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Effective field theory approach to String Theory

String Theory is a highly constrained framework. For instance, the absence of anomalies
imposes the number of spacetime dimensions to be D = 10, as also required in order for the
gravitons to be massless.
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Effective field theory approach to String Theory

String Theory is a highly constrained framework. For instance, the absence of anomalies
imposes the number of spacetime dimensions to be D = 10, as also required in order for the
gravitons to be massless.

Realistic field theories in lower dimensions can be recovered with an effective field theory
approach:
o Top-down: the extra dimensions curl up in a small enough compact space, called
internal manifold;

R\

o Bottom-up: to establish some criteria that a low energy theory should meet in order to
admit a UV completion in a Quantum Gravity theory (swampland program).
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The scalar potential and the vacua

Upon compactification, the fields of the theory give rise to:
o scalars known as moduli, e. g. in ITA SUGRA, if M = (u, m),

CMNR — Crmnr ;

o gauge fluxes (p-form fields integrated in the compact manifold), e. g. in IIA SUGRA

Hy o ]{ F
7{:3 ® )

o metric fluxes associated to the geometry of the internal manifold.

V(9)
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Upon compactification, the fields of the theory give rise to:
o scalars known as moduli, e. g. in ITA SUGRA, if M = (u, m),

CMNR — Crmnr ;

o gauge fluxes (p-form fields integrated in the compact manifold), e. g. in IIA SUGRA
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o metric fluxes associated to the geometry of the internal manifold.

Fluxes induce a scalar potential for the moduli, whose extrema correspond to the vacua.

V(@)

A vacuum is a field configuration such that the metric is maximally symmetric. This
condition can be realized if all macroscopic fields vanish, except scalars which can be
constant.
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Gauged Supergravity and the embedding tensor formalism

Supergravity theories (SUGRA) provide a low-energy description of the lower-dimensional
setting arising from flux compactifications. Supersymmetry (SUSY) constraints the field
content, the isometries of the scalar manifold and the global symmetry group Gp.
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Gauged Supergravity and the embedding tensor formalism

Supergravity theories (SUGRA) provide a low-energy description of the lower-dimensional
setting arising from flux compactifications. Supersymmetry (SUSY) constraints the field
content, the isometries of the scalar manifold and the global symmetry group Gp.

A gauging of a certain subgroup G C Gy is needed in order to have a potential and moduli
stabilization in a vacuum:

o the symmetry of vector fields is promoted to a non-Abelian gauge symmetry G;

o scalar fields get minimally coupled to the vector fields ANM.
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Gauged Supergravity and the embedding tensor formalism

Supergravity theories (SUGRA) provide a low-energy description of the lower-dimensional
setting arising from flux compactifications. Supersymmetry (SUSY) constraints the field
content, the isometries of the scalar manifold and the global symmetry group Gp.

A gauging of a certain subgroup G C Gy is needed in order to have a potential and moduli
stabilization in a vacuum:

o the symmetry of vector fields is promoted to a non-Abelian gauge symmetry G;

o scalar fields get minimally coupled to the vector fields AHM.
The embedding tensor formalism allows to perform the gauging in a Go-covariant way:

Om®, Xu =0t .

[Nicolai, Samtleben ‘01]

4/33



Gauged Supergravity and the embedding tensor formalism

Supergravity theories (SUGRA) provide a low-energy description of the lower-dimensional
setting arising from flux compactifications. Supersymmetry (SUSY) constraints the field
content, the isometries of the scalar manifold and the global symmetry group Gp.

A gauging of a certain subgroup G C Gy is needed in order to have a potential and moduli
stabilization in a vacuum:

o the symmetry of vector fields is promoted to a non-Abelian gauge symmetry G;

o scalar fields get minimally coupled to the vector fields AHM.

The embedding tensor formalism allows to perform the gauging in a Go-covariant way:
O, Xy =0Op“ta .
[Nicolai, Samtleben ‘01]
The embedding tensor transforms in
OcV' ®adj=01® - ® 0 .

Two types of constraints select the allowed irreps:
o P1(©)=0;
o P2(© ® ©) = 0 linked to the closure of the gauge algebra

_ P
(X, XN] = Xun" Xp . 433



The potential from the embedding tensor formalism

A gauge-invariant Lagrangian is obtained via:
e the minimal coupling of scalars through a covariant derivative

8y — Dy=0u—gAMON % |;

e gauge-covariant field strengths.
An invariant Lagrangian under SUSY transformations is
Lgauged = Lungauged [a - D] + Ltop + Lyuk + Epot )

with the further terms given by:
e gauge-covariant topological term Ltop;

e Yukawa-like bilinears for fermions, e. g. in half-maximal SUGRA,

e Cyux = 9 (A1 Pua v Yup + A2 dua ' X + Asas® dua ' X4?) +he.

with Aj, A2, A3 linear in the embedding tensor;

e a potential, quadratic in the embedding tensor components, e. g. in half-maximal
SUGRA
e Lpot = —g* (|A1]? — |A2) — |43]?) .
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with the further terms given by:
e gauge-covariant topological term Ltop;

e Yukawa-like bilinears for fermions, e. g. in half-maximal SUGRA,

e Cyux = 9 (A1 Pua v Yup + A2 dua ' X + Asas® dua ' X4?) +he.

with Aj, A2, A3 linear in the embedding tensor;

e a potential, quadratic in the embedding tensor components, e. g. in half-maximal
SUGRA
e Lpot = —g* (|A1]? — |A2) — |43]?) .

Fermionic shifts are also needed to have invariance under SUSY

Y™ = Y 4+ gA1Pyues , OX® = OXY +9A2%Pes |, 0Aaa — GAaa + 9Aza0 e
5/33



10-dimensional interpretation of the embedding tensor components

Some of the embedding tensor components in gauged SUGRA have a 10-dimensional
interpretation as fluxes.

Gauged
Supergravities

Non-geometric fluxes

Geometric fluxes

The embedding tensor encompasses all possible gaugings in all possible duality frames: a
duality covariant description of string compactifications is allowed by T-folds and S-folds.
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10-dimensional interpretation of the embedding tensor components

Some of the embedding tensor components in gauged SUGRA have a 10-dimensional
interpretation as fluxes.

Gauged
Supergravities

Non-geometric fluxes

Geometric fluxes

The embedding tensor encompasses all possible gaugings in all possible duality frames: a
duality covariant description of string compactifications is allowed by T-folds and S-folds.

The potential provided by the gauging, completely fixed by SUSY, is an alternative writing
for the 10-dimensional potential, arising from the compactification procedure and quadratic

in the fluxes.
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Dynamical open strings

The embedding tensor formalism has been exploited in order to find and characterize novel
vacuum solutions when the dynamics of open strings is taken into account.

A massless vector multiplet is associated to each open string state ending in a Dp-brane and
a super Yang-Mills theory is defined along the worldvolume of the branes. An enhancement
of the gauge group occurs when parallel branes are in stacks:

vy - UWw).

Op~ Op*

N Dp’s N Dp’s N Dp’s N Dp’s

U(N) DY) U(N) DY)
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Dynamical open strings

Orientifolds (Op-planes) are stuck at the fixed locus of the involution

Op~

N Dp’s
U(N)

Qo, =Q o0, oF; -

N Dp’s

N Dp’s
U(n)

Op*

N Dp'’s
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Dynamical open strings

Orientifolds (Op-planes) are stuck at the fixed locus of the involution
Qo, =Q o0, oF; -

Parallel orientifolds to a stack of D-branes change the gauge group. The states surviving the
orientifold projection are such that (\;; Chan-Paton factor)

A=-MXTM™",

with:
o M =1yn: Op~, gauge group is SO(2N);

_ (O~ INY. 4.+
o M= (—JlN ®N>. Op™, gauge group USp(2N).

Op~ Op*

,
a /—\ a

~
~

N Dp’s N Dp’s N Dp’s N Dp’s

U(N) )
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Flux compactification down to 4 dimensions

We analyze the flux compactification of massive type ITA SUGRA on twisted tori down to 4
dimensions, in presence of smeared parallel D6-branes and O6-planes:

D6/06 : —| — —— — — — ..

4D spacetime ye yt

9/33



Flux compactification down to 4 dimensions

We analyze the flux compactification of massive type ITA SUGRA on twisted tori down to 4
dimensions, in presence of smeared parallel D6-branes and O6-planes:

D6/O6 : —| — —— — — — ..

4D spacetime ye Yt

(38 4 691) scalars are projected in by the orientifold involution.

[ Type ITA Field [ oos | (—1)FLQ [ physical dof’s || Type IIA Flux | oo | (—)F2Q |
@ aF aF 1 Wab® + +
Jab A + 6 wij© i I
9ij A S 6 wai? i I
Bai - - 9 Hijk - -
i —_ — 3 Hapi — —
Cabe 4F 4 1 Flo 4k i
Caij a4 + 9 Fai - -

Cabijk - - 3 Fabij + +
yh - — 3N Fabcijk — —
AT, & + 3N s + ¥
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How to get moduli stabilization?

A flux-induced potential for the moduli can be found with different approaches:
o dimensional reduction from D = 10 to d = 4;
o N =4,d = 4 gauged SUGRA.
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How to get moduli stabilization?

A flux-induced potential for the moduli can be found with different approaches:
o dimensional reduction from D = 10 to d = 4;
o N =4,d = 4 gauged SUGRA.

The compactification Ansatz for the metric reads
ds?lo) =72 Guv dat dz¥ + p ( o2 Mype® e + o2 M;; etel),

where €™ are the Maurer-Cartan forms, such that
de™ + %wnpm e"NeP =0, Wimn" W

p]Tq:O, wWmn" =0 .
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The SO(3) truncation

We perform an SO(3) consistent truncation, i. e. we only retain scalar fields and fluxes which
are singlets under the diagonal part of

\ SO(3)q x SO(3); x SO(3)7 \

The scalar manifold consists of 6 + 2% scalars (we mainly focus on 9 = 3):

o from the closed-string sector: p , 7, 0 , Cape 5 Caij 5 Bai 3

o from the open-string sector: (Aé s Y”) = (.Aéi s YJ”) .
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The SO(3) truncation

We perform an SO(3) consistent truncation, i. e. we only retain scalar fields and fluxes which
are singlets under the diagonal part of

\ SO(3)q x SO(3); x SO(3)7 \

The scalar manifold consists of 6 + 2% scalars (we mainly focus on 9 = 3):

o from the closed-string sector: p , 7, 0 , Cape 5 Caij 5 Bai 3

o from the open-string sector: (Aé s Y”) = (.Aéi s Y6”> .

[ Type HA | fluxes | Parametrization |
Faibjck ag Faibjck = Eabe Eijk A0
— 13
Flaibj a1 Faibj = €abe €ijk 6°° a1
Flai az Fai = dqi a2
Fy ag Fy =as
Hijp bo Hijr = €ijk bo
wi; ¢ b1 wij® =€i;a0°7 by
Hape co Hapk = €abk co
Wra?! = wpk" c1 Whae! = ka1 09 c1
Wpe? C1 wpe® = epea 691
K K — K
F2ab g0 ]:ab = €abc 0" go
g% g1 g% =ers6 %
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The potential from dimensional reduction

Exploiting the compactification Ansatz for the metric after SO(3) truncation,
ds%lo) =72 Guv dzt dz¥ + p ( 028 e% el + o072 0i5 etel),

the scalar potential arises from the terms containing only moduli, in the actions both for the
bulk and the sources.

5 2
_ 1 10 —29 10 2 1 2 1 [Fl2p)
Shulk = /d x4/ —g(® ('3 (RUO) + 4(0®)* — ElH(S)l ) — 1 > W)

2
2K70
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The potential from dimensional reduction

Exploiting the compactification Ansatz for the metric after SO(3) truncation,
ds%lo) =72 Guv dzt dz¥ + p ( 028 e% el + o072 0i5 etel),

the scalar potential arises from the terms containing only moduli, in the actions both for the
bulk and the sources.

5 2
_ 1 10 —29 10 2 1 2 1 [Fl2p)
Shulk = /d x4/ —g(® ('3 (RUO) + 4(0®)* — ElH(S)l ) — 1 > W)

2
2K70

The presence of a stack of coincident D6-branes and O6-planes is taken into account by two
contributions: Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) actions.

[Myers ‘99]

SB?I — 7TD6‘/ d7z Tr (e“i’\/— det(D’lMN) det(Qé) )
WV (D6)

S]%%Z = MDG/

Tr {P [ei)‘LYLY (C’ A 63(2)) A eAF} }
WV(D6)

Sg?l = —-Tos /d7z 67@\/ —det(Gumn) S(%VGZ = ,U«OG/ 0(7)

WV (06)
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Gauged SUGRA description

Reduction of massive type ITA down to 4 dimensions on twisted tori admits a description in
terms of 4d N/ = 4 gauged SUGRA (half-maximal SUSY due to the presence of sources).
The multiplet content consists of one gravity and 6 + 9t vector multiplets, which amounts to
the boson fields: 1 graviton, 12 + 91 vector fields and 38 + 691 scalars.
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Gauged SUGRA description

Reduction of massive type ITA down to 4 dimensions on twisted tori admits a description in
terms of 4d N/ = 4 gauged SUGRA (half-maximal SUSY due to the presence of sources).
The multiplet content consists of one gravity and 6 + 9t vector multiplets, which amounts to
the boson fields: 1 graviton, 12 + 91 vector fields and 38 + 691 scalars.

The global symmetry of the theory is given by

Gglobal = SL(2a [R) X 80(67 6+ m)

and the scalar manifold is its non-compact part

iy  SL(2,R) SO(6,6 + N)
sealar = 750(2)  SO(6) x SO(6 + M)
——
Mug My N

We can also write M = VYT, where V is a vielbein.
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Reduction of massive type ITA down to 4 dimensions on twisted tori admits a description in
terms of 4d N/ = 4 gauged SUGRA (half-maximal SUSY due to the presence of sources).
The multiplet content consists of one gravity and 6 + 9t vector multiplets, which amounts to
the boson fields: 1 graviton, 12 + 91 vector fields and 38 + 691 scalars.

The global symmetry of the theory is given by

Gglobal = SL(2a [R) X 80(67 6+ m)

and the scalar manifold is its non-compact part

iy  SL(2,R) SO(6,6 + N)
sealar = 750(2)  SO(6) x SO(6 + M)
——
Mug My N

We can also write M = VYT, where V is a vielbein.

The embedding tensor f, N p needs to satisfy the quadratic constraints

faR[MNfgpQ] =0, EaﬁfcxMNngpQ =0.
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The scalar potential

The gauging induces the scalar potential

1 1
V= &faMNPfBQRSMa/B [*MMQMNRMPS + <

2
. 4 MQ _ MMQ)UNRWPS]_F
1
— —— faM NP faQrse®P MMNFPQRS
144
with
N 0Os le  Osm oo oD o e o
MMN =1 = e 06  Osm |, MuMNPQRS = €mnpersVy VNVEVoVRVS -
One Ome Im
V(@)

[Schon, Weidner ‘06]

14 /33



The dictionary between the approaches

A dictionary allows to compare the outcomes of the different approaches:

Cape = €abeX lej = €aij X1 , Bai = 6aiX2 3
1 o 1
€¢:73’ el = — | e¥2 — = |
TO T P

Type ITA Fluxes d=4N =4

Foivjck ag —f1abe
Faipj a1 fiabk
Fo; az —fiaik
Floy as fiiin
Hijk bo —f_abe
Heapk o Tiabk
Wi b1 fak
Wiy = Why, c fraje = Fiaon
Whe &1 Fabe
FRab 9o frabk
g g1 frrix
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The equivalence of the approaches

Through this dictionary, the terms in the gauged SUGRA potential can be identified with
those arising from the dimensional reduction:

o the terms with the same scaling in the dilatons as the square of the embedding tensor
components can be identified with the reduction of the R-R sector and modifications of
the field-strengths due to the WZ action

‘ F=dC + Hz) AC + F1"™ pe™ 5@ 4 AFy;

o the other terms arise from the bulk action for the NS-NS sector or the DBI actions both
for the D6-branes and the orientifold, as long as we take the tadpole cancellation
condition into account

f v)(dFQ —Hg/\Fo) = Npe Tpe + Tos
M

30
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The vacua of the theory are the extrema of the potential

OpVl]p, =0 .

Given the homogeneity of the scalar manifold, we can choose to work in the flux picture.

[Dibitetto, Guarino, Roest ‘11]

®. ® o [
N 7 N 7 4
N N 7’ ’ S ~ V2 ’
Ghe N e G N G
.C ’ n.c n.c n.c
¥ v \\®/
. 7N
7 N
Gn.c ', N Gn.c Gn.c ,' \\ Gn,c
7 N
’ N 4 A
7 N 4 A
. N ¥ Y
® ® ® [
FIRT.D SPACE FLIIX SPACE
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The vacua of the theory are the extrema of the potential

OpVl]p, =0 .

Given the homogeneity of the scalar manifold, we can choose to work in the flux picture.

[Dibitetto, Guarino, Roest ‘11]

®. ® o [
N 7 N 7 4
N N 7’ ’ S ~ V2 ’
Ghe N e G N G
.C ’ n.c n.c n.c
¥ v \\®/
. 7N
7 N
Gn.c ', N Gn.c Gn.c ,' \\ Gn,c
7 N
’ N 4 A
7 N 4 A
. N ¥ Y
® ® ® [
FIRT.D SPACE FLIIX SPACE

The vacua also have to satisfy the quadratic constraints:
61(01—51):07 bl(cl—El)ZO, azco+2azc1 —az =0, gog1=0
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Solutions in the origin

Novel AdS4 vacua have been found in this setting (A < 0).
e They are perturbatively stable if all the eigenvalues of the canonically normalized mass

matrix
1 1 o%v
r — _I1Kan 864868 24 _ 1 pac
KIN 5 Kab [l (m*)"p A] 96Co08
are above the Breitenlohner-Freedman bound
m2 > —§ .
- 4

e The vacua with residual SUSY are such that
Ya=v=3Ve, 5q;=0.

Solution || ag | a1 | as a3 bo by cy | 1= 90 q
vV vV V1 V2
A Alolo (S.IM,\ 0 _M/\ 0 Y {S.ZMA 0
14 14 14
—3v1 —11+ V10 — /26
B ALO|O &'1\/5 143 3)\ 0 :;1 65/\ 0 —-A 325T/\ 0
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Solutions in the origin

Novel AdS4 vacua have been found in this setting (A < 0).
e They are perturbatively stable if all the eigenvalues of the canonically normalized mass

matrix

£K1N=*1KAB 3¢A3¢B N ( 2)A :L Acaziv
2 BT Al 8¢CHpB
are above the Breitenlohner-Freedman bound
m2 > —§ .
- 4

o The vacua with residual SUSY are such that

Y4 =v=3Vq', 4, =0.

Even though not completely general, we have started by looking for vacua in the origin of the

scalar manifold.
Solution || ag | a1 | as a3 bo by cy | 1= 90 q
1 2
A Alolo 51M/\ 0 _MA 0 Y SQM)\ 0
14 14 14
— 1 —11 10 — /26
B xlofo 31\/5143\/_3/\ 0 ;‘@A 0| - 52%/\ 0
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Solutions out of the origin

Other vacua can be found when some scalars are out of the origin.

Solution ap ay as as bo by co .0 (g | 9
301, 1\/5 A 1[5 A A A A

1 S90 — —A2)A | si=y /SN | —saZ | si=q/2A | —sie Y A -z
(922 2,4) 1313 s2¢ | 131/ 3 5152 513 9192\/1—5 0 a
501, NG A A

2 (s2§ - oA i 0 0 | s 0 3 0 Alo|-5
1 5 A A A A A A A

3 s — A%\ —S1— So= S1——= 8189—— = | —s180— A 0| —-=
(2 3 ) 1\/§ 23 1\/§ 1 2\/3 3 1 Zﬂ A

A

1 (‘;2\/%7 —AZ))\ 0 0 S1A 0 A 0 rolol-4

e Solutions 1 are SUSY, Solutions 2, 3, 4 are not.
e Solutions 1, 3 and 4 (s2 = +) are perturbatively stable.

Stable non-SUSY vacua would deserve greater attention, since on grounds of the AdS
swampland conjecture, destabilizing mechanisms should exist.

[Ooguri, Vafa ‘17|
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Some simple generalizations of these solutions have been also found in the instance 91 = 6.
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The reliability of our setup

The SUGRA approximation is reliable as long as the higher-loop expansion in gs and the
higher-derivative expansion in o’ are under control.

We look for the scaling of fields and fluxes with respect to

‘[Rg = IRjrombone & [R: 2 IRj"
’ Scalars H p ‘ T ‘ o ‘ ’ Fluxes H Hz) ‘ Fip) ‘ w ‘]—'I‘
’ Q weights H 02 ‘ b ‘ Q0 ‘ ’ Q weights H 02 ‘ QFFr ‘ Qo ‘ Ot ‘
Volg TAL CKK
’ Scales H gs ‘ (2705)C ME ‘ Tads ‘

’ Q weights H Q-3 ‘ b ‘ -1 ‘ Qo ‘

An explicit perturbative corner for the fluxes is:

6n

A=6mn , Q®=v5p , A=-——
5p?

a0:250mnp4—108mn3, a3 =10mnp, by =2mn, c1 =6mn, gr=m.
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Flux compactification down to 7 dimensions

We examine the flux compactification of massive type IIA SUGRA on 3-spheres down to 7
dimensions, in presence of localized parallel D6-branes and O6-planes:

D6/06 : —| — — — — — —

7D spacetime y*
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Flux compactification down to 7 dimensions

We examine the flux compactification of massive type IIA SUGRA on 3-spheres down to 7
dimensions, in presence of localized parallel D6-branes and O6-planes:

D6/06 : —| — — — — — —

7D spacetime y*

S3 is the topology of the internal manifold of all supersymmetric AdS7 vacua.

[Apruzzi, Fazzi, Rosa, Tomasiello ‘13]

The orientifold involution projects in 1 graviton, a 3-form, 6 + 9N vector fields and (10 + 39)
scalars.

| TTA fields | Z>-even components | 7D fields |

IMN Juv graviton (x1)

Gij scalars (x6)

Bun B vectors (X3)

[ P scalar (x1)

Cym C; scalars (x3)
CMNP Cuyp 3-form (Xl)
Clik vectors (X3)

A A, vectors (x9)
Y Yl scalars (x3M)
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Gauged SUGRA description

These warped compactifications admit a low-energy description in terms of 7d A/ = 1 gauged
SUGRA. One gravity multiplet and (3 4+ 91) vector multiplets give rise to the boson field
content of the theory: 1 graviton, 1 2-form, 6 4+ 9 vectors, 10 + 391 scalars.

Go = R% x SO(3,3+9)

The scalar manifold is its non-compact part

R+ SO(3,3+M) _
<X 7 80(3) x SO(3+ M)
X

Map

We focus on the instance 91 = 3. According to the SO(3) truncation, the brane-position

moduli are ) )
Yi=v§ey .
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The embedding tensor

As long as we focus on the closed-string sector, the global symmetry group is
SO(3,3) ~ SL(4) . The gauging deformations surviving the linear constraints are:

© € 100, ® 1041 & 64 -
N—— ~—— N——
Qo) Q(mn) §[mn)

A Stueckelberg-like mass 0 for the 2-form is another deformation.
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The embedding tensor

As long as we focus on the closed-string sector, the global symmetry group is
SO(3,3) ~ SL(4) . The gauging deformations surviving the linear constraints are:

© € 100, ® 1041 & 64 -
N—— ~—— N——
Qo) Q(mn) §[mn)

A Stueckelberg-like mass 0 for the 2-form is another deformation.

0 0 0 O g 0 0 O
3 ~wm |0 0 0 0 o ¢ 0 o0
0 0 0 ¢ 0O 0 0 O
satisfy the quadratic constraints
- 1 /»
06mn =0, (QM+¢™) Qn — (@7 Qua) 07 = 0.
[ TIA fluxes | Deformations |
Flo) V2§
Hijk %eﬁijk
O;j q0ij
grs gymers®
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The potential and the vacua

The gauging induces the scalar potential
2
- éi %rfABCfDEF(%AiADA4BEA40F_+(%UAD _]WAD)UBEUCF)+
+602X78 — 22X 30 fapc MABC

with MABC = eabeyy Ay By O
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The potential and the vacua

The gauging induces the scalar potential

2
vV o= 6714 [XT fapcfoEF (% MAD \[BE pCF (% nAD — MAD) nBE,CF) |
1 02X-8 _ %ﬁX—BefABCMABC] ,
with MABC = cabey Ay By C
We found different families of AdS7 vacua.
‘ 1D ‘ 0 ‘ q ‘ q ‘ 9y M mass spectrum ‘ SUSY ‘
8
0 (x6)
Ll 2| 2(2+Y?) -2 v
4 2 2Y % (>< 5)
g (x1)
0 (x8)
2 | 3| A 2(2+Y?) - 2 (x1) X
2 (x1)
0 (x3)
A A A 12
31 A | A J18+772) | - 5 (x5) X
2 (22 + \/1954) (x 1)
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The uplift to 10D

All SUSY (N = 1) AdS7 vacua have been classified. All of them appear in massive type ITA
and can be sourced by D6/D8-branes and/or O6/08 orientifolds. Consistently with their

R-symmetry SU(2), their topology is
AdS7 x 3

with S3 = [0, N] x S2.
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The uplift to 10D

All SUSY (N = 1) AdS7 vacua have been classified. All of them appear in massive type ITA
and can be sourced by D6/D8-branes and/or O6/08 orientifolds. Consistently with their

R-symmetry SU(2), their topology is
AdS7 x 3

with S3 = [0, N] x S2.

Exceptional Field Theory techniques seem to suggest that consistent truncations from 10D
down to 7D SUGRA with an arbitrary number of vector multiplets do not exist.

[Malek, Samtleben, Vall Camell ‘19]

We expect the vacua to solve the Bianchi identities and the equations of motion of

’ SnsNs + SRR + SpBI + Swz

A consistent truncation has been found from 10D down to 7D A = 1 SUGRA with no vector
multiplets (minimal SUGRA).

[Passias, Rota, Tomasiello ‘15]
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Minimal SUGRA solution

The uplift Ansatz reads

_ 2y-1/2 | @ 5/2 2
feds =g2x~1/2 d37 +X ,/ dz + = X5aadssz),

_ 3/4
> _ 1/4,_5/2y5/4 ( a/a)
=162-2 Xt
T (62 —2X5aa)/?

. . oo
Bzwf(—z—l—%)volsz, FQ:L/( @ 7w ,,)volsz.

—2X5%ad 16272 &2 — 2X5a0

a = a(z) is a piecewise cubic function vanishing at the extrema of the interval

a(0)=a(N)=0
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Minimal SUGRA solution

The uplift Ansatz reads

_ 2y-1/2 | @ 5/2 2
feds =g2x~1/2 d37 +X ,/ dz + = X5aadssz),

_ 3/4
> _ 1/4,_5/2y5/4 ( a/a)
=162-2 Xt
T (62 —2X5aa)/?

ad & wFyaa
B= e(— 7) len ,  Fp =2 leo .
T\ 2 T axtaa ) YOS 2 (1627r2 tas 2X5ad) vols?

a = a(z) is a piecewise cubic function vanishing at the extrema of the interval

a(0)=a(N)=0

This Ansatz is solution for both the Bianchi identities and the equations of motion for the
bulk if
& = —162r°Fy | X=1,2"15.
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The effect of the sources

The uplift Ansatz also encodes the presence of sources:
e D6-branes at the extrema of the interval where & # 0.
o D8-branes wrapping a cycle S? and sitting where Romans’mass changes value

& = —16273Fy — o~ fo0(z —a)

The open-string dynamics giving rise to our vacua naturally contains the responsible
perturbations for the brane polarization via Myers effect.

D6 D6

—

The tadpole cancellation condition reads

dF2 — FOH3 = Q V0153

27/33



The effect of the sources

The uplift Ansatz also encodes the presence of sources:
e D6-branes at the extrema of the interval where & # 0.
o D8-branes wrapping a cycle S? and sitting where Romans’mass changes value

& = —16273Fy — o~ fo0(z —a)

The open-string dynamics giving rise to our vacua naturally contains the responsible
perturbations for the brane polarization via Myers effect.

D6 D6

—

The tadpole cancellation condition reads

‘ dFs — FoHs = Q Volgs

Our vacua are expected to uplift to a solution of the equations of motion for the bulk and
non-Abelian brane actions (DBI and WZ).
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Conclusions

Gauged SUGRA and the embedding tensor formalism have been powerful tools to discover
and analyze novel vacuum solutions in Supergravity when open string dynamics has been
taken into account. This has been possible even when a consistent truncation from String
Theory is missing.
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Conclusions

Gauged SUGRA and the embedding tensor formalism have been powerful tools to discover
and analyze novel vacuum solutions in Supergravity when open string dynamics has been
taken into account. This has been possible even when a consistent truncation from String
Theory is missing.

A few possibilities appear as natural ways for these works to progress:
@ to search for both perturbative and non-perturbative mechanisms destabilising the
stable non-SUSY vacua; this kind of processes are expected on grounds of the AdS
swampland conjecture;

o the new vacua emerge as results of the coupling of closed strings in the bulk and open
strings on the branes; this occurrence would suggest non-trivial modifications in the
usual holographic setting, which instead exhibits an AdS vacuum in the bulk and a
conformal dual on the branes.
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Many thanks for your attention!
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The potential from dimensional reduction

The presence of a stack of coincident D6-branes is taken into account by two contributions:
Wess-Zumino (WZ) and Dirac-Born-Infeld (DBI) actions.

[Myers ‘99]

SDBI 7TD6/ d"z Tr (e*‘i’\/f det (M7 v ) det(Q?) )
WV(D6) J

S[V)VGZ = MDG/

Tr {P [eD‘LYLY (C’ A 63(2)> A eA}_} }
WV(D6)
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Wess-Zumino (WZ) and Dirac-Born-Infeld (DBI) actions.

[Myers ‘99]
SDBI 7TD6/ d"z Tr (e*‘i’\/f det (M7 v ) det(Q?) )
WV(D6) J
SP¢" = ppe / Tr {P [e“ww (é A eB<2>) A eA}_} }
WV (D6)
Myn = P[EMN + B (Q7 - 5)“ij] +AFunN, Q) = 8% +iA[Y Y ¥ By
Epmn = dma + Baw aM = (@M, y')

) ) ) 1 ) ) 1 o
A=2ra’, yi =AY =AYl Lyby(icijdyl Adyﬂ) = Oy Y],
PlEyN] = Evn + ADy Y Ein + ADNY  Epy + A2Dy Y DN YT By
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The potential from dimensional reduction

The presence of a stack of coincident D6-branes is taken into account by two contributions:
Wess-Zumino (WZ) and Dirac-Born-Infeld (DBI) actions.

[Myers ‘99]
SDBI 7TD6/ d"z Tr (e*‘i’\/f det (M7 v ) det(Q?) )
WV(D6) J
SP¢" = ppe / Tr {P [e“ww (é A eB<2>) A eA}_} }
WV (D6)
Myn = P[EMN + B (Q7 - 5)“ij] +AFunN, Q) = 8% +iA[Y Y ¥ By
Epmn = dma + Baw aM = (@M, y')

) ) . 1 ) ) 1 S
A=2ra’, Yy =AY =AYt yuy (icijdyl Adyﬂ) = Oy Y],
PlEyN] = Evn + ADy Y Ein + ADNY  Epy + A2Dy Y DN YT By
Dy Y =0y Y  —ilApy, Y, F=dA+iANA,

[tr,ts) = —igrs "t , Te[t;] =0, Teftsts] =07y .
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The modified Bianchi identities

The R-R field strengths in presence of fluxes read

‘ F=dC + Hz AC + F1™ pe P

[Dall’Agata, Villadoro, Zwirner ‘09]

These - or equivalently their Bianchi identities - undergo further modifications due to the
WZ action. For instance,

(D6) = _ +(D6)
AO C(7) N J(S) — dF(2) = ‘](3)

These modifications need to be taken into account in the contributions to the potential,
coming from the bulk and the DBI action.
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The SO(3) truncation reduces the scalar manifold to be

Msos) =

SL(2,R)

s0(2,2+ %)

SO(2)

50(2) xS0(2+ J)

which corresponds to a content of (6 + 2%) scalars.
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N =1 description

The truncated theory also admits a A' = 1 description. Indeed, under the branching
SO(3) < SU(4), the fundamental representation of the R-symmetry SU(4) splits as

4—-103.
The closed-string sector scalars can have a place in an STU model:

S= x+ie ®, T=x14+ie?, U= ya+ie ¥2.
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4—-103.
The closed-string sector scalars can have a place in an STU model:
S= x+ie ®, T=x14+ie?, U= ya+ie ¥2.

The scalar potential, up to the quadratic constraints, reads

V=K <Z K22 DeW |2 — 3|W|2>

P

&= (S,T,U), K(®, &) =—log(—i(S—3S))—3log(—i(T —T)) — 3log(—i(U —T)) .
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SO(3) < SU(4), the fundamental representation of the R-symmetry SU(4) splits as

4—-103.
The closed-string sector scalars can have a place in an STU model:
S= x+ie ®, T=x14+ie?, U= ya+ie ¥2.

The scalar potential, up to the quadratic constraints, reads

V=K <Z K22 DeW |2 — 3|W|2>

P

&= (S,T,U), K(®, &) =—log(—i(S—3S))—3log(—i(T —T)) — 3log(—i(U —T)) .

The holomorphic superpotential is given by
W(®)=Pr - Py S+3PyT,

PF:a073a1U+3a2U27a3U3, Py =byp—3b1U , PQ=C0+(2C1751)U.
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