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correspondence

General framework for matching
black holes and massive states of fundamental strings
at a point where their physical properties smoothly agree.

(mass, entropy, temperature, decay rates,...)
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Why black hole =
®

Microscopic (statistical) picture for
Schwarzschild or Kerr black holes

from strings?

in asymptotically flat space in D > 4

—> NO: susy, AdS or low dim toy model!
So cannot expect exact match — henceforth ignore O(1) factors.

—> “Broad brush’’ picture

Identity the relevant physics and ignore unnecessary details.
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’ tm
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We are in D=4 for now.
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Puzzles with rotation

< M? " conflates two different bounds:

2 2
M M
JKerr =& ﬁ < ﬁ — JRegge

. No black hole counterpart for strings with Jg,,,, < J < Jg,00, !

T 1

roundish black holes  thin, long, rigidly

with large degeneracy rotating rods with
small degeneracy

II.In D > 4: 3 ultraspinning black holes and rings with J > Jg,..,
but J = Jg, .. black holes/rings look nothing like rotating rods!

Does the black hole - string correspondence fail?
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Resolving the puzzles

Both puzzles hide an assumption:

one-to-one matching of stationary solutions.

SUSy: No worry

At finite coupling: all objects time-evolve | static: no worry
rotating: cruciall

Instability timescale § transition timescale.

The puzzles are resolved it we

account for dynamics !



. Black hole - string
correspondence
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Correspondence principle

[Susskind’23], [Horowitz,Polchinski’'?6], [Damour,Veneziano’'98]

BLACK RIOLES
8
N
-
g
1 1 1
T ~ 2 N2 ' '
curvature (928027 2 T L2 Stringy corrections to
, geometry important!
gr=—<x1
S
D-2
M D-3 l M
S~ |(— = S~ =
MP MS

Statistical interpretation of Bekenstein-Hawking entropy via degeneracy of strings!

Now we are in D dimensions.
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g2S > 1 g2S ~ 1 g%S < 1

So g°S plays the same role as 1 = g%MN in AdS/CFT or gN in D-brane systems.



Near vs far from BPS correspondences

® ¥

gN > 1 gN ~ 1 gN < 1

[Strominger,Vafa'96]:

Near
BPS

| fix N & change g
[Horowitz,Polchinski’96]:

Far from
BPS

| fix S & change g

R sy



Black hole - string correspondence

= overarching framework for microscopic

understanding of black holes in string theory,

A
e.g. BH entropy § = G

General idea:

Interpolate by changing the coupling ~ adiabatically
while holding §, J, O fixed.

Mass renormalization in general hard to control

(prevents precise matching).



Details of the correspondence

Properties of black hole and fundamental string

have to match at correspondence point:

* Mass
* Size
* Decay rates

‘Correspondence’ only if 4 & adiabaticity.

Also need a ‘physical realization’ or a “knob'.



Mass

Fixing S as we vary g = mass of black hole and string get renormalized:

[Susskind'9@3]

M = —(g*S)r=>
= 2
T g
1
g =—
M S
M, 4
adiabats — smooth v/
S .'—“}
curves along which string v
entropy constant black hole
>
1 2
- 8
S



Discrepancy: string much larger than black hole @ correspondence point.

VIZ, =/St,> ¢,

random-walk string

We have neglected the effect of self-gravitation of the string!

l

This will shrink the string. [Horowitz,Polchinski’97]



Decay channels

When 0 < g < o0: neither strings nor black holes stationary anymore!

. . . . fragmentation
Self-interaction of massive string — decay <

emission of light strings

Quantum effects in black holes — decay via emission of Hawking radiation




Decay rates

[Damour,Veneziano'98]

F !

maximium @ correspondence: g2 =

1 !

s black hole
1
I'~Tpy=—= (825)_ﬁfs_1
YH
stationary
g =0
stationary/ | 9)

§=0 s 8



Adiabaticity ?

e?

|| «— II

g
rate of change Atg_l = § of system

/ g\

fast enough to stay slow enough to
@ const entropy not excite the state
any finite g: radiation! dilaton: long wavelength!

Goldilocks range for the rate of change of g — not too slow and not too fast :

1 o1
— <A1y <—
SZ, 2



Correspondence in the "dilaton lab’

Tuning coupling g = e? while entropy S is fixed,
yields within Goldilocks adiabaticity range

transitions between black hole < string ball phases:

[Susskind’93], [Horowitz,Polchinski’'96]



Correspondence in evaporation

Now coupling g stays fixed, but mass decreases as the black hole emits

Hawking radiation. Natural expectation: black hole — string ball.

[Bowick,Smolin,Wijewardhana'86]



Summary: static correspondence

BLACK HOLES

relates black holes to weakly coupled strings and thus gives
. . *
a statistical interpretation of black hole entropy!

* is not exact counting of the entropy

—> is physically realized in evaporation or induced by dilaton wave

—> applies to generic black holes in general dimensions **

** so far only static black holes!



Summary: static correspondence

BLACK HOLES

Limitations:

Only parametric matching, and only at g2S ~ 1 (one value!)

Adiabaticity only approximate (but 4 Goldilocks regime).

Self-gravity necessary (smoothness of transition not guaranteed).

Rotation adds qualitatively new features!



1. Black hole - string
correspondence

with rotation



Rotating black holes
&
fundamental strings
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A black hole — string zoo

o mass length spin length
characteristic 9 P 9

length scales: £ry = (GM)D+3 £, =—

®
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A black hole — string zoo

mass length spin lenath
characteristic 9 P g [Emparan,Harmark,
| th les: 1 J Niarchos,Obers'09]
eng SCales: fM — (GM)—D_3 f] — M

£, <y Kerr regime’

‘ultraspinning
regime’

different shapes and topologies, dynamically unstable

Focus on rotation in a single plane, express results in adiabatic invariant § and J.



Black hole instabilities
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Black hole instabilities

Kerr regime

o & O

classically stable




Black hole instabilities

Ultraspinning regime

— - O

classically stable unstable: black holesin D > 6 & black ringsin D > 5
bar Gregory-Laflamme
instabilities instabilities

4

L



Black hole instabilities

NS

classically stable

Ultraspinning regime

- O

unstable: black holesin D > 6 & black ringsin D > 5

bar Gregory-Laflamme
instabilities instabilities

/ @e

' !

") o

Death by radiation fragmentation




The correspondence
with rotation



Correspondence diagram

Kerr/stability bound

ng for black holes Fixed entropy S

1

- I T,
S

transition




Strings to black holes




Strings to black holes

g7,

‘ / X bars and hybrids

| . J

Solves puzzle 1: Highly rotating strings do have black hole
counter parts in the form of non-stationary configurations!



Black holes to strings




Black holes to strings

® & O

S
7 el

S
Solves puzzle 2: Ultraspinning black holes are unstable,

their decay products have stringy counterparts!
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BLACK HOLES

As for static: statistical interpretation of black hole entropy, physically realized in
‘dilaton lab' or evaporation, applies to generic black holes in any dimension.
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e Dynamical factors: black hole instabilities and emission of radiation

» black bars

* Non-stationary phases: > black hole — string hybrids

» multi-string states



Summary: rotating correspondence

BLACK HOLES

As for static: statistical interpretation of black hole entropy, physically realized in
‘dilaton lab' or evaporation, applies to generic black holes in any dimension.

New elements:

e Dynamical factors: black hole instabilities and emission of radiation

» black bars

* Non-stationary phases: > black hole — string hybrids

» multi-string states

—> Test the correspondence with rotation: shapes and sizes



V. Testing the
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with rotation
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Spinning up a black hole

Mass M

SN

heat TS mechanical energy J

Decreasing TS increases J for a given total energy.

Geometrical counterpart of
heat (entropy) is horizon area.

Overall size of a black hole of mass M must be smaller for larger J.

D-2 )
M S
<—> x SP| — + J? 1J| < S
MP 47[2
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Spinning up a string

Oscillator excitations for mass M

SN

coherently rotate  jitter in a random-walk

Decreasing random-walk increases rotation for a given total energy.

|

Overall size of the string ball must be smaller for larger J.

2

2 % —21J| |J|=0(%)2

S \)



What do we expect?

Size L and || to plane of rotation:

small J < §: — — ] x ——

largeJ > > §:  pancake effect for string and black hole but no matching



Size and shape
of strings
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XXz, 0) St r I n g Xz, 0) = X(z,0 + m)

—— O

Open or closed bosonic string in D spacetime dimensions.

Oscillators a!/ (&) with excitation level n

transverse directions

Light-cone gauge: & — a! withi=1,...,D —2

D-2 oo
Mass: ]\42 ~ NMS2 N = Z Z al_na,’l level-counting operator
i=1 n=1
— |
Spin: J = — iZ—((xlna,% (xzna,,}
n
n=1

coherent rotation in a single plane
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Static string

" o0 1 D=2
Partition Z = Tr(e PN = H ( > f = %

function: 1 —epn

n=1 inverse temperature

High-temperature ¢ cr?
< = c=D-2
||m|t,5 —> O: Z('B) ~ ﬁze o transverse directions

_c+3 2=&m “n
d~n"+e V°

String entropy: Z(ﬂ) — 2 dn e Pn —
n=1

large n :
[Hardy,Ramanujan’18]

saddle point

. approximation

: A 2\ _ 2 —pn 2 1 ¢
Strings size: (R) = ZR” e — > R, ~-m, /En d,
T =l | [Mitchell, Turok'87]
2 _(wvi2 — N i i .
R = (X" —ana_nan i=12,.,D-2

n=1



Static string

" o0 1 D=2
Partition Z = Tr(e PN = H ( > f = %

function: 1 —epn

n=1 inverse temperature

High-temperature

e L
limit § — O: Z(;B) NﬁieW c=b-2

transverse directions

| 0 _c+3 2m/en
String entropy:  Z(f) = Z d, e P — d,~n"7e
n=1

large n :
[Hardy,Ramanujan’18]
saddle point
. approximation
Strings size: (R?) = 2 Rr%e_ﬁ” — R’~ L \ /%n d,
C
n=1

[Mitchell, Turok’87]

R;
Typical string size <’”2>n ~ -~/ N M as expected for random walks.



Rotating string

Partition 7 = Tr(e_ﬁ(N_QJ)) _ H 1
| N 1 —ebn (1 — e Pt (1 — —Fn—))

function:

n=1
High-temperature R
~ 5065 c=D-2
limit f# — O: Z(ﬁa Q) ﬁ2e o sinh(zQ) -
transverse directions
String entropy:  Z([f) = Z VY —— d, for large J = O(n)
large n [Russo,Susskind'94]
saddle point
approximation RZH
n,
Strings size: (R?) = ZRZ =) —— R, — i
T n=1 Rn,J_
1 i=1,2

= an T i =3,..D=2

n=1



Rotating string

Partition 7 = Tr(e_ﬁ(N_QJ)) _ H 1
| N 1 —ebn (1 — e Pt (1 — ¢—Fn—))

function:
n=1

High-temperature R
~ 5065 c=D-2
limit f — O: Z(p,L2) ~ pre® sinh(zQ) o
transverse directions
String entropy:  Z([f) = Z P ——  d, for large J = O(n)
large n [Russo,Susskind'94]
saddle point
approximation 2
nas si 0 _ N p2 QJ 2 i
Strings size: (R”) = ZRnJe—ﬁ(n— ) ——» R, < o2
n,1

RI’% dn,./
What are the typical string sizes (rJ) ~ = = < R2, (7

nJ




Average string sizes

Transverse to rotation plane: Along rotation plane:

P Vn J=0(1) >, \Vn J=0(1)
fsz”w\/n—ulfl J = 0G/n) 77 X VATl J=0G/n)
V=171 J=0m) | ] J = 0(n)

Individually both vary significantly with the strength of interaction.

Note: All numerical Pancake effect larger for larger J .

factors are dropped!



Average string sizes

Transverse to rotation plane:

-

R
<rl>n

k\/n—l.ll

AN

Along rotation plane:

J=0() - fv% J=0()
I/

J=0(/n) 7 X\ V= al] J = 0(/n)

J = O(n) | ] J = 0(n)

Individually both vary significantly with the strength of interaction.

The ratio varies less with g and behaves as approximate adiabatic invariant.

] J=0(1)
(F1) I
1 — <1 J=0
<I7ﬁ>n 1 (\/E)
S R
LW J = 0(n)
Note: All numerical Pancake effect larger for larger J .

factors are dropped!



Average string sizes

Transverse to rotation plane: Along rotation plane:

subleading subleading
orders orders
n o+n+-2=  J=0( r NETLE L iy £ 1
(7). Y v une Va g = 00
S « 3\/n—ulJ[  J=0@/n) 7 X\ V- al] J=0H/n)
=171 J=0®) 1Y) J = 0(n)

Individually both vary significantly with the strength of interaction.

The ratio varies less with g and behaves as approximate adiabatic invariant.

subleading
orders
( J2
1 - N> J=0(D) n>1
<77%_>n0<<_<1 JZO(\/Z) C”>1
e
|/ n S
Lm J = O(I/l)
Note: All numerical Pancake effect larger for larger J .

factors are dropped!



Size and shape

of black holes



Black hole sizes

Myers-Perry

Natural to define the transverse characteristic radius at the pole

0 = 0 on the horizon:
P~ = Q4 (rycos )P

@ dPH0O=0\""
I’J_ — 7‘0
Qp_y

horizon radius




Black hole sizes

Myers-Perry

Natural to define the transverse characteristic radius at the pole

0 = 0 on the horizon:
P~ = Q4 (rycos )P

@ dPH0O=0\""
I’J_ — 7‘0
Qp_y

horizon radius

Define characteristic radius in rotation plane via horizon area in the
(0, ¢) directions: * o)
o1 = | dod By -,

a7 |
(a;) — _ 2 2
I"”J: 4—77:—\/7'0"‘&]

horizon radius  spin length =

* More physical definition uses critical impact parameter for the capture of a null geodesic in the equatorial plan but form similar to rﬁa’).



Black hole sizes
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dr M 41 M
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Individually both get renormalized (since M does).
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D-2S D —2+/S*+472)?
@ 1= | =

dr M 47 M

N %
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Individually both get renormalized (since M does). The ratio

ry S

M 4/S2 + 4x2)2

is again an approximate adiabatic invariant (since S and J are).




Black hole sizes

D-2S D —2+/S*+472)?
@ 1= M| =

dr M 47 M

N %

<+——>

Individually both get renormalized (since M does). The ratio

ry S

M 4/S2 + 4x2)2

is again an approximate adiabatic invariant (since S and J are).

i 1—47z2§—2, Jl <« S
r
—;= C<1, J| ~S
4 | s

IR JI>9S

Pancake effect larger for larger J .



Do rotating strings
size up/down like
rotating black holes?



Size: black hole vs string

VARSEN
ry
—2: C <1, Jl ~ 8
4 Y
—_— JI >S9
42 J?

Note: Overall numerical
factors are dropped!
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1 — 471'2J—, VARSEN)
r S
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4 1 S?
——, J| >SS
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]2
For small J, string and black hole agree: « @ !

Note: Overall numerical
factors are dropped!
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SZ

For typical J, ratio (string) ~ ratio (black) at leading order.

Note: Overall numerical
factors are dropped!
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Size: black hole vs string

2
1 — 471'2J—, JI S
r S
—=7C<1, J|~S
4 1 S?
——, J| >SS
dr? J?
]2
For small J, string and black hole agree: « @ !

For typical J, ratio (string) ~ ratio (black) at leading order.

For large J, ratio (string) > ratio (black hole) =
Black hole gets pancaked more than string. (Note: still no self-gravity)

Mismatch beyond small J expected: no adiabatic correspondence
but dynamics & non-stationary phases.

Note: Overall numerical
factors are dropped!



Restoring 1 # 1

BLACK HOLES

S« hA™! large  (orfinite horizon) S 7 1 large



Restoring 71 # 1

BLACK HOLES

S X h_l |arge (for finite horizon) S X N n |arge
J | (for semi-classical
AS arge angular momentum)
I J2 U our
—— a —
Je n o S2 result/
semi-classical result

52



Restoring 1 # 1

BLACK HOLES

Sx hl large  (forfinite horizon) S 7 1 large

J

(for semi-classical

h_S |arge angular momentum)
J——J o our
— a —
J2 n  S2 result/
§ semi-classical result
hJ? J? J? our

(hS)3 quantum correction _n3/2 X E result/



Restoring 1 # 1

BLACK HOLES

S Al large  (orfinite horizon)
9
i | (for semi-classical
hS arge angular momentum)
J—>—J
J2
52 semi-classical result
hJ? |
(7S)3 quantum correction
h—IJZ
cannot appear
nS

Sxn

J>J?
ol
n S2
J2 J2
J:J?
PR

does not appeey
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