
Generation of a primary event

Alexei Sytov
INFN – Ferrara Division

Geant4 Course
XXII Seminar on software for

nuclear, subuclear and applied physics
Alghero, June 8th- 13th, 2024

 VUserPrimaryGeneratorAction and
PrimaryGeneratorActionG4

 Particle gun or GPS?

 The particle gun

 General Particle Source (or GPS)

Outline

User Classes

User Classes

PrimaryGeneratorAction inherits
G4VUserPrimaryGeneratorAction

constructor and destructor
override: a good practice to let the

compiler know that you override
virtual methods, otherwise silent
errors may appear

key function in
which an event is
generated

Alternative to #include;
works if you need only
pointers; faster compilation

Declaration of Geant4 particle
gun or general particle source
(depends what you prefer)

G4VUserPrimaryGeneratorAction

 It is one of the mandatory user classes and it controls
the generation of primary particles
 This class does not directly generate primaries

but:
 Has GeneratePrimaries() method using

either G4ParticleGun or G4GeneralParticleSource
 It registers the primary particle(s) to the G4Event
It is possible to attach several
primaries to the same event.

ParticleGun vs. GPS
 Both

◼ Derive from G4VPrimaryGenerator class
◼ Possess GeneratePrimaryVertex(G4Event*) method

to generate the primary particles

 G4ParticleGun
 Suitable for hardcoded particle distribution within

PrimaryGeneratorAction

 G4GeneralParticleSource (GPS)
 Suitable for usage of standard macro commands

(no hardcoding)

PrimaryGeneratorAction

Here you may setup your ParticleGun (see exercises)

Generate your primary

GPS is set up from macro

Create G4VPrimaryGenerator
(ParticleGun or GPS)

delete G4VPrimaryGenerator
(ParticleGun or GPS)

Here you may setup the particle distribution
and use it in ParticleGun (see exercise)

G4ParticleGun
 (Simplest) concrete implementation of
G4VPrimaryGenerator
 It can be used for experiment-specific primary

generator implementation
 It shoots one primary particle of a given energy

from a given point at a given time to a given
direction

 Various “Set” methods are available (see
../source/event/include/G4ParticleGun.hh)
void SetParticleEnergy(G4double aKineticEnergy);
void SetParticleMomentum(G4double aMomentum);
void SetParticlePosition(G4ThreeVector aPosition);
void SetNumberOfParticles(G4int aHistoryNumber);

A "real-life" myPrimaryGenerator:
constructor & destructor

myPrimaryGenerator::myPrimaryGenerator ()
: G4VUserPrimaryGeneratorAction(), fParticleGun(0)
{
 fParticleGun = new G4ParticleGun();

 // set defaults
 fParticleGun->SetParticleDefinition(

G4Gamma::Definition());
 fParticleGun->
SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fParticleGun->SetParticleEnergy(6.*MeV);
}

Instantiate
concrete generator

myPrimaryGenerator::~myPrimaryGenerator ()
{
 delete fParticleGun;
}

Clean it up in the destructor

A "real-life" myPrimaryGenerator:
GeneratePrimaries(G4Event*)

myPrimaryGenerator::GeneratePrimaries(G4Event* evt)
{
 // Randomize event-per-event
 G4double cosT = -1.0 + G4UniformRand()*2.0;
 G4double phi = G4UniformRand()*twopi;

 G4double sinT = sqrt(1-cosT*cosT);
 G4ThreeVector direction(sinT*sin(phi),sinT*cos(phi),cosT);

 G4double ene = G4UniformRand()*6*MeV;

 fParticleGun->SetParticleDirection(direction);
 fParticleGun->SetParticleEnergy(ene);

 fParticleGun->GeneratePrimaryVertex(evt);
}

Sample direction
isotropically

Shoot event

Sample energy
(flat distr.)

G4ParticleGun
 Commands can be also given interactively by user interface

 But cannot do randomization in this case
 Allows to change primary parameters between one run and

an other
 Notice: parameters from the UI could be overwritten in
GeneratePrimaries()

/gun/energy 10 MeV
/gun/particle mu+
/gun/direction 0 0 -1
/run/beamOn 100
/gun/particle ion
/gun/ion 55 137
/gun/position 10 10 -100 cm
/run/beamOn 100

Start first run

Start second run

Change settings

Change settings Generate
137Cs

G4GeneralParticleSource()
 source/event/include/G4GeneralParticleSource.hh
 Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4VPrimaryGenerator

 Is designed to replace the G4ParticleGun class
 It is designed to allow specification of multiple particle sources each

with independent definition of particle type, position, direction and
energy distribution

 Primary vertex can be randomly chosen on the surface of a certain
volume, or within a volume

 Momentum direction and kinetic energy of the primary particle can also
be randomized

 Distribution defined by UI commands

G4GeneralParticleSource

 On line manual:
 Section 2.7 of the Geant4 Application Developer

Manual
 /gps main commands

 /gps/pos/type (planar, point, etc.)
 /gps/ang/type (iso, planar wave, etc.)
 /gps/energy/type (monoenergetic, linear,

User defined)


GPS documentation

When do you need your own derived
class of G4VPrimaryGenerator

 In some cases, what it provided by Geant4 does not fit specific
needs: need to write a derived class from
G4VPrimaryGenerator

 Must implement the virtual method
GeneratePrimaryVertex(G4Event* evt)

 Generate vertices (G4PrimaryVertex) and attach particles
to each of them (G4PrimaryParticle)

 Add vertices to the event evt->AddPrimaryVertex()
 Needed when:

 You need to interface to a non-HEPEvt external generator
 neutrino interaction, Higgs decay, non-standard interactions

 Many particles from one vertex, or many vertices
 double beta decay

 Time difference between primary tracks

Examples
 examples/extended/analysis/A01/src/
A01PrimaryGeneratorAction.cc is a good
example to start with

 Examples also exist for GPS
examples/extended/eventgenerator/
exgps

 And for HEPEvtInterface
example/extended/runAndEvent/RE01/sr
c/RE01PrimaryGeneratorAction.cc

 Concrete implementation of G4VPrimaryGenerator
 Almost all event generators in use are written in FORTRAN

but Geant4 does not link with any external FORTRAN code
 Geant4 provides an ASCII file interface for such event

generators
 G4HEPEvtInterface reads an ASCII file produced by

an Event generator and reproduce the G4PrimaryParticle
objects.

 In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

 It generates only the kinematics of the initial state, so the
interaction point must be still set by the user

Bonus: G4HEPEvtInterface

 Reading from (as well as writing into) the same file is not
safe in multithreading!

 Solution: use G4Mutex
 G4Mutex allows you to lock specific lines of your code in

a sequential mode, so you threads will not conflict:

namespace { G4Mutex stuffMutex =
G4MUTEX_INITIALIZER; } //in beginning of your class

stuffMutex.lock();
// … your code in a sequential mode
stuffMutex.unlock();

Bonus 2: G4Mutex

Hands-on session
 Task2

 G4ParticleGun and Geant4 GPS

 http://geant4.lngs.infn.it/alghero2025/task2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

