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Why black hole = string?

ℓP

ℓs

So cannot expect exact match  henceforth ignore O(1) factors.→

S =
A

4G

``Broad brush’’ picture

Identify the relevant physics and ignore unnecessary details.

→

→

S =
A

4G

Microscopic (statistical) picture for 
Schwarzschild or Kerr black holes

 from strings?

in asymptotically flat space in  D ≥ 4

NO: susy, AdS or low dim toy model!



Are black holes = strings ?

✓
massive 

highly degenerate

black holes fundamental strings

We are in D=4 for now.
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Puzzles with rotation

II. In :  ultraspinning black holes and rings with  
but  black holes/rings look nothing like rotating rods!

D > 4 ∃ J > JKerr
J = JRegge

JKerr = g2 ( M
Ms )
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< J < ( M
Ms )
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= JRegge

 I. No black hole counterpart for strings with  ! JKerr < J < JRegge

thin, long, rigidly 
rotating rods with 
small degeneracy

roundish black holes 
with large degeneracy

JKerr = g2 ( M
Ms )

2

≪ ( M
Ms )

2

= JRegge

 ``  ” conflates two different bounds:J ≤ M2

Does the black hole - string correspondence fail?



Resolving the puzzles
Both puzzles hide an assumption:  

one-to-one matching of stationary solutions.

At finite coupling: all objects time-evolve !
susy: no worry 
static: no worry 

rotating: crucial!



Resolving the puzzles
Both puzzles hide an assumption:  

one-to-one matching of stationary solutions.

The puzzles are resolved if we  

account for dynamics !

At finite coupling: all objects time-evolve !

Instability timescale  transition timescale.⋚

susy: no worry 
static: no worry 

rotating: crucial!
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G = ℓ2
P = g2ℓ2

s

black holes fundamental strings

Correspondence principle
[Susskind’93], [Horowitz,Polchinski’96], [Damour,Veneziano’98]

g g

∼
1

(g2S) 2
D − 2

1
ℓ2

s
curvature

Now we are in D dimensions.

∼
1
ℓ2

s

g2 =
1
S

≪ 1

Stringy corrections to 
geometry important!

S ∼
M
Ms

S ∼ ( M
MP )

D − 2
D − 3

=

Statistical interpretation of Bekenstein-Hawking entropy via degeneracy of strings!

g g
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A `` ’t Hooft coupling ’’
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black holes fundamental strings

A `` ’t Hooft coupling ’’

g g

g2S ∼ 1g2S ≫ 1 g2S ≪ 1

g2S : `` ’t Hooft coupling ’’

So  plays the same role as  in AdS/CFT or  in D-brane systems.g2S λ = g2
YMN gN

fix  & change S g

 

g g



Near vs far from BPS correspondences

Near 
BPS

gN ∼ 1gN ≫ 1 gN ≪ 1

[Strominger,Vafa’96]:

fix  & change N g

g2S ∼ 1g2S ≫ 1 g2S ≪ 1

Far from 
BPS

[Horowitz,Polchinski’96]:

fix  & change S g



rH ≫ ℓs

= overarching framework for microscopic 
understanding of black holes in string theory, 

e.g. BH entropy S =
A

4G

Black hole - string correspondence

Interpolate by changing the coupling  adiabatically 

while holding  fixed.

≈
S, J, Q

Mass renormalization in general hard to control 
(prevents precise matching).

General idea:



Details of the correspondence

• Mass 
• Size 
• Decay rates 
• ...

Properties of black hole and fundamental string 
have to match at correspondence point:

Also need a `physical realization’ or a `knob’.

`Correspondence' only if   adiabaticity.∃ ≈



Mass
Fixing  as we vary   mass of black hole and string get renormalized:S g →

M = SMs − O(g2) M =
Ms

g2
(g2S)D − 3

D − 2

g2 =
1
S

=

smooth  ✓

[Susskind’93]

adiabats

curves along which 
entropy constant black hole

string



Size
Discrepancy: string much larger than black hole @ correspondence point.

Lℓs = Sℓs ≫ ℓs rH = ℓs

random-walk string

We have neglected the effect of self-gravitation of the string!

This will shrink the string. [Horowitz,Polchinski’97]



Decay channels
When : neither strings nor black holes stationary anymore!0 < g < ∞

Quantum effects in black holes  decay via emission of Hawking radiation→

Self-interaction of massive string  decay→
fragmentation
emission of light strings



Decay rates

g = 0
stationary

g = ∞
stationary

maximium @ correspondence: g2 =
1
S

Γ ∼ g2M = g2Sℓ−1
s

Γ ∼ TBH =
1
rH

= (g2S)− 1
D − 2 ℓ−1

s

Γ

g21
S

1
ℓs black hole

string

[Damour,Veneziano’98]



Adiabaticity ?
g = eϕ

rate of change     of systemΔt−1
g =

·g
g

= ·ϕ

1
Sℓs

< Δt−1
g <

1
ℓs

Goldilocks range for the rate of change of  — not too slow and not too fast :g

dilaton: long wavelength!

slow enough to 
not excite the state 

fast enough to stay 
@ const entropy

any finite : radiation!g



Correspondence in the `dilaton lab’
Tuning coupling  while entropy  is fixed, 
yields within Goldilocks adiabaticity range 

transitions between black hole  string ball phases:

g = eϕ S

↔
rH ≫ ℓs

Figure 3: As the dilaton wave passes, it locally changes the value of the string coupling and the
system alternates between the form of a black hole and a massive string. The coupling oscillates
around the value g

2 = 1/S and, for an adiabatic change, the wavelength must be much longer than
the string scale `s.

the horizon radius (2.5) becomes string size, rH = `s, and the correction terms in (2.8) become

non-negligible.4 Since the Bekenstein-Hawking entropy of the black hole is
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◆D�2
D�3

=
1

g2

✓
g
2
M

Ms

◆D�2
D�3

, (2.12)

then we can characterize (2.11) as the point where5

g
2 =

1

S
. (2.13)

We will refer to this value of the string coupling—at which we expect the transition between

a static black hole and a massive string state—as the correspondence point [2, 3].

We see that the dimensionless parameter that controls whether we are in the stringy or

in the black hole regime is not really g
2 but g2S. This is apparent if we write

K =
�
g
2
S
�� 4

D�2
1

`4s

. (2.14)

When g
2
S � 1 the horizon curvature is much lower than the string scale, while for g2S . 1 we

are in a fully stringy regime. In this respect, g2S plays the same role as the ’t Hooft coupling

� = g
2

YM
N in AdS/CFT, or gN in D-brane systems, with N the number of D-branes6. The

classical black hole regime need not require g ! 1, but rather g
2
S ! 1, so semiclassical

approximations to black holes remain valid when g is small if S is su�ciently large. This will

4
It is easy to verify that the Einstein-frame corrections in (2.10) also become important at this moment,

see appendix A.
5
A similar point was first made early on in [10].

6
The di↵erent powers of g reflect that fundamental string masses are / g

0
while D-brane masses are / g

�1
.

– 8 –

[Susskind’93], [Horowitz,Polchinski’96]

ϕ

ϕ



Correspondence in evaporation
Now coupling  stays fixed, but mass decreases as the black hole emits 
Hawking radiation. Natural expectation: black hole  string ball.

g
→

rH ≫ ℓs

∼ ℓs

M M

[Bowick,Smolin,Wijewardhana’86]



Summary: static correspondence

fundamental stringsblack holes

applies to generic black holes in general dimensions→

relates black holes to weakly coupled strings and thus gives 
a statistical interpretation of black hole entropy!→

* is not exact counting of the entropy

*

**
** so far only static black holes!

is physically realized in evaporation or induced by dilaton wave→
Figure 3: As the dilaton wave passes, it locally changes the value of the string coupling and the
system alternates between the form of a black hole and a massive string. The coupling oscillates
around the value g

2 = 1/S and, for an adiabatic change, the wavelength must be much longer than
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Summary: static correspondence

fundamental stringsblack holes

Only parametric matching, and only at  (one value!)g2S ∼ 1

Adiabaticity only approximate (but  Goldilocks regime).∃

Self-gravity necessary (smoothness of transition not guaranteed).

Rotation adds qualitatively new features!

Limitations:



III. Black hole - string 
correspondence

with rotation



Rotating black holes  
&  

fundamental strings



A black hole — string zoo

ℓM = (GM) 1
D − 3 ℓJ =

J
M

mass length spin lengthcharacteristic 
length scales:

[Emparan,Harmark,
Niarchos,Obers’09]

ℓJ < ℓM : `Kerr regime’

unique, round-ish, dynamically stable

1

[Myers,Perry’86] 1
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A black hole — string zoo

ℓM = (GM) 1
D − 3 ℓJ =

J
M

mass length spin lengthcharacteristic 
length scales:

[Emparan,Harmark,
Niarchos,Obers’09]

Focus on rotation in a single plane, express results in adiabatic invariant  and .S J

ℓJ < ℓM : `Kerr regime’

unique, round-ish, dynamically stable

ℓJ > ℓM : `ultraspinning 
regime’

different shapes and topologies, dynamically unstable



JKerr

J
Kerr regime Ultraspinning regime

Black hole instabilities



Black hole instabilities
J

JKerr

Kerr regime Ultraspinning regime

classically stable



Black hole instabilities
J

JKerr

Kerr regime Ultraspinning regime

unstable: black holes in  & black rings in D ≥ 6 D ≥ 5classically stable

Gregory-Laflamme 
instabilities

bar 
instabilities



Black hole instabilities
J

JKerr

Kerr regime Ultraspinning regime

unstable: black holes in  & black rings in D ≥ 6 D ≥ 5classically stable

Gregory-Laflamme 
instabilities

fragmentation

bar 
instabilities

radiationDeath by



The correspondence 
with rotation



Correspondence diagram

S
J

g2

1
S

String/black hole 
transition

Kerr/stability bound 
for black holes

Fixed entropy S



Strings to black holes

J

g2

1
S

D ≥ 4

?

S



Strings to black holes

J

g2

1
S

D ≥ 4

bars and hybrids

Solves puzzle 1: Highly rotating strings do have black hole 
counter parts in the form of non-stationary configurations!

S



Black holes to strings

J

g2

1
S

D ≥ 6

S

?



Black holes to strings

J

g2

1
S

D ≥ 6

Solves puzzle 2: Ultraspinning black holes are unstable, 
their decay products have stringy counterparts!

multi-black hole

multi-string

S



Summary: rotating correspondence

New elements:

• Non-stationary phases:

• Dynamical factors: black hole instabilities and emission of radiation

fundamental stringsblack holes

As for static: statistical interpretation of black hole entropy, physically realized in 
`dilaton lab' or evaporation, applies to generic black holes in any dimension.

‣ black bars 
‣  black hole — string hybrids 
‣  multi—string states



Summary: rotating correspondence

New elements:

• Non-stationary phases:

• Dynamical factors: black hole instabilities and emission of radiation

fundamental stringsblack holes

As for static: statistical interpretation of black hole entropy, physically realized in 
`dilaton lab' or evaporation, applies to generic black holes in any dimension.

‣ black bars 
‣  black hole — string hybrids 
‣  multi—string states

Test the correspondence with rotation: shapes and sizes→



IV. Testing the 
correspondence

with rotation



Spinning up a black hole

heat TS

Mass  M

mechanical energy ΩJ



Spinning up a black hole

Overall size of a black hole of mass  must be smaller for larger . M J

( M
MP )

D−2

∝ SD−5 ( S2

4π2
+ J2) |J | ≤ S

heat TS

Mass  M

mechanical energy ΩJ

Geometrical counterpart of 
heat (entropy) is horizon area.

Decreasing  increases  for a given total energy. TS ΩJ



Spinning up a string

Oscillator excitations for mass  M

coherently rotate jitter in a random-walk



Spinning up a string

S2 ∝ ( M
Ms )

2

− 2 |J | |J | = O( M
Ms

)2

Oscillator excitations for mass  M

coherently rotate jitter in a random-walk

Overall size of the string ball must be smaller for larger .J

Decreasing random-walk increases rotation for a given total energy. 



What do we expect?

pancake effect for string and black hole but no matching

r2
⊥

r2
∥

− 1 ∝ −
J2

S2small :J ≪ S

large :J > > S

Size  and   to plane of rotation:⊥ ∥



Size and shape 
of strings



String

Open or closed bosonic string in  spacetime dimensions.D

String Theory

Elementary objects are strings and branes!

closed

open

☺ vibrations of string Ñ particles Ą graviton
interaction of closed strings Ñ spacetime in dynamic way
unified description of all particles and interactions

😱 extra dimensions with non-trivial topology
extra symmetries (supersymmetry!)
extra fields (in addition to Standard Model)

22 / 36

Xμ(τ, σ) = Xμ(τ, σ + π)
Xμ(τ, σ)

Oscillators  ( ) with excitation level αμ
n α̃μ

n n

Light-cone gauge:  with αμ
n → αi

n i = 1,…, D − 2
transverse directions



String

Open or closed bosonic string in  spacetime dimensions.D

String Theory

Elementary objects are strings and branes!

closed

open

☺ vibrations of string Ñ particles Ą graviton
interaction of closed strings Ñ spacetime in dynamic way
unified description of all particles and interactions

😱 extra dimensions with non-trivial topology
extra symmetries (supersymmetry!)
extra fields (in addition to Standard Model)

22 / 36

Xμ(τ, σ) = Xμ(τ, σ + π)
Xμ(τ, σ)

Oscillators  ( ) with excitation level αμ
n α̃μ

n n

Light-cone gauge:  with αμ
n → αi

n i = 1,…, D − 2

Mass: M2 ∼ NM2
s

transverse directions

N =
D−2

∑
i=1

∞

∑
n=1

αi
−nαi

n level-counting operator



String

Open or closed bosonic string in  spacetime dimensions.D

String Theory

Elementary objects are strings and branes!

closed

open

☺ vibrations of string Ñ particles Ą graviton
interaction of closed strings Ñ spacetime in dynamic way
unified description of all particles and interactions

😱 extra dimensions with non-trivial topology
extra symmetries (supersymmetry!)
extra fields (in addition to Standard Model)

22 / 36

Xμ(τ, σ) = Xμ(τ, σ + π)
Xμ(τ, σ)

Oscillators  ( ) with excitation level αμ
n α̃μ

n n

Light-cone gauge:  with αμ
n → αi

n i = 1,…, D − 2

Mass: M2 ∼ NM2
s

Spin: J = − i
∞

∑
n=1

1
n

(α1
−nα2

n − α2
−nα1

n)

transverse directions

coherent rotation in a single plane

N =
D−2

∑
i=1

∞

∑
n=1

αi
−nαi

n level-counting operator



Static string
β = 1

T
inverse temperature

dn ∼ n−1eπ 2
3 n

D − 2
Partition 
function:

Z ≡ Tr(e−βN) =
∞

∏
n=1

( 1
1 − e−βn )



Static string
β = 1

T
inverse temperature

Z(β) ∼ β
c
2e

cπ2
6β c ≡ D − 2

transverse directions

High-temperature 
limit :β → 0

dn ∼ n−1eπ 2
3 n

D − 2
Partition 
function:

Z ≡ Tr(e−βN) =
∞

∏
n=1

( 1
1 − e−βn )



Static string
β = 1

T
inverse temperature

Z(β) ∼ β
c
2e

cπ2
6β c ≡ D − 2

transverse directions

High-temperature 
limit :β → 0

dn ∼ n−1eπ 2
3 n

dn ∼ n− c + 3
4 e2π c

6 n

[Hardy,Ramanujan’18]

Z(β) =
∞

∑
n=1

dn e−βnString entropy:

D − 2

saddle point 
approximation

large n

Partition 
function:

Z ≡ Tr(e−βN) =
∞

∏
n=1

( 1
1 − e−βn )



Static string
β = 1

T
inverse temperature

Z(β) ∼ β
c
2e

cπ2
6β c ≡ D − 2

transverse directions

High-temperature 
limit :β → 0

dn ∼ n−1eπ 2
3 n

dn ∼ n− c + 3
4 e2π c

6 n

[Hardy,Ramanujan’18]

Z(β) =
∞

∑
n=1

dn e−βnString entropy:

D − 2

Strings size: ⟨R2⟩ =
∞

∑
n=1

R2
n e−βn R2

n ∼ 1
c π c

6 n dn

[Mitchell,Turok’87] 

saddle point 
approximation

large n

R2 = (Xi)2 =
∞

∑
n=1

1
n2

αi
−nαi

n i = 1,2,...,D − 2

Partition 
function:

Z ≡ Tr(e−βN) =
∞

∏
n=1

( 1
1 − e−βn )



Static string
β = 1

T
inverse temperature

Z(β) ∼ β
c
2e

cπ2
6β c ≡ D − 2

transverse directions

High-temperature 
limit :β → 0

dn ∼ n−1eπ 2
3 n

dn ∼ n− c + 3
4 e2π c

6 n

[Hardy,Ramanujan’18]

Z(β) =
∞

∑
n=1

dn e−βnString entropy:

D − 2

Strings size: ⟨R2⟩ =
∞

∑
n=1

R2
n e−βn R2

n ∼ 1
c π c

6 n dn

[Mitchell,Turok’87] 

Typical string size  as expected for random walks.⟨r2⟩n ∼
R2

n

dn
∼ n ∝ M

saddle point 
approximation

large n

Z ≡ Tr(e−βN) =
∞

∏
n=1

( 1
1 − e−βn )Partition 

function:



Rotating string

High-temperature 
limit :β → 0

c ≡ D − 2
transverse directions

Z(β) =
∞

∑
n=1

dn,J e−βnString entropy:

Strings size: ⟨R2⟩ =
∞

∑
n=1

R2
n,Je

−β(n−ΩJ)
,J

−ΩJ

,J

saddle point 
approximation

large n

1
(1 − e−β(n+Ω))(1 − e−β(n−Ω))

D − 4

Z(β, Ω) ∼ β
c
2e

cπ2
6β

Ω
sinh(πΩ)Ω

eβΩJ

i = 1,2

i = 3,..., D − 2
R2 = (Xi)2 =

∞

∑
n=1

1
n2

αi
−nαi

n

dn,J

R2
n,J

R2
n,∥

R2
n,⊥

[Russo,Susskind’94]

for large J = O(n)

Z ≡ Tr(e−β(N−ΩJ)) =
∞

∏
n=1

( 1
1 − e−βn )Partition 

function:
−Ω J



Rotating string

High-temperature 
limit :β → 0

c ≡ D − 2
transverse directions

dn ∼ n−1eπ 2
3 n

Z ≡ Tr(e−β(N−ΩJ)) =
∞

∏
n=1

( 1
1 − e−βn )Partition 

function:

saddle point 
approximation

large n

1
(1 − e−β(n+Ω))(1 − e−β(n−Ω))

D − 4

Z(β, Ω) ∼ β
c
2e

cπ2
6β

Ω
sinh(πΩ)Ω

What are the typical string sizes ⟨r2
J ⟩n ∼

R2
n,J

dn,J

dn,J

Strings size: ⟨R2⟩ =
∞

∑
n=1

R2
n,Je

−β(n−ΩJ)
,J

−ΩJ

Z(β) =
∞

∑
n=1

dn,J e−βnString entropy: eβΩJ
,J [Russo,Susskind’94]

for large J = O(n)

R2
n,J

R2
n,∥

R2
n,⊥

−Ω J

?
R2

n,∥

dn,J

R2
n,⊥

dn,J



⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − J2

n , J = O(1)

1 − J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

Average string sizes

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝ 1 + O (n−1/2) −
J2

n
J = O(1) :

J = O(n) :
⟨r̄2

⊥⟩n

⟨r̄2
∥⟩n

∝
n − |J |

|J |

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 + O( 1

n
) − O( J2

n
), J = O(1)

1 − μ − ν
2

J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

Note: All numerical 
factors are dropped!

⟨r̄2
∥⟩n

ℓ2
s

∝
n + O(1) + O(J2/ n), J = O(1)

n − ν |J | , J = O( n)
|J | , J = O(n)

Individually both vary significantly with the strength of interaction.

⟨r̄2
⊥⟩n

ℓ2
s

∝

n, J = O(1)

n − μ |J | , J = O( n)

n − |J | , J = O(n)

⟨r̄2
∥⟩n

ℓ2
s

∝
n, J = O(1)

n − ν |J | , J = O( n)
|J | , J = O(n)

Pancake effect larger for larger  .J

⟨r̄2
⊥⟩n

ℓ2
s

∝

n J = O(1)

n − μ |J | J = O( n)

n − |J | J = O(n)

⟨r̄2
∥⟩n

ℓ2
s

∝
n J = O(1)

n − μ |J | J = O( n)
|J | J = O(n)

Transverse to rotation plane: Along rotation plane:



⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − J2

n J = O(1)
1

C∥
< 1 J = O( n)

S
|J |

J = O(n)

subleading 
orders

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − J2

n , J = O(1)

1 − J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

Average string sizes

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝ 1 + O (n−1/2) −
J2

n
J = O(1) :

J = O(n) :
⟨r̄2

⊥⟩n

⟨r̄2
∥⟩n

∝
n − |J |

|J |

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 + O( 1

n
) − O( J2

n
), J = O(1)

1 − μ − ν
2

J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

Note: All numerical 
factors are dropped!

⟨r̄2
∥⟩n

ℓ2
s

∝
n + O(1) + O(J2/ n), J = O(1)

n − ν |J | , J = O( n)
|J | , J = O(n)

The ratio varies less with  and behaves as approximate adiabatic invariant. g

Individually both vary significantly with the strength of interaction.

⟨r̄2
⊥⟩n

ℓ2
s

∝

n, J = O(1)

n − μ |J | , J = O( n)

n − |J | , J = O(n)

⟨r̄2
∥⟩n

ℓ2
s

∝
n, J = O(1)

n − ν |J | , J = O( n)
|J | , J = O(n)

Pancake effect larger for larger  .J

⟨r̄2
⊥⟩n

ℓ2
s

∝

n J = O(1)

n − μ |J | J = O( n)

n − |J | J = O(n)

⟨r̄2
∥⟩n

ℓ2
s

∝
n J = O(1)

n − μ |J | J = O( n)
|J | J = O(n)

Transverse to rotation plane: Along rotation plane:



Average string sizes

⟨r̄2
⊥⟩n

ℓ2
s

∝

n J = O(1)

n − μ |J | J = O( n)

n − |J | J = O(n)

⟨r̄2
∥⟩n

ℓ2
s

∝
n J = O(1)

n − μ |J | J = O( n)
|J | J = O(n)

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝ 1 + O (n−1/2) −
J2

n
J = O(1) :

J = O(n) :
⟨r̄2

⊥⟩n

⟨r̄2
∥⟩n

∝
n − |J |

|J |

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 + O( 1

n
) − O( J2

n
), J = O(1)

1 − μ − ν
2

J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

n J = O(1)
1

C∥
< 1 J = O( n)

S
|J |

J = O(n)

Note: All numerical 
factors are dropped!

⟨r̄2
∥⟩n

ℓ2
s

∝
n + O(1) + O(J2/ n), J = O(1)

n − ν |J | , J = O( n)
|J | , J = O(n)

subleading 
orders

The ratio varies less with  and behaves as approximate adiabatic invariant. g

Individually both vary significantly with the strength of interaction.

Pancake effect larger for larger  .J

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − J2

n , J = O(1)

1 − J
n , J = O( n)

n − |J |

|J |
, J = O(n)

,

+γ1 +
γ2

n
+γ1 +

γ2

n
+

γ∥

n
J2

subleading 
orders

subleading 
orders

γ∥ > 1

C∥ > 1

Transverse to rotation plane: Along rotation plane:



Size and shape 
of black holes



Black hole sizes
Myers-Perry

𝒜(D−4)
⊥ = ΩD−4(r0 cos θ)D−4

r⊥ ≡ ( 𝒜(D−4)
⊥ (θ = 0)

ΩD−4 )
1

D − 4

= r0

Natural to define the transverse characteristic radius at the pole 
 on the horizon:θ = 0

horizon radius



Black hole sizes
Myers-Perry

𝒜(D−4)
⊥ = ΩD−4(r0 cos θ)D−4

r⊥ ≡ ( 𝒜(D−4)
⊥ (θ = 0)

ΩD−4 )
1

D − 4

= r0

Natural to define the transverse characteristic radius at the pole 
 on the horizon:θ = 0

horizon radius

Define characteristic radius in rotation plane via horizon area in the 
 directions:(θ, ϕ)

𝒜(2)
∥ = ∫ dθdϕ gθθgϕϕ |r=r0

r(aJ)
∥ ≡

𝒜(2)
∥

4π
= r2

0 + a2
J

r0

aJ
=

S
2πJ

horizon radius spin length

More physical definition uses critical impact parameter for the capture of a null geodesic in the equatorial plan but form similar to .r(aJ)
∥

*

*



Black hole sizes
r⊥ =

D − 2
4π

S
M r∥ =

D − 2
4π

S2 + 4π2J2

M

Individually both get renormalized (since  does).M



Black hole sizes
r⊥ =

D − 2
4π

S
M r∥ =

D − 2
4π

S2 + 4π2J2

M

Individually both get renormalized (since  does).M

r⊥

r∥
=

S

S2 + 4π2J2

is again an approximate adiabatic invariant (since  and  are).S J

The ratio



Black hole sizes
r⊥ =

D − 2
4π

S
M r∥ =

D − 2
4π

S2 + 4π2J2

M

Individually both get renormalized (since  does).M

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S

Pancake effect larger for larger  .J

r⊥

r∥
=

S

S2 + 4π2J2

is again an approximate adiabatic invariant (since  and  are).S J

The ratio



Do rotating strings 
size up/down like 

rotating black holes?



Size: black hole vs string

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

S2 , J = O(1)
1

C∥
< 1, J = O( n)

S
|J |

, J = O(n)

Note: Overall numerical 
factors are dropped!

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S



Size: black hole vs string

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

S2 , J = O(1)
1

C∥
< 1, J = O( n)

S
|J |

, J = O(n)

For small , string and black hole agree:  !J ∝
J2

S2

Note: Overall numerical 
factors are dropped!

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S



Size: black hole vs string

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

S2 , J = O(1)
1

C∥
< 1, J = O( n)

S
|J |

, J = O(n)

For small , string and black hole agree:  !J ∝
J2

S2

Note: Overall numerical 
factors are dropped!

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

For typical , ratio (string)  ratio (black) at leading order.J ≈

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S



Size: black hole vs string

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

S2 , J = O(1)
1

C∥
< 1, J = O( n)

S
|J |

, J = O(n)

For small , string and black hole agree:  !J ∝
J2

S2

Note: Overall numerical 
factors are dropped!

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

For large , ratio (string)  ratio (black hole)  
Black hole gets pancaked more than string.

J ≫ ⇒
(Note: still no self-gravity)

For typical , ratio (string)  ratio (black) at leading order.J ≈

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S



Size: black hole vs string

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

∝

1 − γ∥
J2

S2 , J = O(1)
1

C∥
< 1, J = O( n)

S
|J |

, J = O(n)

For small , string and black hole agree:  !J ∝
J2

S2

Note: Overall numerical 
factors are dropped!

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

For large , ratio (string)  ratio (black hole)  
Black hole gets pancaked more than string.

J ≫ ⇒
(Note: still no self-gravity)

For typical , ratio (string)  ratio (black) at leading order.J ≈

Mismatch beyond small  expected: no adiabatic correspondence 
but dynamics & non-stationary phases.

J

r2
⊥

r2
∥

=

1 − 4π2 J2

S2 , |J | ≪ S

C < 1, |J | ∼ S
1

4π2
S2

J2 , |J | ≫ S



Restoring ℏ ≠ 1

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

S ∝ n  largenS ∝ ℏ−1 large (for finite horizon)

fundamental stringsblack holes



Restoring ℏ ≠ 1

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

S ∝ n  largen

J2

n
∝

J2

S2

our 
result✓

S ∝ ℏ−1

J
ℏS

large

large

J → − J

J2

S2 semi-classical result

(for finite horizon)

(for semi-classical 
angular momentum)

fundamental stringsblack holes



Restoring ℏ ≠ 1

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

S ∝ n  largen

J2

n
∝

J2

S2

our 
result

J2

n3/2
∝

J2

S3

our 
result

✓

S ∝ ℏ−1

J
ℏS

large

large

J → − J

J2

S2

ℏJ2

(ℏS)3

semi-classical result

quantum correction

(for finite horizon)

(for semi-classical 
angular momentum)

fundamental stringsblack holes

✓



Restoring ℏ ≠ 1

r⊥

r∥
=

1 − 2π2 J2

S2 , |J | ≪ S

const. < 1, |J | ∼ S
1

2π
S

|J |
, |J | ≫ S

⟨r̄2
⊥⟩n

⟨r̄2
∥⟩n

≫
r⊥

r∥

S ∝ n  largen

J2

n
∝

J2

S2

our 
result

J2

n3/2
∝

J2

S3

J2

n1/2
∝

J2

S

our 
result

does not appear✓

✓

…

S ∝ ℏ−1

J
ℏS

large

large

J → − J

J2

S2

ℏJ2

(ℏS)3

semi-classical result

quantum correction

ℏ−1J2

ℏS
cannot appear

(for finite horizon)

(for semi-classical 
angular momentum)

fundamental stringsblack holes

✓



Thank you!


