An Integrated Framework for the Radiation Environment in Space, on Mars and on the Moon and its Implications for Human Space Flight

Bruna Lima June 2025 - XXII Seminar on Software for Nuclear, Subnuclear and Applied Physics

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e terpologia

Funded by the European Union

Photo Credit: ESA/Hubble & NASA

The Radiation Challenge in Space Exploration

- Space radiation is a significant threat to astronauts and electronic equipment.
- **Mars** has minimal protection compared to Earth.
- The Moon has no protection at all, compared to the Earth.
- Cosmic rays and solar events pose health risks.

Figure 1: Cosmic radiation can be galactic and solar. The Earth's magnetosphere deflects cosmic rays and protects us from solar flares. (Image: L. Han/IAEA)

The Space Radiation Environment

Figure 2: Earth's particle environment, dominated by galactic cosmic rays and solar particles, with the influence of the geomagnetic field. Adapted from <u>ResearchGate</u>, Space as a Tool for Astrobiology.

Galactic Cosmic Rays

High-energy particles from outside the Solar System.

Solar Energetic Particles

Bursts of particles from the Sun (solar flares, Coronal Mass Ejections)

Planetary Radiation Belts

Trapped charged particles around planets (Earth's Van Allen belts)

Why do we care?

- Future human missions to Mars and the Moon are being planned.
- Safe exploration requires accurate radiation risk assessment.
- Ensuring astronaut safety is critical for long-term space exploration.

Figure 3: Mars Sample Return overview Infographic Credit ESA–K. Oldenburg

Project Overview – The Solution to the Problem

Bruna Lima | LIP | ESA | IST | XXII SSNSAP 2025

Project Overview: The Solution to our Problem

Results

Simulation

Bruna Lima | LIP | ESA | IST | XXII SSNSAP 2025

Input

Validation and Impact: Building on dMEREM

- Validate models using mission data
- Assess radiation risks for spacecraft, EVAs, and different astronaut profiles.
- Provide mission planners with reliable data for safer crewed missions. (easy!
)

Figure 4: Proton spectra reaching the Mars surface within the RAD field-of-view due to GCR-protons, helium, carbon and oxygen nuclei described with the GCR ISO-15 390 model, simulated with dMEREM using four different physics lists compared to RAD proton differential flux measurements of September 2017. (Credits:Validation of dMEREM, the Detailed Mars Energetic Radiation Environment Model, with RAD Data from the Surface of Mars)

Conclusion Building a Safer Future for Space

Exploration

- Unifying fragmented radiation data for better understanding and accessibility.
- Ensuring astronaut safety for long-duration missions.
- Supporting the next wave of human exploration on the Moon and Mars.

Figure 5: LUNA recreates the Moon's surface on Earth, located next to ESA's Astronaut Centre (EAC) in Cologne, Germany. **CREDIT**S: ESA-L. Breggion

Acknowledgments

& Jorge Sampaio – LIP/FCUL, Miguel Ferreira – LIP (Technical Eng.)

An Integrated Framework for the Radiation Environment in Space, on Mars and on the Moon and its Implications for Human Space Flight

Bruna Lima June 2025 - XXII Seminar on Software for Nuclear, Subnuclear and Applied Physics

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e terpologia

Funded by the European Union

Photo Credit: ESA/Hubble & NASA

Extra Slides

Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP)

Credits: Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Earthsparticle-environment-dominated-by-galacticcosmic-rays-and-solar-particlesand_fig3_318029811

Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP)

Galactic Cosmic Rays (GCR):

- High-energy particles from outside the solar system
- Originate from supernovae and distant stars
- Composed of protons, heavy ions, and electrons
- Can penetrate deep into planetary atmospheres and affect radiation environments

Solar Energetic Particles (SEP):

- Emitted during solar flares and coronal mass ejections
- Consist mainly of protons, with some heavier ions and electrons
- More intense but localized compared to GCR
- Pose radiation risks to spacecraft, astronauts, and satellites in space

Radiation Spectra Simulation

Comparative flux spectra of GCRs and SEPs extracted from SPENVIS

dMEREM

- Geometry Definition and Materials;
- Primary Particle Generation;
- Event Generation & Simulation;
- Physics Processes & Interactions;
- Sensitive Detectors & Scoring Mechanisms;
- Tracking & Data Collection;
- □ Output & Visualization.

Lunar Radiation Environment

Particle	Energy (eV)	
GCRs	10 ⁸ to 10 ²⁰	
SEPs	10 ⁸ to 10 ⁹	
Albedo Particles	Up to 10 ⁸	
Other sources		

SEPs fluxes can exceed background GCRs fluxes by factors of 10³ or more!

Figure 2: Juice NavCam view of the Moon Credits: ESA/Juice/NavCam Acknowledgements: Airbus

From Mars to the Moon

dMEREM (Mars Model)

Adapting to the Moon:

Developed by LIP's **SpaceRad** group using **Geant4**.

Simulates radiation environment at different Mars locations.

Figure 3: "Mars true-color generated image using OSIRIS" **CREDIT:** ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Bruna Lima | LIP | ESA | IST | PIC 2 | January 2025

- Replace Mars' atmospheric/soil models with lunar-specific data.
- Include lunar-specific radiation sources.
- Validate with existing mission data.

From Mars to the Moon

Figure 4: "Full Moon as photographed from on board the International Space Station **CREDIT:** NASA/Astronaut Jeff Williams

Bruna Lima | LIP | ESA | IST | PIC 2 | January 2025

From Mars to the Moon

Figure: Geant4 Simulation Example with Moon Regolith and Proton Flux of 100 GeV

Position - x (mm) :	-9.120109676571092e-	12-9.120132388436999e-12
Position - y (mm) :	1.083960349821405e-1	11.083963049215006e-11
Position - z (mm) :	1.479007345873014e-1	11.479011029067858e-11
Global Time (ns) :	0.01143614791999963	0.01143614791999963
Local Time (ns) :	-7.001454533324725e-	14-7.001471969092333e-14
Proper Time (ns) :	-1.534098534712316e-	14-1.534102355087841e-14
Momentum Direct - x :	0.4453226691461333	0.4453226691461333
Momentum Direct - y :	-0.5292833130974934	-0.5292833130974934
Momentum Direct - z :	-0.7221820371769878	-0.7221820371769878
Momentum - x (MeV/c):	1.013318641254679	1.013318641254679
Momentum - y (MeV/c):	-1.204368618141755	-1.204368618141755
Momentum - z (MeV/c):	-1.643303993605095	-1.643303993605095
Total Energy (MeV) :	2.332142006503581	2.332142006503581
Kinetic Energy (MeV):	1.821143096503581	1.821143096503581
Velocity (mm/ns) :	292.5074555687947	292.5074555687947
Volume Name :	Regolith	Regolith
Safety (mm) :	5e-10	5e-10
Polarization - x :	0	0
Polarization - y :	0	0
Polarization - Z :	0	0
Weight :	1	1
Step Status :	AlongStep Proc.	AlongStep Proc.
Process defined Step:	eIoni	eIoni

++List of secondaries generated (x,y,z,kE,t,PID): No. of secondaries = 0

**PostStepDoIt (after all invocations):
 ++List of invoked processes
 1) Transportation

++64Step Information Address of 64Track : 0x139f1d3f0 Step Length (mm) : -5.100009201886219e-17 Energy Deposit (MeV) : 0

StepPoint Information	PreStep	PostStep
Position - x (mm) :	-9.120109676571092e-12-	9.120132388436999e-12
Position - y (mm) : Position - z (mm) :	1.083960349821405e-111. 1.479007345873014e-111.	083963049215006e-11 479011029067858e-11
Global Time (ns) : Local Time (ns) :	0.01143614791999963 0. -7.001454533324725e-14-	01143614791999963 7.001471969092333e-14
Proper Time (ns) : Momentum Direct - x :	-1.534098534712316e-14- 0.4453226691461333 0	1.534102355087841e-14 .4453226691461333
Momentum Direct - y : Momentum Direct - z :	-0.5292833130974934 -0 -0.7221820371769878 -0	.5292833130974934
Momentum - x (MeV/c):	1.013318641254679	1.013318641254679
Momentum - z (MeV/c):	-1.643303993605095 -	1.643303993605095