

Quantum Cross-Section of Near-extremal Black Holes

ROBERTO EMPARAN ICREA+ICCUB STRING THEORY AS A BRIDGE ROMA, 17 FEBRUARY 2025 Can we observe large quantum fluctuations of the spacetime geometry?

Near extremality, black holes have large but controllable

quantum fluctuations

The length of the throat has large quantum variance

curvature remains small

Quantum fluctuations drastically reduce the density of states

Iliesiu+Turiaci

Hawking emission is suppressed

Brown+Iliesiu+Penington+Usatyuk

How can an external observer probe this large quantum object?

Through Hawking radiation?

- Create a charged black hole
- Let it evaporate until close to extremality
- Detect its radiation

Brown+Iliesiu+Penington+Usatyuk

Through Hawking radiation?

That's painfully slow!

Quantum evaporation timescale diverges as $\hbar \rightarrow 0$

(plus radiation is suppressed near extremality)

Classically probing a quantum black hole

Classical formation: collapse

Classical observation: wave scattering – shine a light

Classical formation: collapse

Collapse of charged matter can be fine-tuned to land on

"classical extremal black hole" in finite time Kehle+Unger

• Can form near-extremal black hole *quickly*

Shine a light

Send a wave to the black hole

Measure the absorption cross-section

It is quick

Shine a light

Throwing geodesic photons is not good

- 1. May destroy the long quantum throat
- 2. Only probe local geometry of the throat not strongly fluctuating

Shining light rays on quantum black hole produce a classical image

Softly probe the mouth of the throat

Low-frequency scalar field scattering

- Dominated by s-wave: probe homogeneous fluctuations
- Small energy absorption: quantum throat preserved

Low-frequency scalar field scattering

- Measure absorption cross section
- Benchmark: universal classical value for $\omega \to 0$

$$\sigma_{abs} = A_H$$

Unruh Gibbons+Das+Mathur

Low-frequency scalar field scattering

$$\sigma_{abs} = A_H = 4G \log \rho(E)$$

Absorption cross-section as measure of number of absorbing states

in semiclassical regime

What can we expect?

Quantum fluctuations make $\rho(E) \ll e^{A_H/4G}$

Surely, then, in the quantum regime

 $\sigma_{abs} \ll A_H$

?

What we find

Quantum fluctuations make $\rho(E) \ll e^{A_H/4G}$

In the quantum regime

 $\sigma_{abs} > A_H > 4G \log \rho(E)$

larger the closer to extremality

Why $\sigma_{abs} > A_H$ if fewer BH states?

Because quantum effects:

1. <u>Enhance absorption transitions</u> between individual states

late-time correlations are enhanced in quantum black hole

2. Suppress stimulated emission

fewer lower-energy states

Quantum Throats

HAVE FUZZY MOUTHS

Near extremality

Semiclassical black hole energy (mass)

$$E(T) = E_0 + 2\pi^2 \frac{T^2}{E_b} + O(T)^3 \qquad E_b = \frac{\pi}{r_h S_0}$$

 $T \leq E_b$: semiclassical thermodynamics breaks down Too little energy available to emit a single quantum Near extremality

Quantum effects are important at

low temperatures

near-extremality & near throat

$$ds^{2} = -(\rho^{2} - \rho_{+}^{2})dt^{2} + \frac{d\rho^{2}}{\rho^{2} - \rho_{+}^{2}} + r_{0}^{2}d\Omega_{2} + \cdots$$

$$AdS_{2}$$

$$S^{2}$$

Throat KK reduction \rightarrow 2-dim dilaton JT gravity in AdS₂

 \rightarrow 1-dim Schwarzian theory ∂AdS_2

• exactly quantized

Maldacena+Stanford+Yang Stanford+Witten Mertens+Turiaci+Verlinde Yang,...

Gravitational partition function at small T

one-loop det

Density of states near extremality

$$\rho(E) = e^{S_0} \sinh\left(2\pi\sqrt{2E/E_b}\right)$$

Quantum absorption

TO SEE OR NOT TO SEE

Also: Anna Biggs upcoming work

Send a wave of minimally coupled scalar field

into a near-extremal black hole

parametrized by E_b and initial energy E_i above extremality

$$E_b = \frac{\pi}{r_h S_0} \qquad \qquad M = M_0 + E_i$$

- Large occupation number $\langle N_{\omega} \rangle \gg 1$
- Low frequency $\omega \ll 1/r_h$
- Restrict to s-wave

Propagates classically from ∞ to mouth of throat

$$\Psi(t,r) \sim c_{in}e^{-i\omega(t-r)} + c_{out}e^{-i\omega(t+r)}$$

At the throat: <u>source</u> for the field in AdS₂

$$\Psi(t,r) = \psi(t) r^{\Delta-1} + O(r^{-\Delta}) \quad \Delta = 1$$

In the boundary theory

 $I = I_{Schwarzian} + \int dt \, \psi(t) \mathcal{O}(t)$

 $\mathcal{O}(t)$: response operator

Brown+Iliesiu+Penington+Usatyuk

$$I = I_{Schwarzian} + \int dt \,\psi(t)\mathcal{O}(t)$$

 $\psi(t)$

 $\psi(t) = \psi_0 e^{-i\omega t}$: oscillating source excites black hole state $H_I(t) = e^{-i\omega t}\psi_0 \mathcal{O}(t)$

It induces transitions between black hole states:

 $|E_i\rangle \rightarrow |E_i + \omega\rangle$: absorption $|E_i\rangle \rightarrow |E_i - \omega\rangle$: emission (stimulated)

Transition rates: Fermi rules

$$\mathcal{T}_{i \to f} = 2\pi \left| \left\langle E_f, N_f | \mathcal{O}\psi_0 | E_i, N_i \right\rangle \right|^2 \rho(E_f)$$

from matching

$$E_f = \begin{cases} E_i + \omega : \text{absorption} \\ E_i - \omega : \text{emission} \end{cases} \quad |\psi_0|^2 = \langle N_\omega \rangle \frac{r_+^2 \omega}{\pi^2}$$

Neglect spontaneous emission: $N_{\omega} + 1 \simeq N_{\omega} \Rightarrow \mathcal{T}_{i \to f} \propto \langle N_{\omega} \rangle$

Absorption & emission rates

$$\Gamma_{abs}(\omega) = \langle N_{\omega} \rangle \frac{2r_{+}^{2}\omega}{\pi} |\langle E_{i} + \omega |\mathcal{O}|E_{i} \rangle|^{2} \rho(E_{i} + \omega)$$

$$\Gamma_{emit}(\omega) = \langle N_{\omega} \rangle \frac{2r_{+}^{2}\omega}{\pi} |\langle E_{i} - \omega | \mathcal{O} | E_{i} \rangle|^{2} \rho(E_{i} - \omega)$$
$$= -\Gamma_{abs}(-\omega)$$

Total absorption rate per mode:

$$\frac{d\langle N\rangle}{dt\,d\omega} = -\big(\Gamma_{abs}(\omega) - \Gamma_{emit}(\omega)\big)$$

From rates to cross-section

Total absorption rate:

$$\frac{d\langle N\rangle}{dt} = -\int \frac{d\omega}{2\pi} P_{abs}(\omega) \langle N_{\omega} \rangle$$

$$P_{abs}(\omega) =$$
 "greybody factor" = $2\pi(\Gamma_{abs} - \Gamma_{emit})$

Optical theorem:

$$\sigma_{abs} = \frac{\pi}{\omega^2} P_{abs} = \frac{2\pi^2}{\omega^2} (\Gamma_{abs} - \Gamma_{emit})$$

Schwarzian absorption

$$\sigma_{abs} = \frac{A_H}{\omega} \left(|\langle E_i + \omega | \mathcal{O} | E_i \rangle|^2 \rho(E_i + \omega) - |\langle E_i - \omega | \mathcal{O} | E_i \rangle|^2 \rho(E_i - \omega) \right)$$

Schwarzian theory:

density of states
$$\rho(E) = e^{S_0} \sinh(2\pi\sqrt{2E/E_b})$$

2-pt function

$$\left|\left\langle E_f | \mathcal{O} | E_i \right\rangle\right|^2 = e^{-S_0} \frac{E_f - E_i}{\cosh(2\pi\sqrt{2E_f/E_b}) - \cosh(2\pi\sqrt{2E_i/E_b})}$$

Near-extremal absorption

$$\sigma_{abs} = A_H \left(\frac{\sinh(2\pi\sqrt{2(E_i + \omega)/E_b})}{\cosh\left(2\pi\sqrt{2(E_i + \omega)/E_b}\right) - \cosh(2\pi\sqrt{2E_i/E_b})} + (\omega \to -\omega) \right)$$

Near-extremal absorption

$$\sigma_{abs} = A_H \left(\frac{\sinh(2\pi\sqrt{2(E_i + \omega)/E_b})}{\cosh\left(2\pi\sqrt{2(E_i + \omega)/E_b}\right) - \cosh(2\pi\sqrt{2E_i/E_b})} + (\omega \to -\omega) \right)$$

Semiclassical black hole: $E_i \gg \omega, E_b \qquad \sigma_{abs} \rightarrow A_H$

Quantum absorption $\sigma_{abs} > A_H$

Quantum absorption $\sigma_{abs} > A_H$

Since
$$\rho(E) < e^{A_H/4G} = e^{S_0}$$

$$\sigma_{abs} > 4GS_0 > 4G\log\rho(E_i)$$

Density of states grossly underestimates the absorption near extremality

Stimulated <u>emission is suppressed</u>: many fewer final states

 $\Gamma_{emit}(\omega) \propto |\langle E_i - \omega | \mathcal{O} | E_i \rangle|^2 \rho(E_i - \omega)$

Generality & universality

• Higher dimensions, other black holes: just change A_H and E_b in σ_{abs}

• Valid for static near-extremal black holes in Einstein-Hilbert gravity + matter (no susy)

Conclusion

Can we observe large quantum fluctuations of the

spacetime geometry?

Yes

Conclusion

Classical experiments can explore the quantum regime

of near-extremal black holes

Enhanced cross-section reveals large quantum fluctuations of the throat

Thank you

Backup material

Quantum Near extremality (w/out susy)

<u>Charged</u> Reissner-Nordstrom black holes

Rotating Kerr & BTZ black holes

Hyperbolic AdS black holes

Iliesiu+Turiaci Iliesiu+Murthy+Turiaci

Ghosh+Maxfield+Turiaci Kapec+Sheta+Strominger+Toldo Rakic+Rangamani+Turiaci Kapec+Law+Toldo Kolanowski et al

RE+Magán

Near-BPS: Heydeman+Iliesiu+Turiaci+Zhao

No throat disruption

• Does absorption become so large as to destroy the quantum throat?

Not if
$$\langle N_{\omega} \rangle < \frac{1}{(\omega r_h)^2} \frac{\sqrt{E_i E_b}}{\omega}$$

• Since $\omega r_h \ll 1$ we can comfortably probe the quantum regime

 $\omega, E_i < E_b$ with $\langle N_{\omega} \rangle \gg 1$

Extensions

Near-BPS: gap in the spectrum

Heydeman+Iliesiu+Turiaci+Zhao

No absorption in the gap

BPS absorption must jump the gap

BTZ near horizon

> Greybody factors carry info about left- and right- movers Maldacena+Strominger

Quantum Schwarzian from CFT₂

Near-extremal Kerr?

Ghosh+Maxfield+Turiaci

Kapec+Sheta+Strominger+Toldo Rakic+Rangamani+Turiaci Kapec+Law+Toldo Kolanowski et al

Quantum η/s ?

- $\frac{\sigma_{abs}}{A_H} = 1$ implies $\frac{\eta}{s} = \frac{1}{4\pi}$
- Shear modes of the black brane worldvolume behave like minimal scalars
- Absorption = Viscous dissipation : determined by 2-point function of stress-energy

Policastro+Son+Starinets+Kovtun

Quantum η/s ?

•
$$\left(\frac{\sigma_{abs}}{A_H}\right)_q > 1 \Rightarrow \left(\frac{\eta}{s}\right)_q > \frac{1}{4\pi}$$
?

Be careful:

naive hydro regime requires wavelength $\lambda > \frac{1}{T} \Rightarrow$ brane length $L > \frac{1}{T}$ $\Rightarrow L r_h < \ell_p^2$: subPlanckian...

But this may be too naive

Davison+Parnachev