



## **RELICS Experiment for Reactor CEvNS Detection**

[Phys. Rev. D 110, 072011 (2024)]

Jiangyu Chen

Sun Yat-sen University

On behalf of the **RELICS collaboration** 

June 16-18, 2025, Modica, Italy

MAYORANA Workshop

**CEvNS:** Coherent Elastic Neutrino-Nucleus Scattering





$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M \left(1 - \frac{MT}{2E_\nu^2}\right) F(Q^2)^2.$$

 $Q_W = N - (1 - 4\sin^2\theta_W)Z$  $Q_W \propto N \implies \frac{d\sigma}{dT} \propto N^2$ 



- Z-exchange between neutrino and entire nucleus
- Coherent up to  $E_v \sim 50 \text{ MeV}$
- qR < 1
- low recoil energy < 5 keV.



#### **Theoretical Proposal** D. Freedman, PRD 9 1389 (1974)

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman<sup>†</sup> National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

## **Experimental** Evidence CsI-2017 D. Akimov et al, Science 357 (2017) A w 30 Beam OF

Ge-2025 N.Ackermann et al, arXiv:2501.05206v2



#### **Challenges:**

- An intense neutrino source •
- Low detector thresholds •
- **Incredibly low backgrounds** ۲



## **RELIC'S** Collaboration

















## **RELICS Site**





- Sanmen Nuclear Power Plant, Taizhou, China
- Reactor Power ~3.4GW
- Distance to Core ~25m
- Neutrino flux  $\sim 10^{13} \nu / cm^2 / s$

## **Technology of RELICS: LXeTPC**



#### Liquid Xenon Time Projection Chamber (LXeTPC)





#### **S2-only analysis**

- Energy of **Reactor neutrinos** ~ **MeV**
- S1 signal is too weak to detect
- Corresponding nuclear recoil energy in LXe ~ 1keV

## **Challenges:**

• Low detector thresholds



6

## **RELICS LXeTPC Design**





- 32 kg LXe fiducial mass.
- **Diving bell** for LXe level control and  $4\pi$  anti-coincidence.
- **Drift field**: 500V/cm
  - **Extraction field**: 10kV/cm
  - Two 64 one-inch PMT array



#### **Engineering Prototype**



PMT

## **Background Source**



## **Challenges:**

Incredibly low backgrounds



#### Reactor

- Neutron
- Gamma

...

.

![](_page_7_Figure_8.jpeg)

### Detector itself

Neutron, gamma from

8

- Stainless Steel
- PMT
- LXe

![](_page_7_Figure_14.jpeg)

Cosmic ray

- Cosmic muon
- Cosmic ray neutron
- •

...

## **Background Control based on MC : Shield of detector**

![](_page_8_Picture_1.jpeg)

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

- 7×7×7m water shield to suppress Cosmic-Ray & Reactor Neutrons induced background
- $4\pi$  plastic scintillator muon veto detector with veto efficiency of 99%
- Low-background materials are selected

## **Background Control based on MC: Event Selection**

![](_page_9_Picture_1.jpeg)

![](_page_9_Figure_2.jpeg)

## **Background of RELICS based on MC**

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

NR background are dominated by

#### **Cosmic Ray Neutrons**

Expected case rate:

 $(7.7 \pm 0.7) \times 10^{-2} kg^{-1} \cdot day^{-1}$ (Value of [0.3,1] keV range)

![](_page_10_Figure_7.jpeg)

ER background is dominated by

#### Material

Expected case rate:

 $(364 \pm 5) \times 10^{-3} kg^{-1} \cdot day^{-1} \cdot keV^{-1}$ (Average value of [0,40] keV range, before S2 width cut)

## **Delayed Electrons (DE) Background**

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

#### **DE pollutes the S2-only channel**

- Pattern + Correlation selection:
- a) CEvNS : Closer to single point events.
- b) DE: More linked to the preceding muon track.
- Waveform selection: Use CNN to extract waveform features to reduce DE
  a) CEvNS : Guassion
  b) DE: More dispersed

![](_page_11_Figure_8.jpeg)

|                          | Signal Acceptance | Background<br>Remaining | ~  |
|--------------------------|-------------------|-------------------------|----|
| Pattern +<br>Correlation | ~52%              | ~ 0.01%                 | 12 |
| Waveform                 | ~80%              | ~10%                    |    |

## **Total background**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

## Sensitivity estimation

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

#### Weak Mixing Angle :

• Can measure the weak mixing angle at low momentum transfers down to the MeV scale.

#### **Non - Standard Neutrino Interactions** :

• More competitive constraints than the COHERENT experiment.

## **Status of RELICS**

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

- 2023
- ☑ Detector MC simulation
- ☑ Sensitivity calculation
- ☑ Prototype development
- 2024
- $\square$  Prototype testing
- $\square$  Detector system design optimization

#### • **2025**

Shielding and detector fabricationDetection system on-site

#### • 2026

On-site detection system commissioningFirst-batch physical data acquisition.

#### • 2027

- Physical analysis
- □ Release of first-batch results

![](_page_15_Picture_0.jpeg)

## Summary

- I. RELICS is a low threshold, low background, LXeTPC detector planned for reactor neutrino.
- II. The main background sources in RELICS are delayed electrons, cosmic ray neutrons, and detector material.
- III. RELICS will find ~4600 CEvNS events per year, probing weak mixing angle and NSI.

## Outlook

- RELICS has rich physics:
- Precise measurement of reactor neutrinos
- Competitive in the search for axions, which can explore or close the Cosmological Triangle...
- High application value of nuclear safety:
- More effectively realize reactor monitoring without direct contact than IBD.

![](_page_15_Figure_11.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

# THANKS!

Jiangyu Chen

chenjy853@mail2.sysu.edu.cn

Sun Yat-sen University

![](_page_17_Picture_0.jpeg)

## Liquid xenon response

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

- $E_{NR} > 3keV_{nr}$ : light yield ( $L_y$ ) and charge yield ( $Q_y$ ) from the NEST model (v2.3.6) are used with 500 V/cm drift field
- $E_{NR} < 3keV_{nr}$ : the XENON1T yields model in 8B neutrino search is adopted, and scaled to NEST model at 3  $keV_{nr}$
- $4\pi$  LXe Veto Region:  $L_v$  and  $Q_v$  are modeled with zero electric field

## **Delayed Electrons (DE) Background**

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

**Time Correlation Drift Region** Gas **Below Cathode**  $10^{4}$ 10 1] Rate [s<sup>-</sup> 10 10  $10^{\circ}$ 10- $10^{-4}$  $10^{-3}$  $10^{-2}$  $10^{-1}$  $10^{0}$ Delay Time [s]  $10^{6}$ DE  $10^{\circ}$ Rate [Hz] 10 DE  $10^{-2}$ Pile-up DE of 4e ---  $CE\nu NS$ **CEvNS** 0.0 0.51.0 1.52.0Time [s] 20

- Count is closely tied to **xenon purity** and **extraction field**.
- **Position and time correlation**, show **power-law decay** over time, with delays exceeding 2 seconds.
- Muon (~10Hz) can produce DE pile-ups, major background in CEvNS signal region (4-6e-)

## **Prototype Testing**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

CR: Yifei@COUSP24 21