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Correlation functions

⟨O1(x1)O2(x2) . . .On(xn)⟩

and amplitudes
⟨p′1 . . .p

′
n′ ∣S ∣p1 . . .pn⟩

are at the heart of quantum field theory.

Large effort to include all perturbative and non-perturbative
effects, and to increase n.

Motivation to study theories where such effects can be included.



This talk:
Explain various techniques for the explicit evaluation of amplitudes
of closed and open strings. Some of the techniques have been used
earlier in the context of quantum black holes, and topological
gauge theory.

Based on:

● 2411.02517 with Z.-Z. Wang

● 1901.03540 with G. Korpas, G. W. Moore, I. Nidaiiev



Amplitudes in String Theory

x

x

x x

Σ1

In string theory, one typically considers an Euclidean worldsheet
theory, for example 24 compact bosons I , J = 1, . . . ,24,

S =
1

4πα′ ∫
d2σ gIJ ∂µX

I∂µX J

The n-point, g -loop contribution to a space-time amplitude
corresponds to the integral a correlation functions of the worldsheet
theory over the moduli spaceMg of genus g Riemann surfaces Σg ,

A(k1, k2, . . . )g = ∫
Mg

dΩ∫
Σg

(∏
j

d2σj) ⟨V (k1, σ1)V (k2, σ2) . . . ⟩Σg



Example 1: one-loop, closed string contribution to the vacuum
energy of the bosonic string in 26 dimensions.

Partition function:

Z(τ, τ̄) =
1

y12

1

∣η(τ)∣48
, τ = x + iy ,

with η(τ) = q1/24
∏
∞
n=1(1 − qn).

The worldsheet theory is (super)conformal, such that correlation
functions transform in a canonical way under large coordinate
deformations.

Indeed Z is invariant under

τ ↦
aτ + b

cτ + d
, (

a b
c d

) ∈ SL(2,Z)



Moduli space for Σ1:
M1 = H/SL(2,Z) = F∞

−1 0 1

F

The amplitude reads

A0 = ∫
F
idτ ∧ d τ̄

1

y14

1

∣η(τ)∣48



Example 2: one-loop, closed string contribution to the vacuum
energy of the bosonic string in 26 dimensions.

The amplitude receives a contribution from the annulus and
Möbius strip.

The combined amplitude can be
expressed as

A0,E = −i ∫
Γ(E)

dτ
1

η(τ)24
,

where Γ(E) is the contour
depicted in the figure. −1 0 1

ΓE

− 1
2

1
2



Modular forms

⇒ Modular forms are crucial ingredients, so let me review the
relevant aspects on the next few slides.

A modular form for SL(2,Z) is a function f ∶ H→ C, such that

f (
aτ + b

cτ + d
) = (cτ + d)w f (τ) for (

a b
c d

) ∈ SL(2,Z)

We can consider f as function on the unit disc using the change of
variables q = e2πiτ

Phase plot of modular invariant j-function.



More generally, we can consider a vector-valued modular forms
f⃗ = (f1, . . . , fd), which transforms as

fµ(
aτ + b

cτ + d
) = (cτ + d)w

d

∑
ν=1

Mν
µ(γ) fν(τ), γ ∈ SL(2,Z)

Modular forms often contain interesting arithmetic information.

Example 1: Let η(τ) = q1/24
∏
∞
n=1(1 − qn), which is a modular

form of weight 1/2 and multiplier system ξ(γ), then

1

η(τ)
= q−1/24

∞

∑
n=0

p(n)qn

= q1/24
(1 + q + 2q2

+ 3q3
+ ⋅ ⋅ ⋅ + 190 569 292q100

+ . . . )

with the coefficients p(n) the number of partitions of the integer n.



Example 2: The Jacobi theta series

ϑ2(τ) = ∑
n∈Z+1/2

qn
2/2, ϑ3(τ) = ∑

n∈Z
qn

2/2, ϑ4(τ) = ∑
n∈Z

(−1)nqn
2/2

form a three-dimensional vector-valued modular form, with
multiplier system generated by

M(T ) =
⎛
⎜
⎝

eπi/4

1
1

⎞
⎟
⎠
, M(S) = e−πi/4

⎛
⎜
⎝

1
1

1

⎞
⎟
⎠



Hardy-Ramanujan-Rademacher Circle Method

General Fourier expansion:

fµ(τ) = ∑
m∈N

Fµ(m −∆µ)q
m−∆µ ,

with coefficients

Fµ(m −∆µ) = ∫

1+Yi

Yi
fµ(τ)q

−m+∆µdτ

The contour is judiciously chosen in terms of Ford circles:
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Gives an exact expression in terms of polar coefficients for w ≤ 0,

Fµ(m −∆µ) = 2π ∑
n−∆ν<0

Fν(n −∆ν)∑
c=1

1

c
Kc(m −∆µ,n −∆ν)

× (
∣n −∆ν ∣

m −∆µ
)

1−w
2

I1−w (
4π

c

√
(m −∆µ)∣n −∆ν ∣) .

with Kc the Kloosterman sum

Kc(δµ, δν) = i−w ∑
−c≤d<0
(c,d)=1

M−1
(γ)

ν

µ exp [2πi (δν
a

c
+ δµ

d

c
)]

and Is the modified Bessel function of the first kind. Each term in
the sum with labelled by (c ,d), is the contribution from the Ford
circle anchored at −d/c .

⇒ Useful in conformal field theory and quantum gravity. Cardy (1986),

Strominger, Vafa (1996), Dijkgraaf, Maldacena, Moore, Verlinde (2000), . . .



We will in fact be interested in the case m −∆µ = 0,

Fµ(0) = 2πi−w ∑
n−∆ν<0

(2π∣n −∆ν ∣)
1−w

Γ(2 −w)
Fν(n −∆ν)

×
∞

∑
c=1
∑

−c≤d<0
(c,d)=1

cw−2M−1
(γ)

ν

µ exp [2πiδν
a

c
]

(1)

The Kloosterman sum reduces to a so-called Ramanujan sum.



Integrals over Mg are complicated in general. Their structure
simplifies in non-compact directions, where the Σg degenerates

The contribution of such a region of Mg takes the schematic form

∑
n
∫

∞

T0

dt t−s e−Ent , (2)

with the sum being over states which propagate along the tube.

The integral over t is similar to the Schwinger parametrization in
Euclidean QFT

1

p2 +m2
= ∫

∞

0
dtE e−tE (p

2+m2),



The integrals for string amplitudes are often badly divergent due to
negative energy modes of the worldsheet theory.

We can take inspiration from the iε-prescription in Lorentzian
signature:

−i

p2 +m2 − iε
= ∫

∞

0
dtL e

−itL(p
2+m2−iε),

which converges independent of the sign of p2 +m2.



iε prescription for string amplitudes: treat the tube in
Lorentzian signature and the “interior” of Mg in Euclidean
signature. Berera (1994), D’Hoker, Phong (1994), Witten (2013), Sen (2016),. . .

Euclidean

Lorentzian

⇒ Analytically continue the inte-
gration variable t to t = tE + itL,
and replace the integral (2) by

∫

i∞

T0

dt t−se−Ent
Euclidean

L
or
en
tz
ia
n

large T0

tE

tL t

This is convergent, since typically s > 0.

More formally, one complexifies Mg , or actually the Teichmüller
space, and chooses an appropriate integration cycle in this space.



Eberhardt-Mizera (2022) evaluate the 1-loop amplitude in this way
and obtain

A
iε
≈ 58 798.14 + 196 620.04 i ,

This results was obtained as well using a different regularization
motivated by BRST invariance in topological quantum field theory.
Korpas, JM, Moore, Nidaiev (2019)

See also Baccianti, Chandra, Eberhardt, Hartman, Mizera (2025) for a derivation using the circle method.



Modular integral

We will now consider the alternative regularization.
Bringmann, Diamantis, Ehlen (2016); Korpas, JM, Moore, Nidaiev (2019)

For closed string torus amplitudes, we are naturally led to integrals
of the form

If = ∫
F∞

dτ ∧ d τ̄ y−s f (τ, τ̄)

with
f (τ, τ̄) = ∑

m≥−∆,n≥−∆̄

c(m,n)qm q̄n

with m − n ∈ Z

Widely used, eg also:

● as inner-products for modular forms Petersson (1950),. . .

● partition functions of topological quantum field theory
Moore, Witten (1997), Losev, Nekrasov, Shatashvili (1997),. . .



Improper integral

Consider a single term in q-expansion

Lm,n,s = ∫
F∞

dτ ∧ d τ̄ y−s qmq̄n

Integral is improper since F∞ is non-compact and

lim
τ→i∞

y−sqmq̄n = ∞, if m + n < 0



Renormalization for n ≥ 0

Regularize by truncating F∞ to FY

● Lm,n,s(Y ) = ∫FY
dτ ∧ d τ̄ y−s qmq̄n

● FY splits in F1 + rectangle

− 1
2

1
2

Y

Re(τ)

Im(τ)

Ô⇒ Lm,n,s(Y ) = Lm,n,s(1) − 2iδm,n ∫
Y

1
dy y−se−4πyn.

n > 0: Lrm,n,s = limY→∞ Lm,n,s(Y ) is finite

n = 0: We have ∫
Y

1 dy y−s = 1
s−1(1 −Y 1−s)

Renormalize by substracting divergent terms for Y →∞:

Lrm,0,s = Lm,0,s(1) −

⎧⎪⎪
⎨
⎪⎪⎩

2i δm,0
1

s−1 , for s ≠ 1

0, for s = 1

Dixon, Kaplunovsky, Louis (1991); Harvey, Moore (1995); Borcherds (1998)



Renormalization for Generic n

Regularize with regulator Y :

Lm,n,s(Y ) = Lm,n,s(1) − 2i δm,n ∫
Y

1
dy y−se−4πyn.

To identify the divergence note:

∫

Y

1
dy y−s e−4πmy

= Es(4πm) −Y 1−sEs(4πmY )

with Es(z) the generalized exponential integral,

Es(z) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

zs−1
∫
z

∞

e−t t−s dt, for z ∈ C∗

1

s − 1
, for z = 0, s ≠ 1

0, for z = 0, s = 1

For s > 1, Es has a branch cut for z ∈ R−, with imaginary part is
given by Im(Es(−x)) =

π xs−1

Γ(s) .



Renormalize by substracting divergent terms for Y →∞:

Lrm,n,s = lim
Y→∞

[Lm,n,s(Y ) − 2i δm,n Y
1−s Es(4πmY )]

= Lm,n,s(1) − 2i δm,n Es(4πm)

We arrive at the renormalized modular integral:

I
r
f = lim

Y→∞
[If (Y ) − 2i ∑

m≫−∞

c(m,m)Y 1−sEs(4πmY )]

Bringmann, Diamantis, Ehlen (2016)



Evaluation of I rf

Evaluation of Irf is particularly elegant if

y−s f (τ, τ̄) = ∂τ̄ ĥ(τ, τ̄)

with

ĥ(τ, τ̄) = h(τ) + 2s ∫
i∞

−τ̄

f (τ,−v)

(−i(v + τ))s
dv

and
h(τ) = ∑

m≫−∞
m∈Z

d(m)qm

then
I
r
f = d(0)

This was important to demonstrate ⟨{Q,O}⟩r = 0 in topologically
twisted quantum field theory.
Korpas, JM, Moore, Nidaiev (2019)



Proof of the Equivalence with iε-prescription

Comparing the integrals beyond y = T0, one finds that the
equivalence reduces to the equality

lim
R→∞

Jl(m,R), and lim
R→∞

Jr(m,R),

with

Jl(m,R) = ∫

T0+iR

T0

dy y−s e−4πmy , Jr(m,R) = ∫

T0+sgn(m)R

T0

dy y−s e−4πmy ,

where sgn(m) = 1 for m ≥ 0, and sgn(m) = −1 for m < 0. Their
equality follows from a contour deformation:

T0

T0 + iR

T0 +R

RIl

Ir

ϕ

m ≥ 0

T0

T0 + iR

T0 −R

R

Il

Ir

m < 0



Two point closed string amplitude

Two point amplitude A2(s) with Mandelstam variable s = −k2 = 1.
Stieberger (2023)

A2(s = 1) = −∫
F
dτ ∧ d τ̄ ∫

T 2
dz ∧ dz̄ e2sG(z,z̄,τ,τ̄)

= 2i ∫
F

dτ ∧ d τ̄

y9/2

⎛

⎝
∣
ϑ3(2τ)

η(τ)6
∣

2

+ ∣
ϑ2(2τ)

η(τ)6
∣

2
⎞

⎠

The real part of the amplitude contributes to the mass shift, while
the imaginary part contributes to the decay width.

The regularized integral evaluates to

A
r
2(1) ≈ 27.85 + 59.37 i .

with 64π2/105 the exact value for the imaginary part.



iε-prescription for open string amplitudes

Recall

A0,E = −i ∫
Γ(E)

dτ
1

η(τ)24

The iε-prescription suggests to deform the contour for Re(τ) = 0
Im(τ) < 2π/T0 by τ = 2πi/(T0 + it), t ∈ [0,∞), and similarly for
Re(τ) = 1/2. We further split of the region for Im(τ) > T0.

This deforms the contour to:

−1 0 1

ΓE

− 1
2

1
2

⇒

−1 0 1

Y

Γ(Y )

γ(Y )

− 1
2

1
2

Eberhardt-Mizera (2022)



Then we can evaluate the contour integral for Γ(T0) explicitly as

Aiε
0,Γ(T0) = −12i

+ ∑
n∈Z
n≥−1

F (n)(
δn,odd

πn
e−2πnT̃0 + T̃ 13

0 E14(nT0) −
(−1)n

2
(2T̃0)

13 E14 (
n

4
T0)) .

with F (n) the Fourier coefficients of η−24, T̃0 = 2π/T0 and Es the
generalized exponential integral.

● The rhs is independent of T0. One finds numerically

Aiε
0 ≈ 4.436903 × 10−6

+ 1.467444 × 10−3 i

Convergence of numerical evaluation is sensitive to T0.
Imaginairy part is readily determined in closed form.

● For appropriate choice of T0, convergence is fast. For
example, for n < 76 and T0 = 4π, the accuracy is 10−71.

● The alternative regularization Ar
Π(T0)

equals Aiε
0,Γ(T̃0)

, and

both prescriptions are thus equivalent.



Generalization to other integrands, not necessarily a modular form
for SL(2,Z) is straightforward:

∫
Γ(T0)

dτ f (τ) =
1

2
F∞(0) + i∑

n

F∞(n)
δn,odd

πn
e−2πnT̃0

+ i ∑
`=1,2

∑
n

(−1)`−1F`(n) T̃
1−w
0 E2−w(nT0),

with F∞, F1 and F2 the Fourier coefficients near i∞, 0 and 1/2
respectively.



Circle Method for Open Amplitudes

Eberhardt-Mizera (2022) propose an interesting further contour
deformation, namely to integrate over Ford circle anchored in
(0,1/2]:

As a result, the amplitude follows from the restriction of the rhs for
Fµ(0) to the integers (d , c) with −d/c ∈ (0,1/2].



Specialization of that formula (1) expresses the amplitude as

A0,Γ∞ = −i
(2π)14

Γ(14)
G14

with

G14 =
∞

∑
c=1

c−14
∑

−c/2≤d<0
(d,c)=1

e−2πia/c , ad = 1 mod c .

This is a “partial” Ramanujan sum since the sum does not run
over d = 0, . . . , c − 1. We can determine the real part in closed
form, while a closed form does not seem to be available for the
imaginary part.

Numerical values of the two regularizations agree, which provides a
non-trivial check.



Type I RR-Sector Contribution to Vacuum Energy

For gauge group SO(n), the sum of the annulus, Möbius strip and
Klein bottle contributions takes the form

AI
=

1

210 ∫

∞

0
dy (n ∓ 32)2 16 + (n ± 32)2 256 e−2πy

+O(e−4πy
).

For n = 32, this simplifies to

AI
= −2i ∫

ΓE

f (τ), f (τ) =
ϑ2(τ)

4

η(τ)12

Numerical evaluation of the regularized amplitude reads

AI,r
Γ(T0)

≈ 0.020705983 + 0.011576613 i ,

with the exact value π6/120 − 8 for the imaginary part.



Circle Method

f is an element of a 3-dimensional vector-valued modular form.
The matrices Mν

µ are non-trivial.

The analysis gives

AI
Γ∞ =

2π6

Γ(6)
∑
c odd
c>0

1

c6 ∑
−c/2≤d<0
(c,d)=1

(−1)a e−πia/c ,

and matches with the previous evaluation.



Planar 2-Point Amplitude for Type I String Theory

The 2-point amplitude gives the one-loop
mass renormalization and decay rate.
The amplitude reads for generic s = −k2,

AI
2,Γ(s) = −i ∫

Γ
dτ ∫

1

0
dz (

ϑ1(τ, z)

η(τ)3
)

2s

,

For example, for s = 1 this evaluates to

AI
2,Γ(1) = −i ∫

Γ
dτ
ϑ2(2τ)

η(τ)6

Evaluated on the Γ(T0) contour, this evaluates to

AI
2,Γ(T0)

(1) = 0.003303550 − 0.130275973 i .

Imaginary part π4/112 − 1. After adding the contribution from
γ(T0), Im > 0.



The Circle Method gives

−2πi
(π/2)7/2

Γ(9/2)
G9/2

with

G9/2 =
∞

∑
c=1

c−9/2
∑

− c
2 ≤d<0

(c,d)=1

χd ,c

with the summand χd ,c defined as

χd ,c =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ω2
a+c/2,c ω

−1
2a,c ω

−6
a,c , c = 2 mod 4,

1√
2
ω2
a,4c ω

−1
a,2c ω

−6
a,c , c = 1 mod 2,

0, c = 0 mod 4,

and ωd ,c given in terms of the Dedekind sum s(d , c),
ωd ,c = eπi s(d ,c). It agrees with the mentioned value.



Non-Planar 2-Point Amplitude for Type I String Theory

The non-planar 2-point amplitude reads

AI,np
2 (s = 1) = −i ∫

Γ′
E

dτ ∫
1

0
dz (

ϑ4(τ, z)

η(τ)3
)

2

,

where Γ′E is the contour running from 0 to i∞, and then from
2 + i∞ to 2.

⇒ AI,np
2,Γ′(s = 1) ≈ −1.79524856 + 1.85541126 i

The exact value of the imaginary part is 2
105π

4.



Circle Method

This amplitude reads

AI,np
2 (s = 1) − i

π9/2

25/2 Γ(9/2)
Gnp

9/2

with

Gnp
9/2

=
∞

∑
c=1

1

c9/2
∑

−2c≤d<0
(c,d)=1

χnp
d ,c ,

with

χnp
d ,c =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ω−2
4a,cω

5
2a,cω

−8
a,c e

πi d
2c , c = 0 mod 4,

0, c = 2 mod 4,
1√
2
ω−2
a,4c ω

5
a,2c ω

−8
a,c e

πi d
2c , c = 1 mod 2,



Summary:
We have seen various techniques with which one-loop string
amplitudes can be explicitly evaluated, ie using the iε-prescription,
exponential integrals and the Circle Method.

Outlook:
There are various aspects to consider going forward, including:

● mass renormalization/decay rate

● Optical theorem

● Regge trajectory

● higher point functions

Thank you!


