

The attenuation of vertical seismic vibrations

Piero Chessa Università di Perugia

Finstein Telescone

piero.chessa@unipg.it Dipartimento di Fisica e Geologia, Università di Perugia & INFN-PG UNIVERSITÀ DEGLI STUDI Via Alessandro Pascoli 06123 Perugia (PG), Italy

Finstein Telescone

Finanziato dall'Unione europea

Seism never sleeps

Vibrations must be rejected

Virgo Horizontal Displacement ASD

In Virgo, seismic displacements between 10^{-10} and 10^{-8} m/ \sqrt{Hz} are recorded on ground at 20 Hz.

Without any filtering, this would mask strains of the **3** km arm like $h > \frac{10^{-10} \frac{\text{m}}{\sqrt{\text{Hz}}}}{3 \cdot 10^3 \text{m}} = 3 \cdot 10^{-14} \frac{1}{\sqrt{\text{Hz}}}$.

Horizontal vibrations act

- on the length of the optical paths;
- on the centering and alignment of the mirrors.

Vertical vibrations act

- on the centering and alignment of the mirrors;
- (slightly) on the length of the optical paths.
 This comes from the convergence of the vertical directions at a km-scale distance.

The Superattenuator solution

Each cavity mirror is currently suspended in Advanced Virgo from a Superattenuator (SA).

The AdVirgo SA is a **passive** mechanical filter whose main components are

- an Inverted Pendulun (IP), made of three identical legs and a top ring;
- a top vertical oscillator called **Filter 0**;
- a chain of four **Standard Filters**, suspended to each other;
- a special final filter (Filter 7), suspended from the previous and connected to the Payload.

The Payload components are

- a stiff reference cage rigidly connected to Filter 7;
- a Marionette, suspended from Filter 7 and controlled from the cage;
- the Mirror, suspended from the Marionette and controlled from the cage.

See Valerio Boschi – SUSP Training session, https://tds.virgo-gw.eu/?r=16165

The Superattenuator solution

Not so passive, indeed

See Valerio Boschi – SUSP Training session, https://tds.virgo-gw.eu/?r=16165

Introduction Control system setup

Standard Filter

The AdV Superattenuator has four suspended Standard Filters

Each Standard Filter is a physical pendulum with several degrees of freedom.

Each DOF oscillates with its own frequency.

Oscillations A, B, C spontaneously occur depending on gravity, inertia of the massive body, wire properties.

Motion D require a **dedicated vertical oscillator**.

Built-in vertical oscillator Bottom view/ Top view Test load Magnetic Blades antisprings (i.e, springs)

Vertical oscillators are set in **Filter 0, Standard Filters, Filter 7**

 $k = k_0 \cdot (1 + i \phi)$

A toy model of the oscillating filter

A mechanical filter can be understood in terms of **oscillators**. Let's create a toy filter using an elastic oscillator as the building brick.

A metal spring is actuated on the left side by a piston whose position is $x_0(t)$. At the right end of the spring a block can move over the spring axis.

The spring has a loss angle ϕ . This accounts for anelastic relaxations in the spring material.

$$m \ddot{x} = -k \cdot (x - x_0)$$

$$-m\omega^2 \tilde{x} = -k \cdot (\tilde{x} - \tilde{x}_0)$$

$$(k-m\omega^2)\tilde{x} = k\,\tilde{x}_0$$

$$\tilde{x} = -\frac{\omega_0^2 \cdot (1+i\,\phi)}{\omega^2 - \omega_0^2 \cdot (1+i\,\phi)} \tilde{x}_0 \qquad f_T(\omega) = -\frac{\omega_0^2 \cdot (1+i\,\phi)}{\omega^2 - \omega_0^2 \cdot (1+i\,\phi)}$$

Einstein Telescope

 ω / ω_0

A toy model of the oscillating filter

 $f_T(\omega) = \frac{-\omega_0^2 \cdot (1+i\phi)}{\omega^2 - \omega_0^2 \cdot (1+i\phi)}$ Transfer function $|f_T(\omega_0)| = \left|\frac{1+i\phi}{i\phi}\right| \cong \phi^{-1}$ Peak value $k = k_0 \cdot (1 + i \phi)$ $Q \cong \phi^{-1}$ Let's work the **curve width** out: $|f_T(\omega_{1/2})| = \frac{\phi^{-1}}{2}$ (half of the peak value) $\Rightarrow \left| \frac{\omega_{1/2}^2}{\omega_0^2 \cdot (1+i\phi)} - 1 \right| = 2\phi \quad \Rightarrow \left| \frac{\omega_{1/2}^2}{\omega_0^2} (1-i\phi) - 1 \right| = 2\phi$ $\phi = 0.01$ $\Rightarrow \text{ with } \omega_{1/2} = \omega_0 \cdot (1+\delta), \qquad \left| \frac{\omega_0^2(1+2\delta)}{\omega_0^2} (1-i\phi) - 1 \right| = 2\phi$ $\Rightarrow 2\delta = \frac{\sqrt{3}}{2}\phi \qquad \Rightarrow FWHM = 0.866 \phi\omega_0$ $\Rightarrow |2\delta - i\phi| = 2\phi$ 10⁻¹ 10⁰ 10^{1}

 10^{2}

10¹

10⁻¹

10⁻²

| × / × |

A toy model of the oscillating filter

Let's complicate it a bit. Two identical oscillators are connected in cascade.

$$\begin{cases} -m\omega^2 \tilde{x}_1 = -k \cdot (\tilde{x}_1 - \tilde{x}_0) + k \cdot (\tilde{x}_2 - \tilde{x}_1) \\ -m\omega^2 \tilde{x}_2 = -k \cdot (\tilde{x}_2 - \tilde{x}_1) \end{cases}$$

 $k = k_0 \cdot (1 + i \phi)$

$$\Rightarrow \begin{cases} (2k - m\omega^2)\tilde{x}_1 - k\tilde{x}_2 = k\tilde{x}_0 \\ -k\tilde{x}_1 + (k - m\omega^2)\tilde{x}_2 = 0 \end{cases} \Rightarrow \begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} - \frac{m\omega^2}{k} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} = \begin{pmatrix} \tilde{x}_0 \\ 0 \end{pmatrix}$$

$$\Rightarrow M \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} = \begin{pmatrix} \tilde{x}_0 \\ 0 \end{pmatrix}, \text{ with } M = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} - \frac{m\omega^2}{k} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Rightarrow \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} = M^{-1} \begin{pmatrix} \tilde{x}_0 \\ 0 \end{pmatrix}$$

A toy model of the oscillating filter

Even more complicated. Many identical oscillators connected to each other.

$$\begin{aligned} & (-m\omega^2 \tilde{x}_1 = -k \cdot (\tilde{x}_1 - \tilde{x}_0) + k \cdot (\tilde{x}_2 - \tilde{x}_1) \\ & -m\omega^2 \tilde{x}_2 = -k \cdot (\tilde{x}_2 - \tilde{x}_1) + k \cdot (\tilde{x}_3 - \tilde{x}_2) \\ & \dots \\ & -m\omega^2 \tilde{x}_n = -k \cdot (\tilde{x}_n - \tilde{x}_{n-1}) \end{aligned}$$

$$\Rightarrow M = \begin{pmatrix} 2 & -1 & & 0 \\ -1 & 2 & -1 & & \\ & -1 & \ddots & -1 & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 1 \end{pmatrix} - \frac{m\omega^2}{k} \begin{pmatrix} 1 & & & 0 \\ & 1 & & \\ & & 1 & & \\ & & & \ddots & \\ 0 & & & & 1 \end{pmatrix} = \begin{pmatrix} 2-\lambda & -1 & & 0 \\ -1 & 2-\lambda & -1 & & \\ & & -1 & 2-\lambda & -1 \\ 0 & & & -1 & 1-\lambda \end{pmatrix}, \text{ with } \lambda = \frac{m\omega^2}{k}$$

$$\Rightarrow \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \vdots \\ \tilde{x}_n \end{pmatrix} = M^{-1} \begin{pmatrix} \tilde{x}_0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad (M^{-1})_{n,1} = (-1)^{n+1} \frac{\operatorname{Det}(M_{1,n})}{\operatorname{Det}(M)} = (-1)^{n+1} \frac{(-1)^{n-1}}{\operatorname{Det}(M)} = \frac{1}{\operatorname{Det}(M)} \qquad \Rightarrow \int f_T(\omega) = \frac{1}{\operatorname{Det}(M)}$$

A toy model of the oscillating filter

The transfer function from **input displacement** x_0 to **output displacement** x_n :

$$f_T(\omega) = \frac{1}{\det \begin{pmatrix} 2-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 & 0 \\ & -1 & \ddots & -1 & \\ & & -1 & 2-\lambda & -1 \\ 0 & & & -1 & 1-\lambda \end{pmatrix}}, \text{ with } \lambda = \frac{m\omega^2}{k}$$

$$f_{T}(\omega) = \frac{1}{(-1)^{n}\lambda^{n} + c_{n-1}\lambda^{n-1} + \dots + c_{0}} = \frac{1}{(-1)^{n}(\lambda - \lambda_{1})(\lambda - \lambda_{2})\dots(\lambda - \lambda_{n})}$$

$$f_{T}(\omega) = \frac{[-\omega_{0}^{2}(1 + i\phi)]^{n}}{[\omega^{2} - \lambda_{1}\omega_{0}^{2}(1 + i\phi)] [\omega^{2} - \lambda_{2}\omega_{0}^{2}(1 + i\phi)] \dots [\omega^{2} - \lambda_{n}\omega_{0}^{2}(1 + i\phi)]}$$

$$f_{T}(\omega) = [-(1 + i\phi)]^{n} \left(\frac{\omega_{0}}{\omega}\right)^{2n} \qquad \text{(Low pass filter)}$$

A toy model of the oscillating filter

 $k \;=\; k_0 \cdot (1+i\,\phi)$

 $f_0 = 0.5 \text{ Hz}$ $\phi = 0.01$ Growing n

Low n start filtering at lower frequencies. High n have better rejections. Above $2f_0$ all configurations filter anyway.

Elastic blades

 \bigcirc

 \bigcirc

 \oplus

354

SA blades are **curved at rest** and designed to be flattened by a load suspended from their tip.

They are made in **maraging steel** (maraging 250), a low carbon Fe alloy Ni (18%), Co (8%), Mo (5%), Ti (0.5%), C (≤0.03%) + Fe

Relevant parameters $E = 187 \text{ GPa} (\text{at } 20^{\circ}\text{C})$ UTS = 1.85 GPa $\phi = 3 \cdot 10^{-5}$

S.Braccini et al 2000 Meas. Sci. Technol. 11 467

160

W.(1).

G.Cella, Personal communication - Write me for a copy

Blade mechanics

$$U = \frac{1}{2} \int_{0}^{L} E \frac{w(l)h^{3}}{12} \left(\frac{d\theta}{dl} - \frac{d\theta_{0}}{dl}\right)^{2} dl + F \int_{0}^{L} \sin \theta \, dl \quad \text{valid for a very thin blade with any cut profile } w(l) and any rest bending $\theta_{0}(l)$
By minimizing this energy with respect to the possible profiles $\theta(l)$ we get a condition on the rest bending $\theta_{0}(l)$
 $\frac{d\theta_{0}}{dl} = \frac{12\bar{F}}{Eh^{3}} \frac{(L-l)}{w(l)}$
We discover that a triangular profile $w(l) = w_{0} \frac{(L-l)}{L}$ have a constant $\frac{d\theta_{0}}{dl}$.
This means an arc of circle profile with radius
 $R_{0} = E \frac{w_{0}h^{3}}{12L\bar{F}}$
 $\Delta y = R_{0} \left(1 - \cos \frac{L}{R_{0}}\right) \cong R_{0} \frac{1}{2} \left(\frac{L}{R_{0}}\right)^{2} = \frac{L^{2}}{2R_{0}}$
 $k = \bar{F}/\Delta y \implies k = E \frac{w_{0}h^{3}}{12LR_{0}} \frac{2R_{0}}{L^{2}}$
 $k = E \frac{w_{0}h^{3}}{6L^{3}}$$$

retrieved from

Internal modes

Triangular blade summary $R_0 = E \frac{w_0 \overline{h^3}}{12 \, L \, \overline{F}}$

Preset curvature radius for a load \overline{F}

Single blade spring constant

Single blade resonant frequency (1st)

Surface stress of the flattened blade

Blades work **in symmetric couples** of identical specimens.

Couples can differ from each other.

If the **total load** of the filter is the **sum of the individual flattening loads** all blades work flat.

 $k = E \frac{w_0 h^3}{6L^3}$

 $f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{M}}$

Eh

 $2R_0$

Magnetic Anti-Springs

Two forces are exerted on the central column:

 $F_{tot} = -(k_{el} + k_{as}) y + O_3(y)$ stable as long as it is $k_{el} + k_{as} > 0$

Sum of *k*s

Current configuration		Filter 0	Filter 1	Filter 2	Filter 3	Filter 4	Filter 7	Some figures in
М	Suspended mass [kg]	1057	884	719	579	461	146	Virgo
k _{el}	Elastic stiffness [N/m]	93863	78496	63840	51404	√10 ⁵	Anti COMPUTED VALUES (Eit	spring Force OF TAYLOR'S COEFFICIENTS Padius 6 mm)
k _{as}	Antispring stiffness [N/m]	- 90108	- 75356	- 61286	- 49348	-0.5		
a _{as}	Nonlinearity [10 ⁸ N/m ³]	2.6	2.3	1.8	1.4	<u>د</u>	F0, current	
d	Antispring tuning [mm]	10.5	8.5	10.5	12	kas [V		
For Filter 0 , $k = (93863 - 90108) \frac{N}{m} = 3755 \frac{N}{m}$						-1.5 -2 5	10	$F = -(k_{as} \cdot y + a_{as} \cdot y^{3})$ (mm) $k_{as}(d)$ $k_{as}(d)$
With	$f_0 = \frac{1}{2}$ nout MAS $f_{el} =$	$\frac{1}{2\pi} \sqrt{\frac{\frac{3755\frac{N}{m}}{1057 \text{ kg}}}{\frac{1}{2\pi}\sqrt{\frac{93863\frac{N}{m}}{1057 \text{ kg}}}}} =$	0.3 Hz = 1.5 Hz	Ļ	Filter 0 Magnetic Anti-Spring	° 6 4 2 0 5	F0, current	15 20
					simulation	Ū		d [mm]

The Geometric Anti-Spring (i.e. a tunable blade)

G.Cella et al. 2005 Nucl. Instr. and Meth. A **540** 502 M.R. Blom et al. 2015 Physics Procedia **61** 641 (non-exhaustive list!)

Energy of a compressed blade $U = \frac{1}{2} \int_0^L E \frac{w(l)h^3}{12} \left(\frac{d\theta}{dl}\right)^2 dl - F_y \int_0^L \sin\theta \, dl - F_x \int_0^L \cos\theta \, dl$

Let's compare this to slide 15 (*Blade mechanics*) Similarities:

- Metal blade
- Constrained base angle
- Vertical load
- Constant and small thickness

Differences:

- No pre-curvature
- Different base angle ($\theta_0 > 0$ instead of $\theta_0 = 0$)
- Constrained tip angle ($\theta_L < 0$)
- Horizontal compression (Constrained length)

The Geometric Anti-Spring

Intuitive model (not for real life design)

- (a) A vertical spring is in equilibrium with the weight of a load. Two horizontal **counteracting compressed springs** are in an **unstable equilibrium**.
- (b) When the load leaves the equilibrium position, the vertical spring exerts a recall, while the compressed springs expel the load.

Less intuitive (and still insufficient) model

Note: if **the repelling modulus exceeds the recalling one**, the compressed springs win and expand themselves until a stable equilibrium point. The system is **bistable**.

GAS how-to

Computed general solution for a preset blade shape (TAMA)

Dimensionless variables

$$G_y = 12 \frac{L^2}{Ew_0 h^3} F_y$$
 (load)
 $x = X/L$ (horizontal constrain)

Legend

Curves in full lines belong to stable states (x > 0.9026), dashed to bistable (x < 0.9026)

Stable states have minimum frequency for $G_y \cong 1.69$.

nstein Telescone

Finanziato dall'Unione europea NextGenerationEU

Some (numerical) outcomes

Simulated GAS TAMA shape L = 354 mm $w_0 = 110 \text{ mm}$ h = 2.74 mmE = 187 GPaUTS = 1.85 GPaM = 48.4 kgX = 0.9043 L

That's all from my side Let's go filter now

Same blade without GAS constrains

 $\Rightarrow f = 1.20 \text{ Hz}$

Problem #1

Set up the maraging 250 blades of a Virgo-like lowest filter.

L = 354 mm $w_0 = 110 \text{ mm}$ h = 3.5 mm6 blades

M = 290 kg

Find

- correct rest **curvature** *R*₀,
- **frequency** (assume blade mass << *M*),
- stress.

Compare stress with **UTS**.

Look around for necessary equations and data!

Problem #2

Choose between two possible blade bases w_0 and set thickness h to get the same f as in Problem #1. Which base is the best solution?

Target

- find correct **curvature R**₀ for both bases,
- find correct **thickness** *h* for both bases,
- find stress for both bases,
- choose the **best solution**.

Problem #3

Add ferrite Magnetic Anti-Springs to the same Vigo filter as in Problems #1 and 2. Tune the MAS to the design frequency f, by choosing the correct distance d.

M = 290 kg

 $f_{in} = 1.5 \text{ Hz} * \text{(before MAS)}$ * Filter frequency is usually higher than the pure blade frequency

f = 0.50 Hz

Negative stiffness of the installed MAS at some different temperatures

Find

• the correct **distance** *d*.

Estimate the **frequency variation** with 5°C temperature increase.

Problem #4

Let's switch to Geometric Anti-Springs.

Provide the same filter of the previous problems with GAS vertical oscillators instead of blades+MAS. Tune the filter to the design frequency f.

Solutions

Problem #1	$R_0 = 0.438 \text{ m}, f = 1.318 \text{ Hz}, s = 0.404 \text{ UTS}$
Problem #2	$R_0 = 0.438 \text{ m both},$ 110 mm base: same h and s as in Problem #1 55 mm base: $h = 4.4 \text{ mm}, s = 0.508 \text{ UTS}$ (discarded!)
Problem #3	$d = 11.1 \text{ mm}, \Delta f = +0.04 \text{ Hz}$
Problem #4	h = 2.74 mm, x = 0.906

