

Neutrino physics from gamma-ray spectroscopy

D. Stramaccioni & J.J. Valiente Dobón – June 18th 2025

Overview

A new **bridge** between **neutrino** studies and **y spectroscopy** can be built:

- Need for reliable v-nucleus interaction strengths, both for IBD and 0vββ
- Possibility to extract them with y spectroscopy
- Feasibility of related experiments with intense light ion beams

Experimental campaign with LNL proton beams?

Neutrino physics with nuclei - IBD

Inverse Beta Decay (IBD)

Low energy neutrinos studies

- pp / CNO neutrino fluxes
 - Neutrino anomalies

$$\nu_l + (A, Z) \rightarrow (A, Z + 1) + l^-$$

 $\bar{\nu}_l + (A, Z) \rightarrow (A, Z - 1) + l^+$

Inverse Beta Decays for neutrino studies

The **solar-v** produced in the core of the sun is **mainly v**_e, since the weak processes involved are the **low-energy nuclear** β decays and electron captures.

Nuclei with large responses for the charged weak currents are used to detect the low-energy solar v_e by inverse β decays.

$$\begin{bmatrix} \nu_e + {}^{71}\mathrm{Ga} \rightarrow {}^{71}\mathrm{Ge} + e^- \end{bmatrix}$$

• ⁷¹Ga low Q-value probes uncharted regions of the **pp chain**!

Need for for reliable **ν-nucleus interaction strength** to extract low-energy **ν flux**.

Gallium anomaly

"The measurements of the chargedcurrent capture rate of neutrinos on ⁷¹Ga from strong radioactive sources have yielded results below those expected"

Sources: ⁵¹Cr and ³⁷Ar

Hint of sterile neutrino(s)?

Need for reliable v-nucleus interaction strength to explore it!

Gamma decays as analogous probe

Electromagnetic transitions from isobaric analog states to study nuclear matrix elements for neutrinoless $\beta\beta$ decays and astro-neutrino inverse β decays

Hiroyasu Ejiri *

Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

- Same initial state
- Same final state
- Same interaction

$$|i\rangle_{\gamma} \equiv |i\rangle_{IDB}({\rm IAS}) \propto T^{-}|i\rangle_{IBD}$$

$$|f\rangle_{\gamma} \equiv |f\rangle_{IDB}$$

Weak

$$T(AVL) = g_A \tau^i r^{L-1} [\sigma \mathbf{Y}_{L-1}]_I$$

$$T(AVL) = g_A \tau^i r^{L-1} \left[\boldsymbol{\sigma} \mathbf{Y}_{L-1} \right]_L \qquad T(ML) = g_S r^{L-1} \left[\boldsymbol{\sigma} \mathbf{Y}_{L-1} \right]_L + g_L r^{L-1} \left[\boldsymbol{j} \mathbf{Y}_{L-1} \right]_L$$

EM

Gamma decays as analogous probe - pros

Electromagnetic transitions from isobaric analog states to study nuclear matrix elements for neutrinoless $\beta\beta$ decays and astro-neutrino inverse β decays

Hiroyasu Ejiri o*

Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

- 1) The **EM interaction is well known**, and the **lowest-multipole** transition is **dominant** because of the long-wave-length nature of the photon
- 2) The IAS is a very sharp state, reflecting the isospin symmetry. Thus backgrounds from non-IAS excitations are small
- 3) **High energy-resolution high-efficiency photon detectors** are used for studying the EM transitions
- 4) **No need for normalization** with external measurements

Gamma spectroscopy for IBD - experiments

IAS

T,T-1

1) Count # times the IAS was populated

$$d\sigma^{\mathrm{IA}}/d\Omega = kNJ_{\tau}^{2}B(\mathrm{IAS})$$

2) Count # times the IAS decayed y

$$\frac{d\sigma^{\mathrm{IA}}(\alpha')}{d\Omega} = \frac{d\sigma^{\mathrm{IA}}}{d\Omega} \frac{\Gamma^{\mathrm{IA}}(\alpha')}{\Gamma(T)}$$

We would like to extract Γ^{IA} :

$$\Gamma^{\mathrm{IA}}(\alpha') = K_{\alpha'} E_{\alpha'}^3 g_{\alpha'}^2 |M^{\mathrm{IA}}(\alpha')|^2 S^{-1}$$

10⁵

We need the total state width $\Gamma(T)$... how can we get it?

Gamma spectroscopy for IBD – RCNP method

(p,d) reaction to populate the IAS and reconstructing the excitation energy spectrum with high energy resolution detector system.

- \rightarrow $\Gamma(T)$ corresponds to the width of the IAS peak
 - Measured with Grand Raiden splitpole

- We could employ high resolution Si detector (e.g. ion-implanted)
- HPGe / scintillators to measure the y rays in coincidence

Gamma spectroscopy for IBD – Preparatory exp

⁷²Ge(p,d)⁷¹Ge_{IAS} @28 MeV

- y rays measured in AGATA
- Light charged particles energies measured in SAURON Silicon detector

MSc thesis Federico Simioni

→ Very preliminary (~5% of statistics)

Gamma spectroscopy for IBD – Preparatory exp

⁷²Ge(p,d)⁷¹Ge_{IAS} @28 MeV

- y rays measured in AGATA
- Light charged particles energies measured in SAURON Silicon detector

MSc thesis Federico Simioni

→ Very preliminary (~5% of statistics)

Neutrino physics with nuclei - 0νββ

Neutrinoless ββ Decay (0νββ)

Promising **BSM** scenarios:

- L violation in laboratory
- **Majorana** nature of v..

$$_{Z-2}^{A}X_{N+2} \rightarrow_{Z}^{A} Y_{N} + 2e^{-}$$

Virtual 2-step process of the same type!

$0\nu\beta\beta$ decay and the role of Nuclear Physics

0νββ decay is a promising process to probe BSM physics scenarios: L-violation in laboratory, v a Majorana particle, v mass...

$0\nu\beta\beta$ decay studies with the same method

With the same setup and methods discussed before, one can access DBD nuclei

Absolute experimental values for some representative axial-vector dipole and vector dipole NMEs can be used to check the model calculations and to get the effective couplings

A	E(IA)	E(GT)	B(GT)	$B^{\mathrm{IA}}(M1)$	$\Gamma^{\mathrm{IA}}(M1)$	$\sigma^{\mathrm{IA}}(M1)$
⁷⁶ Ge	8.31	1.07	0.14	1.45	6.4	41
⁸² Se	9.58	0.075	0.34	3.0	30.0	150
96 Zr	10.9	0.69	0.16	1.25	15.3	76
100 Mo	11.1	0	0.35	2.7	43.4	170
116 Cd	12.1	0	0.14	0.88	18.0	51
¹²⁸ Te	12.0	0	0.079	0.41	8.2	17
¹³⁰ Te	12.7	0	0.072	0.35	8.2	17
¹³⁶ Xe	13.4	0.59	0.23	1.03	25	45
¹⁵⁰ Nd	14.4	0.11	0.13	0.54	18.0	35
⁷¹ Ga	8.91	0	0.085	1.2	9.8	51

$M_{0\nu}^{\text{GT}} = \sum_{n} \left\langle f \middle \sum_{a} \vec{\sigma}_{a} \tau_{a}^{+} \right\rangle$	$ n\rangle\langle n$	$\left \sum_{b}ec{\sigma}_{b} au_{b}^{\scriptscriptstyle +} ight i$	\rangle
--	----------------------	---	-----------

$0\nu\beta\beta$ decay studies with the same method: SSD

With the same setup and methods discussed before, one can access DBD nuclei

Determination of NME in case of **Single State Dominance (SSD)**

 $M_{0\nu}^{\text{GT}} = \sum_{n} \left\langle f \left| \sum_{a} \vec{\sigma}_{a} \tau_{a}^{+} \right| n \right\rangle \left\langle n \left| \sum_{b} \vec{\sigma}_{b} \tau_{b}^{+} \right| i \right\rangle$

→ Suggested by measured DBD energy spectra in some cases

$0\nu\beta\beta$ decay studies with the same method: SSD

With the same setup and methods discussed before, one can access DBD nuclei

Determination of NME in case of **Single State**

E_x [MeV]

$$M_{0\nu}^{\text{GT}} = \sum_{n} \left\langle f \left| \sum_{a} \vec{\sigma}_{a} \tau_{a}^{+} \right| n \right\rangle \left\langle n \left| \sum_{b} \vec{\sigma}_{b} \tau_{b}^{+} \right| i \right\rangle$$

Double-γ spectroscopy for 0νββ - theory

In 2022, a strong correlation between **NMEs of 2y-decays** from DIAS to g.s. and $0\nu\beta\beta$ decays found.

The correlation holds if we consider **M1M1 decays** with equal-energy gammas.

Atomic number

Double- γ spectroscopy for $0\nu\beta\beta$ - theory

In 2022, a strong correlation between **NMEs of 2\gamma-decays** from DIAS to g.s. and $0\nu\beta\beta$ decays found.

The correlation holds if we consider **M1M1 decays** with equal-energy gammas.

Atomic number

Double-γ spectroscopy for 0νββ - theory

In 2022, a strong correlation between **NMEs of 2\gamma-decays** from DIAS to g.s. and $0\nu\beta\beta$ decays found.

The correlation holds if we consider **M1M1 decays** with equal-energy gammas.

Atomic number

Double-γ spectroscopy for 0νββ - theory

Considering analogue initial and final states as in $0v2\beta$

$$\begin{aligned} \left|0_{i}^{+}\right\rangle_{\gamma\gamma} &\equiv \left|0_{i}^{+}\right\rangle_{\beta\beta} (\text{DIAS}) = \frac{T^{-}T^{-}}{K^{1/2}} \left|0_{i}^{+}\right\rangle_{\beta\beta} \\ \left|0_{f}^{+}\right\rangle_{\gamma\gamma} &\equiv \left|0_{f}^{+}\right\rangle_{\beta\beta} \end{aligned}$$

Focusing on a similar transition operator

For equal energy gammas, 2γ magnetic dipole operator (M1) and the $0\nu\beta\beta$ Gamow-Teller (GT) operator share the same isovector spin $\sigma\tau$ term.

Double-γ spectroscopy for 0νββ - experiments

We took the first step...

 We found a method to isolate and measure 2y-decay BR

- ... but we have to keep walking!
- Perform the preparatory experiment
 - → To determine experimentally features of the Double Isobaric Analogue State in ⁴⁸Ti

Main intermediate goals:

- 1) determine the **cross section** to populate the DIAS
- 2) measure the **Branchings** for the dominant competing process
 - → single gamma decay BR
 - **→** Proposed @ IFJ-PAN!

Summary and perspectives

- It is possible to extract v-nucleus interaction strengths with y spectroscopy
- We can start with simple experiments (IAS y decay) potentially leading to high-impact publications
- We can use the **LNL proton beams** for the reactions of interest

Reaction of interest: (p,d)

- Intense proton beam
- Deuterons tagging with Silicon detectors
- > γ-ray detectors from GAMMA

BACKUP SLIDES