

Neutrinoless double beta decay (0vββ)

Neutrinoless double-beta decay ($0\nu\beta\beta$) is a beyond Standard Model process :

1. $\bar{
u} \equiv
u$ \rightarrow Neutrino Nature as Majorana particle

2. (A, Z) → (A, Z+2) + $2e^{-}$ → Leptogenesis (Δ L=2)

 $\left[\text{ 3.} \quad T_{1/2}^{0
u} \propto \left. G^{0
u} \cdot \left. \left| M^{0
u}
ight|^2 \cdot \left(rac{m_{etaeta}}{m_e}
ight)^2
ight.
ight.$

 \rightarrow Neutrino mass scaling and ordering

Neutrinoless double beta decay (0vββ)

- $G^{0\nu}$ is the phase space factor
- M⁰^v is the Nuclear Matrix Element
- $m_{\beta\beta}$ is the Majorana mass

Neutrinoless double-beta decay ($0v\beta\beta$) is a beyond Standard Model process :

1. $\bar{\nu} \equiv \nu$ → Neutrino Nature as Majorana particle

2. $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$ \rightarrow Leptogenesis (Δ L=2)

3. $T_{1/2}^{0
u} \propto \left| G^{0
u} \cdot \left| M^{0
u} \right|^2 \cdot \left(rac{m_{etaeta}}{m_e}
ight)^2$

 \rightarrow Neutrino mass scaling and ordering

MANENTI Nicola - Alghero 2025 - Light Injection System for CUPID

Neutrinoless double beta decay

Only the energy associated to the $\boldsymbol{\beta}$ particles can be reconstructed

- Q_{BB} of few MeV
- $2\overline{\nu\beta\beta}$: continuous spectrum till Q_{BB}
- $0v\beta\beta$: monoenergetic peak at Q_{β}

Typical Backgrounds

- End of natural γ-background
- Energy-degraded α particles
- Irreducible $2v\beta\beta$ background

 $(0\nu\beta\beta)$

The CUPID experiment

CUORE Upgraded with Particle IDentification searches for the $0\nu\beta\beta$ decay of ¹⁰⁰Mo (Q_{ββ} = 3034 keV)

- Underground experiment (LNGS, Italy)
- Cryogenic temperatures O(10 mK)
- Bolometric technique
- Double readout of heat and light signal
- ~ 1600 crystals of 280g each

Light Injection System

➤ Multichannel

> Wavelength

> Pulse width

➤ Stable pulses

OUTSIDE THE CRYOSTAT

- light source
- optical fibre with feedthrough
- diffusive fibre

TO BOLOMETERS

A system capable to inject light pulses of a given wavelength to be absorbed by a group of LDs.

APPLICATIONS
> Pile-up ID efficiency monitoring
> LD periodic regeneration
> LD Stabilisation

REQUIREMENTS

- Negligible impact on cryogenics
- Contribution to the background budget as small as possible
- ► DAQ interface

Feasibility Test at Pavia

Several test possible with a simple setup:

- Thermal stress on the optical fibre (from room temperature down to 77K)
- ➤ Light source candidates
- > Pulse generation mechanism
- Photo statistics

Validation test at LNGS with a single tower (28 crystals)

MANENTI Nicola - Alghero 2025 - Light Injection System for CUPID

QUESTIONS?

PHOTO STATISTICS

Given Θ as the expected number of photons emitted by the fibre, the observed number of photons (θ) is expected to follow a Poissonian distribution.

$$\frac{\left[Mean\left(\theta\right)\right]^{2}}{Var\left(\theta\right)}=\frac{\left[\Theta\right]^{2}}{\Theta}$$

IF the photons have also the same known wavelength, energy calibration can be achieved by measuring the value of Θ

HOWEVER

• The real measurable quantity X is proportional to θ through the intrinsic gain (G)

$$\Theta = rac{Mean\left(X
ight)}{G}
ightarrow \, rac{\left[Mean\left(X
ight)
ight]^2}{Var\left(X
ight)} = rac{\left[G\Theta
ight]^2}{G^2\Theta}$$

• Additional shift an smearing in the Poissonian distribution of θ due to the detector response

$$Var\left(heta
ight)=\sigma_{NOISE}^{2}+\left(G^{2}+\sigma_{DET}^{2}
ight)\Theta$$

SO... the Poissonian term, in the variance, is no longer the only one linear in Ø
 → the reconstruct value of Ø can be an underestimate

Combined Fit Strategy

To resolve the single contributions to the variance with a fine (Poissonian limit) and gross (Gaussian limit) fit simultaneously.

- → fine fit: gives access to parameters like σ_{NOISE}^2 and G but lacks in probing σ_{DET}^2
- → gross fit: can reveal $(G^2 + \sigma_{DET}^2)$ but lacks in evaluating others