. g. in IIA SUGRA, if M = (µ,m),

CMNR → Cmnr ;

gauge �uxes (p-form �elds integrated in the compact manifold), e. g. in IIA SUGRA∮
C3

H(3) ,

∮
C4

F(4)

metric �uxes associated to the geometry of the internal manifold.

Fluxes induce a scalar potential for the moduli, whose extrema correspond to the vacua.

ϕ

V(ϕ)

A vacuum is a �eld con�guration such that the metric is maximally symmetric. This
condition can be realized if all macroscopic �elds vanish, except scalars which can be
constant.
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Gauged Supergravity and the embedding tensor formalism

Supergravity theories (SUGRA) provide a low-energy description of the lower-dimensional
setting arising from �ux compacti�cations. Supersymmetry (SUSY) constraints the �eld
content, the isometries of the scalar manifold and the global symmetry group G0.

A gauging of a certain subgroup G ⊆ G0 is needed in order to have a potential and moduli
stabilization in a vacuum:

the symmetry of vector �elds is promoted to a non-Abelian gauge symmetry G;

scalar �elds get minimally coupled to the vector �elds Aµ
M .

The embedding tensor formalism allows to perform the gauging in a G0-covariant way:

ΘM
α, XM = ΘM

αtα .

[Nicolai, Samtleben `01]

The embedding tensor transforms in

Θ ∈ V ′ ⊗ adj = θ1 ⊕ · · · ⊕ θn .

Two types of constraints select the allowed irreps:

P1(Θ) = 0;

P2(Θ⊗Θ) = 0 linked to the closure of the gauge algebra

[XM , XN ] = XMN
PXP .
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The potential from the embedding tensor formalism

A gauge-invariant Lagrangian is obtained via:
the minimal coupling of scalars through a covariant derivative

∂µ → Dµ = ∂µ − gAµ
MΘM

αtα ;

gauge-covariant �eld strengths.

An invariant Lagrangian under SUSY transformations is

Lgauged = Lungauged[∂ → D] + Ltop + LYUK + Lpot ,

with the further terms given by:

gauge-covariant topological term Ltop;

Yukawa-like bilinears for fermions, e. g. in half-maximal SUGRA,

e−1LYUK = g
(
A1

αβ ψ̄µα γ
µν ψνβ + A2

αβ ψ̄µα γ
µ χβ + A3Aβ

α ψ̄µα γ
µ λAβ

)
+ h.c. ,

with A1, A2, A3 linear in the embedding tensor;

a potential, quadratic in the embedding tensor components, e. g. in half-maximal
SUGRA

e−1Lpot = −g2 (|A1|2 − |A2|2 − |A3|2) .

Fermionic shifts are also needed to have invariance under SUSY

δψµ
α → δψµ

α + gA1
αβγµεβ , δχα → δχα + gA2

αβεβ , δλAα → δλAα + gA3Aα
βεβ .
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10-dimensional interpretation of the embedding tensor components

Some of the embedding tensor components in gauged SUGRA have a 10-dimensional
interpretation as �uxes.

The embedding tensor encompasses all possible gaugings in all possible duality frames: a
duality covariant description of string compacti�cations is allowed by T-folds and S-folds.

The potential provided by the gauging, completely �xed by SUSY, is an alternative writing
for the 10-dimensional potential, arising from the compacti�cation procedure and quadratic
in the �uxes.
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Dynamical open strings

The embedding tensor formalism has been exploited in order to �nd and characterize novel
vacuum solutions when the dynamics of open strings is taken into account.

A massless vector multiplet is associated to each open string state ending in a Dp-brane and
a super Yang-Mills theory is de�ned along the worldvolume of the branes. An enhancement
of the gauge group occurs when parallel branes are in stacks:

U(1)N → U(N) .
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Dynamical open strings

Orientifolds (Op-planes) are stuck at the �xed locus of the involution

ΩOp = Ω σOp σFL
.

Parallel orientifolds to a stack of D-branes change the gauge group. The states surviving the
orientifold projection are such that (λij Chan-Paton factor)

λ = −MλTM−1 ,

with:

M = 12N : Op−, gauge group is SO(2N);

M =

(
0N 1N
−1N 0N

)
: Op+, gauge group USp(2N).
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Flux compacti�cation down to 4 dimensions

We analyze the �ux compacti�cation of massive type IIA SUGRA on twisted tori down to 4
dimensions, in presence of smeared parallel D6-branes and O6-planes:

D6/O6 : − | − − −︸ ︷︷ ︸
4D spacetime

− − −︸ ︷︷ ︸
ya

· · ·︸ ︷︷ ︸
yi︸ ︷︷ ︸

ym

.

(38 + 6N) scalars are projected in by the orientifold involution.

Type IIA Field σO6 (−1)FLΩ physical dof's

Φ + + 1
gab + + 6
gij + + 6
Bai − − 9
Ci − − 3
Cabc + + 1
Caij + + 9
Cabijk − − 3

Y Ii − − 3N

AI
a + + 3N

Type IIA Flux σO6 (−)FLΩ

ωab
c + +

ωij
c + +

ωai
j + +

Hijk − −
Habi − −
F(0) + +

Fai − −
Fabij + +
Fabcijk − −
FI

ab + +
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How to get moduli stabilization?

A �ux-induced potential for the moduli can be found with di�erent approaches:

dimensional reduction from D = 10 to d = 4;

N = 4, d = 4 gauged SUGRA.

The compacti�cation Ansatz for the metric reads

ds2(10) = τ−2 gµν dx
µ dxν + ρ (σ2Mab e

a eb + σ−2Mij e
i ej ) ,

where em are the Maurer-Cartan forms, such that

dem +
1

2
ωnp

m en ∧ ep = 0 , ω[mn
r ωp]r

q = 0 , ωmn
n = 0 .
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The SO(3) truncation

We perform an SO(3) consistent truncation, i. e. we only retain scalar �elds and �uxes which
are singlets under the diagonal part of

SO(3)a × SO(3)i × SO(3)I

The scalar manifold consists of 6 + 2N
3
scalars (we mainly focus on N = 3):

from the closed-string sector: ρ , τ , σ , Cabc , Caij , Bai ;

from the open-string sector:
(
AI

a , Y
Ii
)
=
(
A δIa , Y δ

Ii
)
.

Type IIA �uxes Parametrization

Faibjck a0 Faibjck = εabc εijk a0
Faibj a1 Faibj = εabc εijk δ

ck a1
Fai a2 Fai = δai a2
F0 a3 F0 = a3

Hijk b0 Hijk = εijk b0
ωij

c b1 ωij
c = εijd δ

cd b1

Habk c0 Habk = εabk c0
ωka

j = ωbk
i c1 ωka

j = εkal δ
lj c1

ωbc
a c̄1 ωbc

a = εbcd δ
ad c̄1

FK
ab g0 FK

ab = εabc δ
cKg0

gIJ
K g1 gIJ

K = ϵIJLδ
LKg1
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The potential from dimensional reduction

Exploiting the compacti�cation Ansatz for the metric after SO(3) truncation,

ds2(10) = τ−2 gµν dx
µ dxν + ρ (σ2 δab e

a eb + σ−2 δij e
i ej ) ,

the scalar potential arises from the terms containing only moduli, in the actions both for the
bulk and the sources.

Sbulk =
1

2κ210

∫
d10x

√
−g(10)

(
e−2Φ

(
R(10) + 4(∂Φ)2 −

1

12
|H(3)|2

)
−

1

4

5∑
p=0

|F(2p)|2

(2p)!

)

The presence of a stack of coincident D6-branes and O6-planes is taken into account by two
contributions: Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) actions.

[Myers `99]

SDBID6 = −TD6

∫
WV(D6)

d7x Tr

(
e−Φ̂

√
− det(MMN ) det(Qi

j)

)

SWZ
D6 = µD6

∫
WV(D6)

Tr

{
P

[
eiλιY ιY

(
Ĉ ∧ eB̂(2)

)
∧ eλF

]}

SDBI
O6 = −TO6

∫
d7x e−Φ

√
−det(GMN ) , SWZ

O6 = µO6

∫
WV (O6)

C(7)
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Gauged SUGRA description

Reduction of massive type IIA down to 4 dimensions on twisted tori admits a description in
terms of 4d N = 4 gauged SUGRA (half-maximal SUSY due to the presence of sources).
The multiplet content consists of one gravity and 6 +N vector multiplets, which amounts to
the boson �elds: 1 graviton, 12 +N vector �elds and 38 + 6N scalars.

The global symmetry of the theory is given by

Gglobal = SL(2,R)× SO(6, 6 +N)

and the scalar manifold is its non-compact part

Mscalar =
SL(2,R)

SO(2)︸ ︷︷ ︸
Mαβ

×
SO(6, 6 +N)

SO(6)× SO(6 +N)︸ ︷︷ ︸
MMN

We can also write M = VVT , where V is a vielbein.

The embedding tensor fαMNP needs to satisfy the quadratic constraints

fαR[MNf
R
βPQ] = 0 , εαβfαMNRf

R
βPQ = 0 .
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The scalar potential

The gauging induces the scalar potential

V =
1

64
fαMNP fβQRSM

αβ
[1
3
MMQMNRMPS +

(2
3
ηMQ −MMQ

)
ηNRηPS

]
+

−
1

144
fαMNP fαQRSε

αβMMNPQRS ,

with

ηMN = ηMN =

 O6 I6 O6,N

I6 O6 O6,N

ON,6 ON,6 IN

 , MMNPQRS ≡ εmnpqrsV̊m
M V̊n

N V̊p

P V̊q

QV̊r
RV̊s

S .

[Schon, Weidner `06]

ϕ

V(ϕ)
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The dictionary between the approaches

A dictionary allows to compare the outcomes of the di�erent approaches:

Cabc = ϵabcχ , Caij = ϵaijχ1 , Bai = δaiχ2 ,

eϕ =
1

τσ3
, eφ1 =

σ

τ
, eφ2 =

1

ρ
.

Type IIA Fluxes d = 4N = 4

Faibjck a0 −f+āb̄c̄

Faibj a1 f+āb̄k̄

Fai a2 −f+āj̄k̄

F(0) a3 f+īj̄k̄

Hijk b0 −f−āb̄c̄

Habk c0 f+āb̄k

ωc
ij b1 f−āb̄k̄

ωj
ka = ωi

bk c1 f+āj̄k = f+īb̄k

ωa
bc c̄1 f+ab̄c̄

FK
ab g0 f+āb̄K

gIJ
K g1 f+IJK

15 / 33



The equivalence of the approaches

Through this dictionary, the terms in the gauged SUGRA potential can be identi�ed with
those arising from the dimensional reduction:

the terms with the same scaling in the dilatons as the square of the embedding tensor
components can be identi�ed with the reduction of the R-R sector and modi�cations of
the �eld-strengths due to the WZ action

F = dC +H(3) ∧C + F �ux ∧ e−B(2) +∆FWZ

the other terms arise from the bulk action for the NS-NS sector or the DBI actions both
for the D6-branes and the orientifold, as long as we take the tadpole cancellation
condition into account ∮

M3
(i)

(dF2 −H3 ∧ F0) = ND6 TD6 + TO6

16 / 33



The vacua of the theory

The vacua of the theory are the extrema of the potential

∂ΦV |Φ0
= 0 .

Given the homogeneity of the scalar manifold, we can choose to work in the �ux picture.

[Dibitetto, Guarino, Roest `11]

⊗ ⊗

⊗ ⊗

Gn.c Gn.c

Gn.c Gn.c

field space

⊗

Gn.c Gn.c

Gn.c Gn.c

flux space

←→

The vacua also have to satisfy the quadratic constraints:
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Solutions in the origin

Novel AdS4 vacua have been found in this setting (Λ < 0).

They are perturbatively stable if all the eigenvalues of the canonically normalized mass
matrix

LKIN = −
1

2
KAB ∂ϕA∂ϕB −→ (m2)AB =

1

|Λ|
KAC ∂2V

∂ϕC∂ϕB

are above the Breitenlohner-Freedman bound

m2 ≥ −
3

4
.

The vacua with residual SUSY are such that

Aij
1 qj =

√
−3V qi , Aij

2 qj = 0 .

Even though not completely general, we have started by looking for vacua in the origin of the
scalar manifold.
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Solutions out of the origin

Other vacua can be found when some scalars are out of the origin.

Solutions 1 are SUSY, Solutions 2, 3, 4 are not.

Solutions 1, 3 and 4 (s2 = +) are perturbatively stable.

Stable non-SUSY vacua would deserve greater attention, since on grounds of the AdS
swampland conjecture, destabilizing mechanisms should exist.

[Ooguri, Vafa `17]

Some simple generalizations of these solutions have been also found in the instance N = 6.
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The reliability of our setup

The SUGRA approximation is reliable as long as the higher-loop expansion in gs and the
higher-derivative expansion in α′ are under control.

We look for the scaling of �elds and �uxes with respect to

R
+
Ω ≡ R

+
trombone × R+

ρ × R+
τ

Scalars ρ τ σ

Ω weights Ω2 Ω6 Ω0

Fluxes H(3) F(p) ω FI

Ω weights Ω2 Ω2+p Ω0 Ω4

Scales gs
V ol6

(2πℓs)
6

|Λ|
M4
Pl

ℓKK
ℓAdS

Ω weights Ω−3 Ω6 Ω−14 Ω0

An explicit perturbative corner for the �uxes is:

λ = 6mn , Ω2 =
√
5 p , A = −

6n

5 p2
,

a0 = 250mnp4 − 108mn3 , a3 = 10mnp , b1 = 2mn , c1 = 6mn , g1 = m .
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Flux compacti�cation down to 7 dimensions

We examine the �ux compacti�cation of massive type IIA SUGRA on 3-spheres down to 7
dimensions, in presence of localized parallel D6-branes and O6-planes:

D6/O6 : − | − − − − − −︸ ︷︷ ︸
7D spacetime

· · ·︸ ︷︷ ︸
yi

S3 is the topology of the internal manifold of all supersymmetric AdS7 vacua.

[Apruzzi, Fazzi, Rosa, Tomasiello `13]

The orientifold involution projects in 1 graviton, a 3-form, 6 +N vector �elds and (10 + 3N)
scalars.

IIA �elds Z2-even components 7D �elds

gMN gµν graviton (×1)
gij scalars (×6)

BMN Bµi vectors (×3)
Φ Φ scalar (×1)
CM Ci scalars (×3)

CMNP Cµνρ 3-form (×1)
Cµjk vectors (×3)

AI
µ AI

µ vectors (×N)

Y iI Y iI scalars (×3N)
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Gauged SUGRA description

These warped compacti�cations admit a low-energy description in terms of 7d N = 1 gauged
SUGRA. One gravity multiplet and (3 +N) vector multiplets give rise to the boson �eld
content of the theory: 1 graviton, 1 2-form, 6 +N vectors, 10 + 3N scalars.

G0 = R
+
X × SO(3, 3 +N)

The scalar manifold is its non-compact part

R
+
X︸︷︷︸
X

×
SO(3, 3 +N)

SO(3) × SO(3 +N)︸ ︷︷ ︸
MAB

.

We focus on the instance N = 3. According to the SO(3) truncation, the brane-position
moduli are

Y i = Y δiI tI .
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The embedding tensor

As long as we focus on the closed-string sector, the global symmetry group is
SO(3, 3) ≈ SL(4) . The gauging deformations surviving the linear constraints are:

Θ ∈ 10
′
(+1)︸ ︷︷ ︸

Q(mn)

⊕ 10(+1)︸ ︷︷ ︸
Q̃(mn)

⊕ 6(+1)︸ ︷︷ ︸
ξ[mn]

.

A Stueckelberg-like mass θ for the 2-form is another deformation.

ξmn = 0 , Q̃mn =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 q̃

 , Qmn =


q 0 0 0
0 q 0 0
0 0 q 0
0 0 0 0


satisfy the quadratic constraints

θ ξmn = 0 ,
(
Q̃mp + ξmp

)
Qpn −

1

4

(
Q̃pq Qpq

)
δmn = 0 .

IIA �uxes Deformations

F(0)

√
2 q̃

Hijk
1√
2
θ ϵijk

Θij q δij

gIJ
K gY MεIJ

K
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The potential and the vacua

The gauging induces the scalar potential

V = 1
64

[
X2

2
fABCfDEF

(
1
3
MADMBEMCF +

(
2
3
ηAD − MAD

)
ηBEηCF

)
+

+ θ2X−8 − 2
3

√
2X−3 θ fABC M

ABC

]
,

with MABC = ϵabc V̊ A
a V̊ B

b V̊ C
c .

We found di�erent families of AdS7 vacua.

ID θ q q̃ gY M mass spectrum SUSY

1 λ
4

λ λ
2
(2 + Y 2) − λ

2Y

− 8
15

(× 1)

0 (× 6)
16
15

(× 5)
8
3

(× 1)

✔

2 λ
2

λ λ
2
(2 + Y 2) − λ

2Y

0 (× 8)
4
5

(× 1)
12
5

(× 1)

✘

3 λ
14

λ λ
14

(−16 + 7Y 2) − λ
2Y

0 (× 3)
12
5

(× 5)

2
35

(
22 ±

√
1954

)
(× 1)

✘
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The uplift to 10D

All SUSY (N = 1) AdS7 vacua have been classi�ed. All of them appear in massive type IIA
and can be sourced by D6/D8-branes and/or O6/O8 orientifolds. Consistently with their
R-symmetry SU(2), their topology is

AdS7 × S3

with S3 = [0, N ]× S2.

Exceptional Field Theory techniques seem to suggest that consistent truncations from 10D
down to 7D SUGRA with an arbitrary number of vector multiplets do not exist.

[Malek, Samtleben, Vall Camell `19]

We expect the vacua to solve the Bianchi identities and the equations of motion of

SNSNS + SRR + SDBI + SWZ

A consistent truncation has been found from 10D down to 7D N = 1 SUGRA with no vector
multiplets (minimal SUGRA).

[Passias, Rota, Tomasiello `15]
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Minimal SUGRA solution

The uplift Ansatz reads

1
√
2πℓ

ds2 = g2X−1/2

√
−
α

α̈
ds7

2 +X5/2

√
−
α̈

α

(
dz2 +

α2

α̇2 − 2X5αα̈
ds2

S2

)
,

eΦ = 162 · 21/4π5/2X5/4 (−α/α̈)3/4

(α̇2 − 2X5αα̈)1/2
,

B = πℓ
(
−z+

αα̇

α̇2 − 2X5αα̈

)
volS2 , F2 = ℓ

(
α̈

162π2
+

πF0αα̇

α̇2 − 2X5αα̈

)
volS2 .

α = α(z) is a piecewise cubic function vanishing at the extrema of the interval

α(0) = α(N) = 0

This Ansatz is solution for both the Bianchi identities and the equations of motion for the
bulk if

...
α = −162π3F0 , X = 1, 2−1/5 .
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The e�ect of the sources

The uplift Ansatz also encodes the presence of sources:

D6-branes at the extrema of the interval where α̈ ̸= 0.

D8-branes wrapping a cycle S2 and sitting where Romans'mass changes value

...
α = −162π3F0 −→ ∂4zα ∼ faδ(z − a)

The open-string dynamics giving rise to our vacua naturally contains the responsible
perturbations for the brane polarization via Myers e�ect.

The tadpole cancellation condition reads

dF2 − F0H3 = Q VolS3

Our vacua are expected to uplift to a solution of the equations of motion for the bulk and
non-Abelian brane actions (DBI and WZ).
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Conclusions

Gauged SUGRA and the embedding tensor formalism have been powerful tools to discover
and analyze novel vacuum solutions in Supergravity when open string dynamics has been
taken into account. This has been possible even when a consistent truncation from String
Theory is missing.

A few possibilities appear as natural ways for these works to progress:

to search for both perturbative and non-perturbative mechanisms destabilising the
stable non-SUSY vacua; this kind of processes are expected on grounds of the AdS
swampland conjecture;

the new vacua emerge as results of the coupling of closed strings in the bulk and open
strings on the branes; this occurrence would suggest non-trivial modi�cations in the
usual holographic setting, which instead exhibits an AdS vacuum in the bulk and a
conformal dual on the branes.

ϕ

V(ϕ)
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Many thanks for your attention!
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The potential from dimensional reduction

The presence of a stack of coincident D6-branes is taken into account by two contributions:
Wess-Zumino (WZ) and Dirac-Born-Infeld (DBI) actions.

[Myers `99]

SDBID6 = −TD6

∫
WV(D6)

d7x Tr

(
e−Φ̂

√
− det(MMN ) det(Qi

j)

)

SWZ
D6 = µD6

∫
WV(D6)

Tr

{
P

[
eiλιY ιY

(
Ĉ ∧ eB̂(2)

)
∧ eλF

]}

MMN = P
[
ÊMN + ÊMi(Q

−1 − δ)ijÊjN

]
+ λFMN , Qi

j = δij + iλ[Y i, Y k]Êkj ,

ÊMN = ĝMN + B̂MN , xM = (xM , yi) ,

λ = 2πα′ , yi = λY i = λY iI tI , ιY ιY

(1
2
Cijdy

i ∧ dyj
)
= −

1

2
Cij [Y

i, Y j ] ,

P[ÊMN ] = ÊMN + λDMY iÊiN + λDNY
iÊMi + λ2DMY iDNY

jÊij ,

DMY i ≡ ∂MY i − i[AM , Y i] , F = dA+ iA ∧A ,

[tI , tJ ] = −igIJKtK , Tr[tI ] = 0 , Tr[tI tJ ] = δIJ .
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]
+ λFMN , Qi

j = δij + iλ[Y i, Y k]Êkj ,
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The modi�ed Bianchi identities

The R-R �eld strengths in presence of �uxes read

F = dC +H(3) ∧C + F �ux ∧ e−B(2)

[Dall'Agata, Villadoro, Zwirner `09]

These - or equivalently their Bianchi identities - undergo further modi�cations due to the
WZ action. For instance, ∫

10
C(7) ∧ J

(D6)
(3)

→ dF̄(2) = J
(D6)
(3)

.

These modi�cations need to be taken into account in the contributions to the potential,
coming from the bulk and the DBI action.
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The SO(3) truncation reduces the scalar manifold to be

MSO(3) =
SL(2,R)

SO(2)
×

SO
(
2, 2 + N

3

)
SO(2)× SO

(
2 + N

3

)
which corresponds to a content of (6 + 2N

3
) scalars.
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N = 1 description

The truncated theory also admits a N = 1 description. Indeed, under the branching
SO(3) ↪→ SU(4), the fundamental representation of the R-symmetry SU(4) splits as

4 → 1⊕ 3 .

The closed-string sector scalars can have a place in an STU model:

S = χ+ ie−ϕ , T = χ1 + ie−φ1 , U = χ2 + ie−φ2 .

The scalar potential, up to the quadratic constraints, reads

V = eK

(∑
Φ

KΦΦ̄|DΦW |2 − 3|W |2
)

Φ ≡ (S, T, U) , K(Φ, Φ̄) = − log(−i(S − S̄))− 3 log(−i(T − T̄ ))− 3 log(−i(U − Ū)) .

The holomorphic superpotential is given by

W (Φ) = PF − PH S + 3PQ T ,

PF = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , PH = b0 − 3 b1 U , PQ = c0 + (2c1 − c̄1)U .
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SO(3) ↪→ SU(4), the fundamental representation of the R-symmetry SU(4) splits as

4 → 1⊕ 3 .

The closed-string sector scalars can have a place in an STU model:

S = χ+ ie−ϕ , T = χ1 + ie−φ1 , U = χ2 + ie−φ2 .

The scalar potential, up to the quadratic constraints, reads
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