WORKSHOP: Multi-Aspect Young-ORiented Advanced Neutrino Academy (MAYORANA) - International Workshop II edition

Jun 16–18, 2025 Modica

elab12

INFN

Light Dark Matter searches at accelerators: the BDX experiment at Jerfferson Lab

M.Battaglieri (INFN)

Standard Model of particles and interaction

e @lab12

INFN

some anomalies ...

1935: Zwicky, Coma and Dark Matter The gravity of the Stars is not enough to hold clusters together

beside visible matter there should be something else **DARK MATTER**

- ★ Gravitational lensing
- ★ Mass balance
- ★ CMB

★ ...

- \star Clusters of galaxies
- \star Cluster collisions

2

Compelling astrophysical indications about DM existence

Dark Matter (DM) vs Baryonic Matter (BM)

★ How much DM w.r.t. BM?

 \star Does DM participate to non-gravitational interactions? \star Is DM a new particle?

- \star Constraint on DM mass and interactions
 - should be 'dark' (no em interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

 \star We can use what we know about standard model particles to build a DM theory Use the SM as an example: $SM = U(I)_{EM} \times SU(2)_{Weak} \times SU(3)_{Strong}$

Particles, interactions and symmetries

Known particles & new forcecarriers

Particles: quarks, leptons

Force-carriers: gluons, γ , W, Z, graviton (?), Higgs, ... Two options:

- \star

3

... assuming that the gravity is not modified and DM undergoes to other interactions

New matter interacting trough the same forces New matter interacting through new forces

Any guess about the DM mass and interaction?

Yes, if we do a couple of assumptions:

- \star DM thermal origin
 - in the early Universe DM was in thermal equilibrium with regular matter (via annihilation)
- \star DM as thermal relic from the hot early Universe

Minimal DM abundance is left over to the present day

★ Mass <u>constraints:</u>

- mass too low: can not become non-relativistic in time
- mass too high: overproduced in early Universe

Any guess about the DM mass and interaction?

Yes, if we do a couple of assumptions:

- \star DM thermal origin
 - in the early Universe DM was in thermal equilibrium with regular matter (via annihilation)
- * DM as thermal relic from the hot early Universe

Minimal DM abundance is left over to the present day

\star Mass constraints:

- mass too low: can not become non-relativistic in time
- mass too high: overproduced in early Universe

WIMPs (Weakly Interacting Massive Particles)

- Massive DM with massive mediator
- For ~100 GeV DM mass, weak-scale mediators provide reasonable annihilation rate and range of DM-scattering rates

Thermal origin suggests DM interactions and mass in the vicinity of the weak-scale

\star Experimental limits

Light Dark Matter searches at accelerators: the BDX experiment

Exploring the WIMP's option

10 TeV

Light Dark Matter (<TeV) naturally introduces light mediators

New interaction

Introducing a new force in nature

*Hidden sector (HS) present in string theory and super-symmetries

*HS not charged under SM gauge groups (and v.v.)
 no direct interaction between HS and SM
 HS-SM connection via messenger particles

A simple way to go beyond the SM (not yet excluded!): $SU(3)_C \times SU(2)_L \times U(1)_Y \times extra U(1)$

Color Electroweak Hypercharge Hidden sector

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\chi}{2} X_{\mu\nu} F^{\mu\nu} + \frac{m_{\gamma'}^2}{2} X_{\mu} X^{\mu}$$

e-@lab12

INFN

 Ψ can be a huge mass scale particle (M_{Ψ}~IEeV) coupling to both SM and HS

7

 γ'/A' couples to SM via electromagnetic current (kinetic mixing) $\Rightarrow A_{\mu} \rightarrow A_{\mu} + \varepsilon a_{\mu} \quad \chi = \varepsilon \sim 10^{-6} - 10^{-2} (\alpha^{DarkProton} = \varepsilon^2 \alpha_{\mu})$

A lesson from history

An historical example of a 'Standard Model' and 'hidden sector'

* Back in the '30 the Standard Model of the elementary particles was: photon, electron and nucleons \star Beta decay:

 $n \rightarrow p + e^-$

Continuous spectrum!

 \star Pauli proposes a radical solution - the neutrino! $n \rightarrow p + e^- + \overline{v}$

★ Perfect example of a hidden sector!

- neutrino is electrically neutral
- very weakly interacting and light
- interacts with "Standard Model" through "portal" $(p\gamma^{\mu}n)(e\gamma^{\mu}v)$

Light Dark Matter

Light Dark Matter with a (almost) weak interaction (new force!)

• Direct Detection is difficult

- Low mass elastic scattering on heavy nuclei: small recoil
- Large model dependence
- Strong dependence on velocity distribution
- eV-range recoil requires a different detection technology
- Directionality may help to go behind existing limits at large masses

Light Dark Matter searches at accelerators: the BDX experiment

• Direct Detection is difficult

- Low mass elastic scattering on heavy nuclei: small recoil
- Large model dependence
- Strong dependence on velocity distribution
- eV-range recoil requires a different detection technology
- Directionality may help to go behind existing limits at large masses

Light Dark Matter

Accelerators-based DM search

- covers an unexplored mass region extending the reach
- outside the classical DM hunting territory

Particle beams

High intensity

Direct Detection

Light Dark Matter searches at accelerators: the BDX experiment

Moderate energy

Intensity frontier

Accelerator based experiment

Relativistic DM: remove model dependence

Experimental techniques

Light Dark Matter searches at accelerators: the BDX experiment

- 11

e.

INFN

Fixed target vs. collider

Fixed Target

$\begin{array}{c} E_{1} & A' & E_{1} x \\ & E_{1} & E_{1} (1 - x) \\ & & \\ \hline Nucleus \\ 10^{11} e^{-} & 10^{23} \\ & atoms \\ & in \\ & target \\ \end{array}$

$$\sigma \sim rac{lpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

high backgrounds limited A' mass

e+e- colliders

low backgrounds higher A' mass

*I/MA' .vs. I/Ebeam
*Coherent scattering from Nucleus (~Z²)

A' visible and invisible decay at accelerators

Fixed target:

→ JLAB, MAINZ

INFN elab12

Fixed target: $p N \rightarrow N \gamma' \rightarrow p$ Lepton Lepton+ → FERMILAB, SERPUKHOV

12

Light Dark Matter searches at accelerators: the BDX experiment

High Energy Hadron Colliders: $pp \rightarrow lepton jets$ → ATLAS, CMS, CDF&D0 e^+e^- colliders $N\propto\epsilon^2$ + meson decays BaBar @ SLAC High Energy Ring

Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ → BABAR, BELLE-II, **KLOE, CLEO**

A' Production mechanisms - e[±]

The Weizsacker-Williams approximation (A'-strahlung)

- The incoming electron 'see' a fast-moving cloud of effective photons to scatter from
- Photons are almost on-shell (low Q2) \rightarrow transverse photons ~ e⁻ γ_{Real} scattering
- Same treatment as the regular bremstrahlung
- Regularisations occurs in the case of interest $M_{A'} >> M_{e-}$
- Effective photon flux χ is critical, accounting for nuclear effect using FF

A' Production - positrons

e. 8 Lab12

เพรท

$e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ → BABAR, BELLE, KLOE, CLEO

Two step process I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

- CEBAF @ Jefferson Lab in Virginia (US)
- Electron beam up to 11 GeV
- The highest available e- beam current: ~65 uA
- The highest integrated charge: 10²² EOT

BDX@JLab

- Drilled shaft downstream of Hall-A BD
- Parasitic run in parallel to the Moeller experiment in Hall-A
- Included in SNOWMASS-21 report (RF6-RF0)
- BDX would run with future 11 GeV positron beam and 20+ GeV upgrade
- Japan, UK, Korea) signed the BDX proposal

Approved by JLab 2018 PAC with max rate (A) expected to run in 2027-29

INFN

Jefferson Lab The intensity frontier

• BDX Collaboration: more than 100 researchers from 18 institutions (US, Italy, Germany,

Signal vs. background

Signal

• Light Dark Matter can interact with electrons and nuclei producing an e.m shower with large energy deposition (>100 MeV) in the detector

Beam related background:

- Neutrinos can mimic DM interaction
- High energymuons can propagate through shielding reaching the detector

e. 2 lab 12

เทศท

Cosmic background

- CW beam prevents time coincidence
- Cosmic muons
- Cosmic nueutron (spallation)

The BDX detector

Detecting LDM

Detector requirements

- EM showers detection capability (~GeV)
- Compact foot-print
- Low DAQ threshold to include nucleon recoil detection (~MeV)
- Segmentation for topology id

Rejecting the bg

- Beam-related
- Cosmic

Active veto requirements

- High efficiency (>99%) to MIPs
- Fast (~ns) for time coincidence with the calorimeter
- Segmentation for bg rejection

Passive veto made by lead bricks

• Lead vault for low energy gamma and avoid self-veto

BDX technology

E.M. calorimeter

A homogeneous crystal-based detector combines all necessary requirements

Active veto

Passive veto

Lead vault

The BDX calorimeter

Requirements:

- High density
- High light yield
- Cost-affordable for a $\sim m^3$ detector volume (repurposing)
- Good timing (desirable)

Homogeneous calorimeter of inorganic scintillator crystals

Possible options

- CsI(TI) (BaBar)
- PbWO4 (PANDA/PRAD)
- BGO (BGO-OD)

Light Dark Matter searches at accelerators: the BDX experiment

PANDA PbWO4

- Size: (2x2)cm² 20-22 cm length
- 800+800 crystals available from PANDA and PRAD EMCals
- Decay time: 6ns
- LY = ~10 pe/MeV

BGO-OD

- Size: (2x2/5.5x5.5)cm² 24 cm leng
- 480 crystals available from PAND EMCal spsares
- Decay time: 6ns
- LY = ~50 pe/MeV

SiPM readout

- Size: (6x6) mm², 50µm, 14.4k cells, trenched, pde=50%
- SPE capability
- CsI(TI): 40 pe/MeV
- Time resolution: ~ns (MIPs)

M.Bondi et al. Nucl.Instrum.Meth.A 867 (2017) 148-153

The BDX active veto

Requirements:

- Hermeticity
- Segmentation
- Cost-affordable for several m² detector surface
- Good timing (desirable)

Possible options: plastic scintillator liquid scintillator passive vetos

Fit On Measured Points - Upper Plate - SiPM 2

<u>ab12</u>

Plastic scintillator + WLS and (redundant) SipMs readout

Inner veto:

- 3x3 SiPM readout
- LY= 15-50 pe/MIP

Outer veto:

Light Dark Matter searches at accelerators: the BDX experiment

R&D on different technologies:

- Plastic scintillator + light guide + PMT
- Plastic scintillator + WLS + PMT
- Plastic scintillator + WLS + sipm

• I cm (all clear) Plastic scintillator +WLS fiber placed in grooves

• Plastic scintillator + Light guide + PMT Plastic scintillator +WLS fiber

> \star High efficiency to MIPs (>99%) \star Robust and simple technology

The BDX detector

- ★ Modular EM calorimeter: 2 modules 10x10 crystals each
- ★ Crystals in regular 8x8x30 cm3 Al alveoli making matrices of 480 (BGO), 800 (PANDA-PbWO), 1200 (PRAD-PbWO) crystals
 - BGO: matrix of 9x9 (front face) x3 (longitudinal), 90x90x100 cm³
 - PRAD-PbWO: matrix of 12x12 (front face) x2 (longitudinal), 80x80x60 cm³
 - PANDA-PbWO: matrix of 10x10 (front face) x2 (longitudinal), 80x80x60 cm³
- \star Total of 3 tons of active volume
- ★ Inner/Outer Veto: plastic scintillator + WLS + SiPM
- ★ Passive shielding: lead vault

e @lab12

INFN

Light Dark Matter searches at accelerators: the BDX experiment

* Beam-related muons measured in a dedicated campaign in the future BDX location (Nucl.Instrum.Meth.A 925 (2019) 116-122) \star Cosmic background measured using a detector prototype

22

22

Light Dark Matter searches at accelerators: the BDX experiment

BDX sensitivity

Beam time request (parasitic to Hall-A ops)

• 10²² EOT (65 uA for 285 days)

 BDX can run parasitically with any Hall-A E_{beam}>10 GeV experiments (e.g. Moeller)

Beam-related background		Cosmic background		
Energy threshold N _v (285 days)		Energy thresho	d √ Bg (285 days)	
300 MeV ~10 counts		300 MeV	<2 counts	

• Calculation includes resonant positron annihilation

Accumulating 10²² EOT in ~2y BDX sensitivity is 10-100 times better than existing limits on LDM

• Sensitivity to inelastic LDM is not shown

INFN elab12

24

Light Dark Matter searches at accelerators: the BDX experiment

BDX physics reach

Sensitivity beyond the minimal model (A'-mediated)
BDX can prove lepto- and baryo-phillic DM (coupling to lepton and/or quark only scenarios)
elastic fermionic DM scattering via (Le-Lμ) and (Le-Lτ) mediators
inelastic fermonic DM scattering (with A' mediator)
elastic scalar DM scattering

arXiv:1607.01390, arXiv:1910.03532, Phys.Rev.D 98 (2018) 11, 115022

BDX-MINI @JLab

BDX-MINI: pilot experiment to prove the validity and feasibility of the BDX experiment

- Two wells dug for bg muon tests
- E_{beam}=2.2 GeV, no muons
- Limited reach but first physics result!

• 44 PbWO4 PANDA/FT-Cal crystals (~1% BDX active volume)

• 6x6 mm2 SiPM readout

•2 active plastic scintillator vetos: cylindrical and octagonal (8 sipm each) + 2x lids + Passive W shielding

M.Battaglieri et al. EPJC (2021) 81:164

 $\epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4$ Ŋ

- Installed in March 2019
- Run form Dec 2019 to Aug 2020
- Collected 4e21 EOT (40% BDX!) in ~4 months (+ cosmics)
- Good detector performance with high duty factor

• Data-taking completed, analysis completed • Results provide exclusion limits similar to the best existing experimnts (EI37, NA64, BaBar, ...)

Experiment	lab	baam	particle viald/C	technique	portals	timescale
current	lau	Ucalli	particle yield 2	teeninque	portais	umescale
ATLAS [1292]	CEPN	m 12 14 ToV	up to 2 ab-1	visible invis	(1224)	2042
AILAS [1562]	VEN	pp, 15-14 fev		VISIDIE, IIIVIS.	(1,2,5,4)	2042
Belle II [1219]	CERN	e'e , 11 0ev		VISIDIE, IIIVIS.	(1,2,3,4)	2055
CMS [1385]	CERN	pp, 13-14 lev	up to 5 ap -	visible, invis.	(1,2,3,4)	2042
Dark(Spin)Quest [1200]	FNAL	p, 120 Gev	$10^{10} \rightarrow 10^{-1}$	VISIDIE	(1,2,3,4)	2024
FASER [1052]	CEKN	pp, 14 lev	150 to -+	VISIDIE	(1,2,3,4)	2025
LHCb [1384]	LHC	pp, 13-14 TeV	up to 300 fb	visible	(1,2,3,4)	2042
MicroBooNE [1385]	FNAL	p, 120 GeV (NuMI)	$\sim 7 \times 10^{20}$ pot	visible	(2,4)	2015-2021
NA62 [1174]	CERN	K+,75 GeV	a few 10 ¹⁵ K decays	visible, invis.	(1,2,3,4)	2025
NA62-dump [1386]	CERN	p, 400 GeV	$\sim 10^{10}$ pot	visible	(1,2,3,4)	2025
NA64 _e [1387]	CERN	e^{-}/e^{+} , 100 GeV	up to $1 \cdot 10^{13} e^{-}/e^{+}$	E, visible	(1,3)	< 2032
PADME [1300]	LNF	e ⁺ , 550 MeV	$5 \cdot 10^{12} e^{+} ot$	missing mass	(1)	< 2023
T2K-ND280 [1388]	JPARC	p, 30 GeV	10 ²¹ pot	visible	(4)	running
proposed						
BDX [1389]	JLAB	e ⁻ , 11 GeV	$\sim 10^{22}$ eot/year	recoil e	(1,3)	2024-2025
CODEX-b [1030]	CERN	pp, 14 TeV	300 fb ⁻¹	visible	(1,2,3,4)	2042
Dark MESA [1390]	Mainz	e ⁻ , 155 MeV	150 µA	visible	(1)	< 2030
FASER2 [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
FLaRE [1068]	CERN	<i>pp</i> , 14 TeV	3 ab-1	visible, recoil	(1)	2042
FORMOSA [1068]	CERN	<i>pp</i> , 14 TeV	3 ab-1	visible	(1)	2042
Gamma Factory [1391]	CERN	photons	up to $10^{25} \gamma$ /year	visible	(1,3)	2035-2038?
HIKE-dump [1392, 1191]	CERN	p, 400 GeV	5 ·10 ¹⁹ pot	visible	(1,2,3,4)	<2038
HIKE-K ⁺ [1392, 1191]	CERN	$K^+, 75 \text{GeV}$	1014 K decays	visible, inv.	(1,2,3,4)	<2038
HIKE-K _L [1392, 1191]	CERN	K_L , 40 GeV	10 ¹⁴ K decays	visible, inv.	(1,2,3,4)	<2042
LBND (DUNE) [1393]	FNAL	p, 120 GeV	$\sim 10^{21}~{ m pot}$	recoil e, N	(1,2,3,4)	< 2040
LDMX [1271]	SLAC	e^- , 4,8 GeV	2 · 10 ¹⁶ eot	ø, visible	(1)	< 2030
M ³ [1394]	FNAL	μ, 15 GeV	10 ¹⁰ (10 ¹³) mot	ø	(1)	proposed
MATHUSLA [1395]	CERN	pp, 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
milliQan [1070]	CERN	pp, 14 TeV	0.3-3 ab ⁻¹	visible	(1)	< 2032
MoeDAL/MAPP [1396]	CERN	pp, 14 TeV	30 fb ⁻¹	visible	(4)	< 2032
Mu3e [1397]	PSI	29 MeV	$10^8 ightarrow 10^{10} \mu/ m s$	visible	(1)	< 2038?
NA64 _µ [1398]	CERN	μ, 160 GeV	up to 2×10^{13} mot	¥	(1)	< 2032
PIONEER [1399]	PSI	55-70 MeV, π^+	$0.3 \cdot 10^6 \pi/s$	visible	(4)	phase I approved
SBND [1400]	FNAL	p, 8 GeV	6 · 10 ²⁰ pot	recoil Ar	(1)	< 2030
SHADOWS [1401]	CERN	p, 400 GeV	5 · 10 ¹⁹ pot	visible	(2,3,4)	<2038
SHiP [1402]	CERN	p, 400 GeV	$2 \cdot 10^{20}$ pot	visible, recoil	(1,2,3,4)	<2038

From CERN-FIPs workshop report, (SNOWMASS22): several experiments planned/proposed (LHC, SLAC, Mainz, FNAL, KEK, PSI, LPARC) with a variety of beams (proton, leptons, photons), energies (from 150 MeV to 14 TeV) and experimental techniques (visible, invisible, recoil, ..) with a timeline that reaches ~2042

Light Dark Matter searches at accelerators: the BDX experiment

e @lab12

INFN

C.Antel et al. Feebly interacting particles: Fips 2022 workshop report, 2023

New physics perspectives at Jlab with secondary beams

- CEBAF-JLAB the highest intensity 10 GeV electron beam in the word
- High-intensity secondary beams are produced in the dump
- LDM (if it exists)
- Muon
- Neutrino

µ³BDX @ JLab

Probing muon-philic forces with secondary muon beam

Muon beam

- muons are mainly produced by Bethe-Heitler radiative process
- high-intensity beam (up $10^8 \ \mu/s$)
- Bremsstrahlung-like E spectrum, focused and compact muon beam

Low recoil energy due to kinematics O(10 keV)

New physics perspectives at Jlab

Muon Beams

SECONDARY BEAMS AT JEFFERSON LAB WORKSHOP: BDX & BEYOND wit

CEBAF-JLAB the highest in

- High-intensity secondary b
- LDM (if it exists)
- Muon
- Neutrino

JBDX @ JLab

Probing muon-philic forces

- Muon beam
- muons are mainly produced by
- high-intensity beam (up 10⁸ μ/
- Bremsstrahlung-like E spectru

Experimental Area Design Drawing

Conference Date September 04, 2025 to September 05, 2025

Conference Location Jefferson Lab, CEBAF Center rm. F113

The Secondary Beams at Jefferson Lab Workshop (BDX & Beyond) convenes scientists worldwide, will focus on optimizing the use of intense secondary beams at Jefferson Lab produced by the interaction of high-intensity electron beams with beamdumps, and it is anticipated to produce a White Paper summarizing the findings.

The workshop will include sessions on muon physics, neutrino physics, instrumentation/targets, and beamdump/beams and is encouraging new ideas for physics with particles in a planned underground vault behind the Hall A beamdump.

The BDX & Beyond Workshop at Jefferson Lab Workshop will be hosted by the Thomas Jefferson National Accelerator Facility (Jefferson Lab).

https://www.jlab.org/conference/bdx2025

The largest xsec for $E_v < 100 \text{ MeV}$

- First detected in 2017 on Csl by COHERENT (~134 events)
- Low recoil energy due to kinematics O(10 keV)

Light Dark Matter searches at accelerators: the BDX experiment

Conclusions

- * Existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of mass
- * Accelerator-based (Light)DM search provides unique feature of distinguish DM signal from any other cosmic anomalies or effects (SNOWMASS 2022)
- *Significant interests from funding agencies (DOE/NSF) and labs (CERN and JLab) to run small scale experiments with a great discovery potential
- * Extensive experimental plans at high intensity e-facility to search for LDM: JLab, LNF, Mainz, SLAC (p-beam FNAL and CERN)
- * A new generation of dedicated and optimised experiments at high intensity frontier will test the relic (light) dark matter scenarios
- * Jefferson Lab is the world-leader facility for present and near-future LDM searches (APEX, HPS, DarkLight, BDX)
- * The A-rated BDX experiment is designed to produce and detect (hypothetical) MeV-GeV DM in a beam dump experiment
- * The BDX concept has been tested with prototypes, dedicated measurement campaigns and running a pilot experiment (BDX-MINI) demonstrating the technique and the physics reach
- * Collecting 10²² EOT in 285 days of parasitic running at 11 GeV, the BDX experiment would be >10 times more sensitive than previous experiments
- * High intensity muons and neutrino beams are produced and can be used for physics
- * Discovery or decisive tests of simplest scenarios will possible in the next ~5-8 years!

