

CHARACTERIZATION OF LOW-ENERGY ARGON RECOILS WITH RED AND RED+

L. Pandola (LNS)

on behalf of the ReD Working Group (GADM Collaboration)

MAYORANA2025, Modica June 18th, 2025

The DarkSide program

- DarkSide program at Gran Sasso Laboratory: direct search for WIMP dark matter → very rare elastic scattering interaction with ordinary nuclei
- Strategy: dual-phase Time Projection Chamber with lowradioactivity LAr
- Operated a 50 kg TPC (DS-50)
- In preparation: **50 ton TPC** (DS-20k)
 - Novel light readout with cryogenic SiPM
 - Experiment being constructed now
- Pave way for next-generation (ARGO)

Agnes et al. PRD **98** (2018) 122006

The dual-phase LAr TPC in one slide

- Prompt scintillation signal: S1
- Delayed electroluminescence signal: S2
- Time difference between S1 and S2 → z position
- Light pattern of S2 \rightarrow (x,y) position

The search for low-energy WIMPs

- LAr TPC sensitive in the search of low-mass WIMPs
 - A few GeV instead of the "standard" 100's GeV

- O(1 keV), instead of 20-100 keV
- Challenging!
 - S1 too small to be detected
 - S2-only events

Only ionization detected (~20 PE/e-)

Agnes et al. PRD 107 (2023) 063001

Analysis sensitive to ionization yield for keV
 NRs

• Poorly known for Ar

Ar NRs ionisation yield at low energy

- Measurement within DS-50, with AmC and AmBe neutron sources
- Dedicated 2-parameter model

Thomas-Imel
$$1-r = \frac{1}{\sqrt[]{N_i}} \ln(1+\gamma N_i)$$

$$Q_y^{NR} = \frac{N_{i.e.}}{E_{nr}} = \frac{(1-r)N_i}{E_{nr}}$$

$$N_i = \beta \ \kappa(\epsilon) = \beta \frac{\epsilon \ s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)}$$

$$N_i = \beta \ \kappa(\epsilon) = \beta \frac{\epsilon \ s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)}$$

Agnes et al. PRD 104 (2021) 082005

- Different screening models for s_n, possible low-E suppression for s_e
- Constrains only by small lowenergy sample from the AmC calibration of DS-50
 - No closed 2-body kinematics
- Strong case for a LAr direct measurement at 1-5 keV_{nr}

The ReD project

- Measurement within the ReD project
 - R&D activity within DarkSide
 - Operates a small dual-phase LAr TPC with SiPM readout
- Strategy: Produce Ar recoils of known energy in the TPC by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV) and up to 10 MeV
 - Appropriate to produce recoils of a few keV
- Close detectors (BaF₂) to tag fission events
- **Neutron spectrometer** to detect neutrons scattered off-Ar

Fixed by

geometry

 $N(E) \propto exp[-0.88E(MeV)]sinh[2.0E(MeV)]^{1/2}$

 $RE_{coil}D_{irectionality}$

Two-body kinematics!

Time of flight

The ReD conceptual layout

THE INGREDIENTS

The TPC ...

- Miniaturized version of the DS-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- DS-20k light readout: 5x5 cm² SiPM, 24x1cm² SiPM
 - 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~55 μs)
- In this campaign:
 - $g_2 = \sim 18 \text{ PE/e-} (E_{drift} = 200 \text{ V/cm}, E_{el} = 5.79 \text{ kV/cm})$
 - Electron lifetime > 1 ms

... and all the rest

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2°
 - Shines the entire TPC at 1 m distance

... and all the rest

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight

... and all the rest

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight
- Neutron spectrometer: two 3x3 arrays of EJ276 plastic scintillators
 - STOP for time of flight
 - Features n/γ discrimination
 - 1 m downstream the TPC
 - Symmetric deployment to control systematics due to alignment
 - θ ~ 12°-17° in order to avoid direct neutrons from the source
- Tag Ar recoils down to ~1-2 keV_{nr}

The real thing at

PUTTING EVERYTHING AT WORK

Data taking & Co.

- Data taking with ²⁵²Cf from Jan 10th to Mar 16th, 2023
 - Event rate ~2.5 Hz, 80 μs waveforms
- Trigger logic: "any BaF" ∧ "any PSci"
 - Tagging ~60% of SF events
 - TPC acquired in follower mode (may fail to trigger in S1)
- Weekly calibration with laser and ¹³⁷Cs/²⁴¹Am
 - Calibrations and background runs used to determine and correct for non-homegeneity in the TPC response
- Detailed end-to-end MC simulation available
 - Produce synthetic data → same analysis flow than real data
 - Tuned and validated on calibrations
 - Check reconstruction algorithms!

Finding neutrons.

- Event rate dominated by γrays and accidentals
- Selection of candidate neutrons by time of flight and PSD
 - About 40 events/hour (0.4%)
- ToF resolution ~ 0.7 ns
- Event-by-event E_n at <5%

10²

... interacting in the TPC

- Look for TPC events offline
 - Analysis flow: de-convolution of SiPM response function, TPC pulse finder
- From MC: pulse finder fully efficient for S1 > 25 PE, S2 > 4 e-
- Selection cuts:
 - One S2 within 65 μs from BaF₂ and optionally, an S1 (< 100 PE)
 - If S1 available, consistent BaF-TPC tof
 - No tails of previous S2 pulses
 - (x,y) in the central 4x4 cm region (fiducialization)
- Final sample: ~800 passing all cuts, out of 2200 candidate neutron events w/ TPC signal
 - 72% are S2-only (~ as in MC)
 - Expected: S1~8 PE for 5 keV_{nr}

The sample of low-energy recoils

- Get E_{NR} from time of flight (and geometry), uncert. ±7%
- E_{NR} down to 1-2 keV
- Most S1+S2 outliers: multiple neutron scattering
 - Confirmed by MC
 - For genuine NRs below 5 keV, S1 always too small for the pulse finder

For higher NRs, some S1 reconstructed by the pulse finder → S1+S2

S2 vs. E_{NR}

- Slice $(E_{NR},S2)$ data in 7 intervals in E_{NR} (~ equally populated)
 - Take range 1-10 keV only
- For each slice, unbinned maximum likelihood fit of the S2 distribution
 - gaussian + constant
 - Constant term accounts for multi-scattering background

- S2: mean value of the gaussian
- < E_{NR} >: mean energy of the events
- Procedure validated with the MCgenerated data sets
 - Unbiased, provided S1+S2 events are kept

From S2 to Ne: g₂

- Ionization gain g₂ (PE/e-)
 - Detector property: must be measured by the ReD data
- Two different approaches
- Calibration with ²⁴¹Am (60 keV γ-ray)
 - S2 value from ²⁴¹Am data
 - Expected Ne calculated by MC, using the Qy(ER) model from DS50

From S2 to Ne: g₂

- Ionization gain g₂ (PE/e-)
 - Detector property: must be measured by the ReD data
- Two different approaches
- Calibration with ²⁴¹Am (60 keV γ-ray)
 - S2 value from ²⁴¹Am data
 - Expected Ne calculated by MC, using the Qy(ER) model from DS50
- «Echo» events (S3): photoionization of the cathode from the S2 pulse
 - Delay of 55 µs with respect to S2
 - A-few electron signal

From S2 to Ne: g₂

- Ionization gain g₂ (PE/e-)
 - Detector property: must be measured by the ReD data
- Two different approaches
- Calibration with ²⁴¹Am (60 keV γ-ray)
 - S2 value from ²⁴¹Am data
 - Expected Ne calculated by MC, using the Qy(ER) model from DS50
- «Echo» events (S3): photoionization of the cathode from the S2 pulse
 - Delay of 55 µs with respect to S2
 - A-few electron signal
 - Required the development of a full integrated shape model
- Consistent results: ~18.0 PE/e-

The sample of low-energy recoils

- Compare vs. prediction of the DS-50 model & literature data
 - Assuming a <u>preliminary</u> ionization gain $g_2 = 18 \text{ PE/e-}$ for ReD

- Use ReD data as input to the model fit to update parameters
 - Will allow for scrutiny of screening models s_n
- Machinery ready and tested, analysis completed
 - Final Qy vs. E_{NR} measurements down to 2 keV

DS-50 model

Joshi et al. PRL 112 (2014) 171303 Agnes et al. PRD 97 (2018) 112005

Under
Collaboration
Review, to be
released shortly

ReD+

- Future project ReD+, funded as a 2-year PRIN project at INFN, Laboratori Nazionali del Sud
- Goal: improve and extend coverage of ReD down to 0.5 keV using the same approach (252Cf source) but optimized components
 - TPC redesigned and being built, SiPM readout
 - Larger neutron spectrometer
- Use the lessons learnt from ReD
 - Reduce accidental background
 - Minimize passive volumes
 - MC-driven design
 - Constrain fluctuations of charge yield
- First run in Winter 2025

- Irradiate the same TPC with neutrons from a DD generator
 - Joint project with University of Sao Paulo (FAPESP grant)
- Goal: improve down to 0.2 keV
- DD-gun: up to 10⁷ n/s of quasimonochromatic neutrons (2.4 MeV)
 - Commercial (tabletop) device by Adelphi Inc.,
 - Very small x-ray background
 - Delivered to USP in 2024: being commissioned now
 - Neutron tagging by detecting the accompanying ³He with a Si detector (demonstrated @Adelphi and @USP)
 - Will be shipped to LNS within 2025

Conclusions & perspectives

Italiadomani

INFN

- ReD measured the response of a miniaturized LAr dual-phase
 TPC to O(keV) nuclear recoils @INFN Catania (2023)
 - Neutrons produced by a ²⁵²Cf fission source
 - BaF₂ taggers and neutron spectrometer to detect neutrons scattered off the TPC → two-body kinematics
- Design sensitivity met: E_{NR} down to 1-2 keV_{nr}
 - Use the ReD experimental data to evaluate charge yield and constrain screening function models
 - Analysis completed, to be released shortly
- Future: ReD+ @ LNS, to cover down to 0.4 keV_{nr} with ²⁵²Cf (Italian PRIN funding) and DD neutron gun (Brasilian FAPESP grant)
 - Data talking in late 2025
- Information crucial for "low-mass WIMP" analysis of current DM experiments and for the design of next-generation