Characterization of (High Speed) Transmission Lines

Proposta

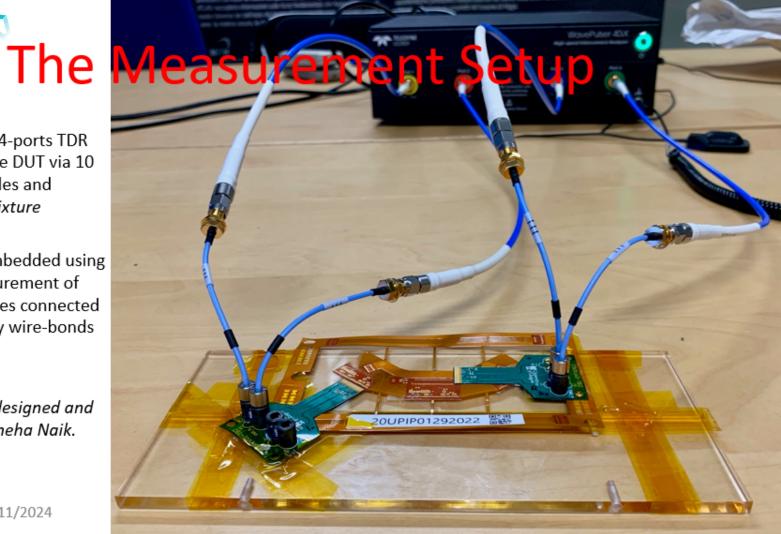
Preamble

- Experiments today use detectors with front-end electronics that have to bring out the signal to the back-end R/O sited far from where the signal is generated.
- The signal generated in the front-end must pass through a hierarchy of interconnects from chip to board, to flex circuit, to cables, to connectors, before being passed to optical transmission or arriving at the destination DAQ R/O module.
- The signal from the front-end could be high frequency digital and/or low noise, either analog or digital. You want to optimize the quality of the received signal: low error bit rate and low distortion of the analog shape.
- Today, measurement techniques and CAD simulation allow to check the integrity of the signal. In particular, time domain reflectometry (TDR) is a powerful way to extract the parameters (Scattering matrix) of the interconnect.

Genova: TDR/TDT – WavePulser 40iX Teledyne-LeCroy

		WavePulser 40iX
FREQUENCY	Frequency Range	DC to 40 GHz
	S-parameters	Single-ended, Differential, and Mixed-mode Full S-parameters (S ₁₁ , S ₁₂ , S ₂₁ , S ₂₂)
	Calibration	Internal automatic & manual OSLT
TIME	Impulse/Step Rise Time	8.5 ps
	Impedance Profile	Differential and Common-mode
	TDR/TDT Solution	TDR/TDT
	Spatial Resolution	< 1 mm
DEEP TOOLBOX	Simulation and De-embedding	Yes
	Time-gating	Yes
	Emulation of Eye Diagrams	Yes
	Jitter Analysis	Yes
PLATFORM	Number of Ports	4
	USB-connected	Yes
	Size/Weight	105mm H x 305mm W x 230mm D, 3.3 kg
	Battery-powered	No

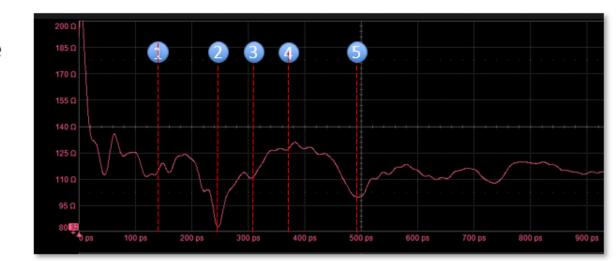
Teledyne LeCroy WavePulser 40iX

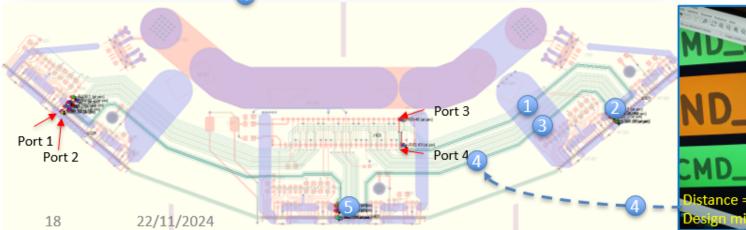

Signal Integrity – Examples form Experiment's Cases

- The first example of the use of TDR is to optimize the design of the 1.28 Gb/s line that brings the signal from the ATLAS-ITk pixel modules to the opto-boards. The differential electrical signal is transmitted through flex circuits, twinax cables, and several kinds of connectors before being converted to optical. Impedance matching and eye-opening optimization are the reason.
- A second case is the characterization of a bundle of unscreened twisted pairs at cryogenic temperature to be used by DarkSide-20k for the readout of SiPM signals.

Test setup with 4-ports TDR onnected to the DUT via 10 cm BullsEye cables and ItkPixV1 TB2^(*) fixture

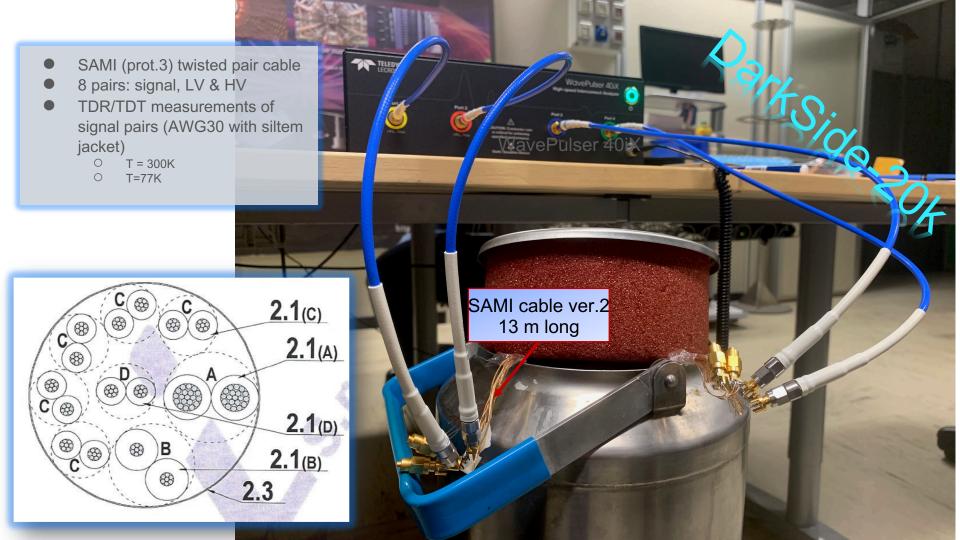
Fixture in de-embedded using a 2X-thru measurement of two equal fixtures connected head-to-head by wire-bonds


Note (*): Parts designed and given to us by Sneha Naik.



Impedance along the CMD line measured from Port 3 and 4

Comment:


- Impedance is well adjusted when differential line runs above power/ground by reducing GND_C line width from 100μm to 75 μm
- Impedance is too high due to increase of spacing between CMD_P and CMD_N in some points (example 4)



Laboratory

- The lab will provide hands-on exercises to characterize a transmission line with TDR
 - S-parameters insertion loss return loss impedance crosstalk
 - Simulate the effect of the line on a high-speed transmission (1.28 GHz) eye diagram analysis
 - Simulate the correction applied to the signal to improve the eye diagram: pre-emphasis, deemphasis, equalization
 - 0 ..

Proponents

- Nanni Darbo (ex)-Direttore di Ricerca
- Claudia Gemme Primo Ricercatore
- Paolo Morettini Direttore di Ricerca
- Enrico Robutti Primo Ricercatore
- Ettore Ruscino Cter Elettronico