

ØG

Neutrino Mass Ordering Determination and

T

Guihong Huang On behalf of JUNO Collabora Wiivi University

11

MODICA, Jun.16, 2025

I - a-

Outline

- Question: Neutrino Mass Ordering
- Review of Experiment Results
- JUNO Potential and Progress
- Summary

Knowns about Neutrino

Standard Model $\mathcal{L}_{0} = \sum_{f=1}^{3} \left[\bar{v}^{f} \, i\gamma^{\mu} \partial_{\mu} v^{f} + \bar{e}^{f} \left(i\gamma^{\mu} \partial_{\mu} - m_{E}^{f} \right) e^{f} + \bar{u}^{f} \left(i\gamma^{\mu} \partial_{\mu} - m_{U}^{f} \right) u^{f} + \bar{d}^{f} \left(i\gamma^{\mu} \partial_{\mu} - m_{D}^{f} \right) d^{f} \right] + \cdots$

Found three flavor of **spinor** neutrinos Neutrinos participate in **weak** interaction

Knowns about Neutrino

$$\begin{array}{l} \hline \text{Standard Model} \quad \mathcal{L}_{0} = \sum_{f=1}^{3} [\bar{v}^{f} i \gamma^{\mu} \partial_{\mu} v^{f} + \bar{e}^{f} (i \gamma^{\mu} \partial_{\mu} - m_{E}^{f}) e^{f} + \bar{u}^{f} (i \gamma^{\mu} \partial_{\mu} - m_{U}^{f}) u^{f} + \bar{d}^{f} (i \gamma^{\mu} \partial_{\mu} - m_{D}^{f}) d^{f}] + \cdots \\ \hline \text{Found three flavor of spinor neutrinos} \\ \text{Neutrinos participate in weak interaction} \qquad \begin{array}{c} \text{CC} & & \text{NC} \\ v^{f} & e^{f/uf/df} & v^{f} & e^{f/uf/df'} \\ \hline \text{Neutrino Oscillation} & |v_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} |v_{i}\rangle & i \frac{\partial}{\partial t} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = H \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} & |v_{\alpha}(L)\rangle \approx \sum_{i=1}^{n} U_{\alpha i}^{*} e^{-i\frac{m_{i}^{2}L}{2E_{i}}} |v_{i}(0)\rangle \\ \hline U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{PMNS Matrix} \end{array}$$

Knowns about Neutrino

Standard Model
$$\mathcal{L}_0 = \sum_{f=1}^3 [\bar{v}^f i\gamma^\mu \partial_\mu v^f + \bar{e}^f (i\gamma^\mu \partial_\mu - m_E^f) e^f + \bar{u}^f (i\gamma^\mu \partial_\mu - m_U^f) u^f + \bar{d}^f (i\gamma^\mu \partial_\mu - m_D^f) d^f] + \cdots$$
Found three flavor of spinor neutrinos
Neutrinos participate in weak interaction $\frac{CC}{v^f} = \frac{W}{v^f} = \frac{e^f/u^f/d^f}{v^f}$ $\frac{NC}{v^f} = \frac{Z}{v^f/e^{f'}/u^{f'}/d^{f'}}$ $m_{e_1} = 2 (v_e)$ (v_e) $m_{e_1} = m_{e_2}^2 u^{f'}$

$$\begin{array}{c|c} \hline \text{Neutrino Oscillation} & |v_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} |v_{i}\rangle & i \frac{\partial}{\partial t} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = H \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} & |v_{\alpha}(L)\rangle \approx \sum_{i=1}^{n} U_{\alpha i}^{*} e^{-i \frac{m_{1}^{-L}}{2E_{i}}} |v_{i}(0)\rangle \\ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{PMNS Matrix} \end{array}$$

Oscillation probability relates to δ_{CP} , neutrino mixing angles $(\theta_{12}, \theta_{23}, \theta_{13}) \approx (34, 43, 8.6)$ degree neutrino mass splittings $(\Delta m_{21}^2, |\Delta m_{31}^2|) \approx (7.5e^{-5}, 2.51e^{-3}) eV^2$ (NuFit2024 NO)

Neutrino participates in weak/gravity interaction

Unknown about Neutrino

Unknown about Neutrino

Is Neutrino Majorana or Dirac? Neutrinos are their own anti-particles ?

What is the origin of neutrino mass? How to extend SM?

If it is Dirac, why m_v is so small? Otherwise, where does M_v come from?

$$\mathcal{L}_{\text{mass}} = -Y_{ij}^e \bar{L}^i H e_R^j$$
$$-Y_{ij}^\nu \bar{L}^i \widetilde{H} \nu_R^j - i M_{ij} (\nu_R^i)^c \nu_R^j + \text{h.c.}$$

Are there other types of neutrino? $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$? Sterile or dark neutrinos?

Why to Measure Neutrino Mass Ordering

Is $\sin^2 \theta_{23} = 0.5$? How large is the δ_{CP} ?

What is the smallest mass of neutrinos? Is Neutrino Majorana or Dirac? How the neutrino masses ordered?

What is the origin of neutrino mass? Are there other types of neutrinos?

What is the mechanism of Supernova burst? How will neutrino affects the evolution of universe...

- Improve the sensitivity of δ_{CP} and $\sin^2 \theta_{23}$
- Improve the constraint of life of $0v\beta\beta$ decay
- Improve the constraint of neutrino absolute mass
- Improve the constraint of cosmic parameters

How to Measure Neutrino Mass Ordering

Accelerator Neutrino Oscillation Methods

Accelerator Neutrino Oscillation Methods

Accelerator Neutrino Oscillation Methods

MSW:
$$H_{\text{Matter}} = H_{\text{Vacuum}} + \mathbf{U}^{\dagger} \begin{pmatrix} 2\sqrt{2}G_F n_e E & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{U}$$

Experiments	Baseline	Energy	Dominant CC Observables	Advantages
MINOS	735 km	3/7/9 GeV	$\{v_e, \bar{v}_e\}(E), \{v_\mu, \bar{v}_\mu\}(E)$	Covers high energy region
Т2К/Т2НК	295 km	0.6 GeV	$\{v_e, \bar{v}_e\}(p^\mu, \theta_l), \{v_\mu, \bar{v}_\mu\}(p^\mu, \theta_l)$	Good resolution/Better
NOvA	810 km	1.8 GeV	$\{v_e, \bar{v}_e\}(E), \{v_\mu, \bar{v}_\mu\}(E)$	Separate hierarchy and δ effects; 3D tracking and calorimetry
DUNE	1300 km	2.5 GeV	$\{v_e, \bar{v}_e\}(E), \{v_\mu, \bar{v}_\mu\}(E)$	High statistics; High resolution

Atmospheric Neutrino Oscillation Methods

Atmospheric Neutrino Oscillation Methods

Atmospheric Neutrino Oscillation Methods

Experiments	Energy	Dominant CC Observables	Advantages
Super-K/Hyper-K	0.1-10 GeV	$\{v_e, \bar{v}_e\}(E, L), \{v_\mu, \bar{v}_\mu\}(E, L)$	High statistics; Good resolution/Better
IceCube+DeepCore	5-1000 GeV	$\{v_{\mu} + \bar{v}_{\mu}\}(E, L), \{v_{\tau} + \bar{v}_{\tau}\}(E, L)$	High energy region; $v_{ au}$ apperance
KM3Net-ORCA	1-50 GeV	$\{v_{\mu} + \bar{v}_{\mu}\}(E,L), \{v_{\tau} + \bar{v}_{\tau}\}(E,L)$	Lower energy threshold
JUNO	0.01-10 GeV	$\{v_e, \bar{v}_e\}(E, L), \{v_\mu, \bar{v}_\mu\}(E, L)$	Very Low energy threshold; Good resolution
DUNE	0.1-10 GeV	$\{v_e, \bar{v}_e\}(E, L), \{v_\mu, \bar{v}_\mu\}(E, L)$	High statistics; Good resolution

Reactor Neutrino Oscillation Methods

Experiments	Baseline	Dominant Observables	Advantages
JUNO	53 km	$\{\bar{v}_e\}(E)$	Independent of $ heta_{23}$ and δ_{CP}

Supernova Neutrino Oscillation Methods

Supernova Neutrino Oscillation Methods

Experiments	Energy	Dominant Channels and Observables	Advantages
Super-K/Hyper-K	> 5 MeV	IBD: $\bar{v}_e + p \rightarrow e^+(p^\mu) + n$	High statistics
JUNO	>0.1 MeV	$\begin{array}{l} \text{IBD:} \ \bar{v}_e + p \rightarrow e^+(E) + n \\ \text{pES:} \ v + p \rightarrow v + p(E) \end{array}$	Very low energy threshold; Multi-channels
DUNE	> 5 MeV	$v_e + {}^{40}\text{Ar} \to e^-(p^\mu) + {}^{40}\text{K}^*$	v_e information

Accelerator methods: MINOS/T2K/NOvA

Accelerator methods: MINOS/T2K/NOvA

Accelerator methods: MINOS/T2K/NOvA

Atmospheric methods: ORCA/SK/IceCube+DeepCore

Atmospheric methods: ORCA/SK/IceCube+DeepCore

π

2

0

0.4

0.5

 $\sin^2\theta_{23}$

0.6

Atmospheric methods: ORCA/SK/IceCube+DeepCore

SK: Favors normal ordering, upper octant, and a nearly maximally CPV

IceCube: Slightly favors the normal ordering and upper octant

Global Fit

-2.8

-3

0.3

0.4

0.5

 $\sin^2 \theta_{23}$

0.6

- CPV strongly depends on MO
- Octant of θ_{23} is still unknown
- Additional data is required for the determination

0.7

The Jiangmen Underground Neutrino Underground 700 m

Physics goals: 1, NMO 2, Sub-percent measurement of $\sin^2 2\theta_{12}$, Δm_{21}^2 , Δm_{31}^2 3, Solar, earth, atmospheric, supernova neutrino. Key performances:

- 1, Detector scale
- 20 kton high light yield and transparency LS
- 2, Overall energy resolution
- 3%(<2%)@1 MeV for JUNO(TAO)
- 3, Detector backgrounds
- Comparable to Borexino

Detector Layout

- Central detector (CD)
 - 20 kton LS
 - 17612 20-inch PMTs (75% coverage)
 - 25600 3-inch PMTs (3% coverage)
 - 3D calibration system

→ Precise neutrino energy calorimetry

- Water Cherenkov detector (WP)
 - 35 kton pure water
 - 2400 20-inch PMTs
 - 600 8-inch PMTs

\rightarrow Muon detection and background reduction

Detector Layout

- Top Tracker (TT)
 - 3 layers plastic scintillator covering ~60% of the surface
 → Unambiguity muon directing

- Near detector (TAO)
 - 2.8 ton Gd-doped liquid scintillator
 - >94% coverage (~10 m²) of SiPM
 - 44 m far from reactor
 - → Precise measurement of unoscillated energy spectrum of \bar{v}_e
 - *See poster by Giovanni

Expected Detector Performance

- Components of energy resolution are clear
- JUNO energy resolution is ~2.95% @1 MeV
- TAO energy resolution < 2% @1 MeV

Expected Detector Performance

NMO Sensitivity with Reactor Neutrinos

- A daily detection rate of 47.1 reactor neutrinos
- The most sensitive region is [1.5, 3] MeV

NMO Sensitivity with Reactor Neutrinos

Chin. Phys. C 49, 033104

- The uncertainty of reactor neutrino flux < 2% in [1.5, 4] MeV
- With an exposure of 6.5 years, JUNO will achieve a median sensitivity of 3σ to reject the incorrect MO hypothesis

NMO Sensitivity with Atmospheric Neutrinos

- Very low energy threshold and excellent energy resolution
- Characteristic signals from Michel electrons, neutron captures and unstable daughter nuclei are helpful for the particle recognition

*See talk for more details about solar and earth neutrino physics by Livia on June 18

1.35

Detector Construction

The CD installation begins in spring 2022

Bottom structure

Platform for Acrylic assembly

Top structure

5 layers of Acrylic

20 layers of Acrylic

23 layers of acrylic 35

Detector Construction

PMT and electronics installation

Final overview of CD

The installation of CD and WP was completed by December 2024 LS filling strategy: first fill with water, then replace the water with LS

Water Filling

- The water filling was started in December 2024
- CD and WP were filled with water simultaneously
- The water filling was completed in February 2025

LS Filling Status

- LS filling was started on February 8, 2025
- Remove water and fill LS simultaneously
- Completion is expected by July 2025

Commissioning Status

Dark rate of 20" PMTs in CD

Total PMTs installed: 17596 DNR is ~20 kHz/PMT

NNVT, PMTID: 8400, Amp: 62.22999999999956

Waveform of a typical PMT

Good grounding and low noise: RMS ~2.8 ADC ch. → ~0.055 PE PMT threshold: 0.2 PE/ch. Trigger: ~ 300 PMTs/225ns → ~150 KeV

All in agreement with the design and expectations

Commissioning Status

The muon events during the water phase were collected

Rn in fresh LS: < 1 mBq/m³ U/Th <10⁻¹⁵ g/g

NMO Future

DUNE Takes 1-3 years to reach 5σ

Hyper-K

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass ordering	0.40	2.2 σ -	→ 3.8 σ
	0.60	4.9 σ -	→ 6.2 σ
θ_{23} octant	0.45	2.2 σ	→ 6.2 σ
	0.55	1.6 σ -	→ 3.6 σ

10 years with 1.3MW, normal mass ordering is assumed

agenda.infn.it/event/37867/contributions/233905

The NMO is highly likely to be determined by the end of 2030 with a significance of 3σ

Summary

- Current experiments favor NO but show tension in θ_{23} , δ_{CP}
- JUNO is projected to be completed by summer 2025
- JUNO is expected to determine the NMO with 3σ significance around 2030
- NMO is anticipated to be determined with 5σ significance by 2035

Thank you!

Back up

PMT testing

LS receipt

Solvent: Linear Alkyl-Benzene LAB Fluor: 2.5 g/L PPO

Wavelength shifter: 3 mg/L bis-MSB

LS Production

Four purification plants for a radio-purity of 10⁻¹⁷ g/g(U/Th) and 20 m attenuation length at 430 nn

5000 m³ LAB tank

 AI_2O_3 to remove particles

15%

Distillation to remove radioactive impurities

OSIRIS for LS qualification

Gas stripping to remove Rn and $\rm O_2$

Water extraction to remove radioactive impurities₄₇

