NEUTRINOS AS PROBES OF THE SUN'S CORE AND EARTH'S INTERIOR

LIVIA LUDHOVA

GSI DARMSTADT & JGU MAINZ UNIVERSITY, GERMANY

JUNE 23 & 24, MAYORANA CHOOL, MODICA, SICILY

Mitglied der Helmholtz-Gemeinschaft

PART II – Geoneutrinos

Vulcanism

Geoneutrinos

From where is coming the energy driving these processes?

How can neutrino physics help us to understand?

Earth shines in geoneutrinos: $flux \sim 10^6 \text{ cm}^{-2} \text{ s}^{-1}$

Plate tectonics ³ & mantle convection

https://transportgeography.org

Earthquakes

Geo-dynamo

	Distance to the Sun	150 000 000 km
	Mean radius	6 371 km
	Circumference	40 000 km
	Mass	5.97 x 10 ²⁴ kg
0 0 000	Age	4.54 x10 ⁹ years
	Life	Present 😊
	Population	7.5 billions

EARTH FORMATION

A Rocky Body Forms and Differentiates

(From Smithsonian National Museum of Natural History - http://www.mnh.si.edu/earth/text/5_1_4_0.html)

Accretion

Magma sea (Primitive mantle)

Mantle-crust differentiation

Metallic core segregation

EARTH STRUCTURE

Inner Core - SOLID

- about the size of the Moon;
- Fe Ni alloy;
- solid (due to high pressure of
- ~ 330 GPa);
- temperature ~ 5700 K;

Outer Core - LIQUID

- 2260 km thick;
- Fe Ni alloy +
 - + 10% light elements (S, O?);
- liquid;

•temperature ~ 4100 – 5800 K;

• geodynamo: motion of conductive liquid within the Sun's magnetic field;

EARTH STRUCTURE

D' layer: mantle –core transition

~200 km thick;
seismic discontinuity;
many different ideas around; (mineral recrystallisation, material brought here from the subduction zones...)

Lower mantle (mesosphere)

- rocks: high Mg/Fe ratio, less Si + Al than in the crust;
- T: 600 3700 K;
- high pressure: solid, but viscose, no brittle faulting;
- "plastic" on long time scales:

Tectonic plates

Movement of few cm / year measured by satellites.

Tectonic plates float on plastic asthenosphere.

Movement driven by mantle convection.

EARTH STRUCTURE

Transition zone (400 -650 km)

- seismic discontinuity;
- mineral recrystallisation;
- role of the latent heat?;
- partial melting: the source of midocean ridges basalts;

EARTH STRUCTURE

Upper mantle

EARTH CRUST

OCEANIC CRUST:

- created at mid-ocean ridges;
- ~ 10 km thick;

•CONTINENTAL CRUST:

- the most differentiated;
- 30 70 km thick;
- igneous, metamorphic, and sedimentary rocks;
- orogenesis: doubled thickness;

http://www.dstu.univ-montp2.fr/PERSO/bokelmann/convection.gif

Crustal rocks: huge variety also in U, Th, K content!

THE EARTH TODAY

U and Th distribution

Refractory (high condensation T) & Lithophile (silicate loving)

U/Th distribution in the mantle (3 scenario)

PRIMITIVE-MANTLE COMPOSITION

Progress in Particle and Nuclear Physics 73 (2013) 1-34

P – primary, longitudinal waves S – secondary, transverse/shear waves Discontinuities in the waves propagation and the density profile but no info about the chemical composition of the Earth

solid

inner

Vs

6000

liquid outer core

4000

GEOCHEMISTRY

1) Direct rock samples

* surface and bore-holes (max. 12 km);
* mantle rocks brought up by tectonics and vulcanism;
BUT: <u>POSSIBLE ALTERATION DURING THE TRANSPORT</u>

2) Geochemical models

Modeling the composition of the Earth primitive mantle *Various inputs:* composition of the chondritic meteorites, composition of rock samples from the upper mantle and crust, energy needed to run the mantle convection, <u>correlations with</u> <u>the composition of the solar photosphere</u>,

BULK SILICATE EARTH (BSE) MODELS

С

G

G

	silicate primitiv	e man	= tle		t + man	tle
					PHYS. REV. D 10	01, 012009 (2020
3SE model		M (U) [10 ¹⁶ kg]	M (Th) [10 ¹⁶ kg]	M (K) [10 ¹⁹ kg]	H _{rad} (U+ [⊺∨	
Cosmochemi	ical (CC)	5 <u>+</u> 1	17 <u>+</u> 2	59 <u>+</u> 12	11.3 ± 1.6	Low Q
Geochemical	I (CC)	8 <u>+</u> 2	32 <u>+</u> 5	113 <u>+</u> 24	20.2 ± 3.8	Middle Q
Geodynamic	al (GD)	14 <u>+</u> 2	57 <u>+</u> 6	142 <u>+</u> 14	33.5 ± 3.6	High Q
Fully radioge	enic" (FR)	20 <u>+</u> 1	77 <u>+</u> 3	224 <u>+</u> 10	47 <u>+</u>	_ 2

- Mantle composition is inferred from the BSE models by subtracting the relativly well-known crustal composition
- Ratios of different elements, including U and Th, are much better known than their absolute abundances: mass ratio of Th/U = 3.9

proport day

THE EARTH'S HEAT BUDGET

GEONEUTRINOS AND GEOSCIENCE

Abundances (mass) of radioactive elements Nuclear physics

²³⁸U \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^{-} + 4 anti-neutrinos + 42.8 MeV ⁴⁰K \rightarrow ⁴⁰Ca + e^{-} + 1 anti-neutrino + 1.32 MeV

Main goal: Mantle radiogenic heat

- Mantle homogeneity
- U/Th ratio
- Earth formation

Neutrino geoscience: a truly inter-disciplinary field!

Geoneutrinos: why to study them

Possible answers to the questions

– Main goal:

What is the radiogenic contribution to the terrestrial total surface heat flux

- Are there any other heat sources or not?
- What is the distribution of the long-lived radioactive elements within the Earth?
 - how much of them is in the crust and in the mantle;
 - is their distribution in the mantle homogeneous or not;
 - are they present in the core;
 - is there a geo-reactor (Herndon 2001);
- Are the BSE models compatible with geoneutrino data?
- Discrimination among different BSE models;
- What is the bulk Th/U ratio;
- Insights to the processes of the Earth's formation...

21

GEONEUTRINO ENERGY SPECTRA

GEONEUTRINO DETECTION WITH LIQUID SCINTILLATOR ²³

р

Electron antineutrino detection: delayed coincidence

- Inverse Beta Decay on proton (IBD)
- Charge current interaction mediated by W bosons
- Sensitive only to electron flavour antineutrinos
- Cross section very well known
- Generally, powerful **background suppression** tool
- Reactor neutrinos irreducible background with ~10 MeV end-point, geoneutrinos ~3.3 MeV

Energy threshold = 1.8 MeV

 σ @ few MeV: ~10⁻⁴² cm²

(~100 x more than elastic scattering on e⁻)

Geoneutrino from radioactive decay

GEONEUTRINO SPECTRAL SHAPE @ LNGS (BOREXINO SITE)

- We are able to detect geoneutrinos only from the decay chains of ²³⁸U and ²³²Th above 1.8 MeV energy.
- ⁴⁰K geoneutrinos cannot be detected.
- ²³⁸U and ²³²Th have different end points of their spectra: **the key how to distinguish them**.
- Effect of neutrino oscillations: for 3 MeV antineutrino, the oscillation length is ~100 km; considering the Earth's dimensions and the continuous distribution of U and Th: for the precision of the current experiments only suppression of the visible signal without spectral deformation.c

EFFECT OF NEUTRINO OSCILLATIONS

For 3 MeV antineutrino: oscillation length of ~100 km

For the precision of the current experiments: we can use an average survival probability of about 0.55

PREDICTION OF GEONEUTRINO SIGNAL

Reservoir	Available information	a(U) [µg/g]	Signal [%]
LOcal Crust (LOC)		4.04	~ 45
Rest Of Crust (ROC)	Rock samples, seismic data, gravimetric data	~1 – 0.1	~ 30
Continental Lithospheric Mantle (CLM)		~ 0.1	~ 5
(Sublithospheric) Mantle	Compositional models	~ 0.01	~20

PREDICTION OF GEONEUTRINO SIGNAL

- Enhances the mantle discovery potential
- Affects the study of neutrino oscillation parameters
- JUNO's experimental results will be able to be compared with other experimental results

27

GEONEUTRINO SIGNAL WORLDWIDE: from $\phi \sim 10^6$ cm⁻² s⁻¹ to a handful of events

Expected crustal signal: "known and big"

The signal is small, we need big detectors!

<u>Terrestrial Neutrino Unit</u> 1 TNU = 1 event / 10³² target protons / year cca 1 IBD event /1 kton /1 year, 100% detection efficiency

Expected mantle signal: super-tiny and unknown

Hypothesis of heterogeneous mantle composition **m**otivated by the observed Large Shear Velocity Provinces at the mantle base

Mantle signal is even more challenging!

Seismic tomography image of present-day mantle

EXPERIMENTS THAT MEASURED GEONEUTRINOS

KamLAND, Kamioka, Japan

- Main goal: reactor neutrinos
- Data taking: since 2022
- LS: 1000 tons;
- Depth: 2700 m.w.e.
- S(reactors)/S(geo) ~ 6.7 (up to 2010)
 - ~ 0.4 (from 2011 after Fukushima)

Borexino, LNGS, Italy

17-18%

- Main goal: solar neutrinos: extreme radio-purity needed & achieved;
- Data taking: 2007 2021
- LS: 280 tons;
- Depth: 3800 m.w.e.
- •S(reactors)/S(geo) ~ 0.3 (2010)

SNO+ CONTINENTAL SHIELD (OLD CRUST)

- Main goal: 0vββ decay
- Data taking: since 2022
- LS: 780 tons;
- Depth: 6000 m.w.e.
- Background dominated by (α, n) and not reactors.

HISTORY OF GEONEUTRINO MEASUREMENTS

KamLAND, Kamioka, Japan

- <u>The first investigation 2005</u>: Nature 436 (2005) 499
 4.5 54.2 geonu's @ 90% CL, non-0 hypothesis CL < 2σ
 7.09 x 10³¹ proton x year
- Update 2008: PRL 100 (2008) 221803
 73 ± 27 geonu's
 2.44 x 10³² proton x year
- <u>99.997 CL in 2011:</u> Nature Geoscience 4 (2011) 647
 <u>106 +29 28 geonu's</u>
 3.49 x 10³² proton x year (Mar 2002 Apr 2009)
- <u>Results from 2013:</u> PRD 88 (2013) 033001
 <u>116</u> ⁺²⁸ 27 geonu's
 4.9 x 10³² proton x year (Mar 2002 Nov 2012)
- $\frac{\text{Latest result in 2022 (Geophys. Res. Lett. 49 e2022GL099566)}}{183^{+29}_{-28} \text{ geonu's }}$

 $6.39 \text{ x } 10^{32} \text{ proton x year} (Mar 2002 - Dec 2020)$

Borexino, LNGS, Italy

- <u>99.997 CL observation</u>: PLB 687 (2010) 299
 9.9 ^{+4.1} 3.4 geonu's
 - $1.5 \ge 10^{31}$ target-proton year (Dec 2007 Dec 2009)
- Update in 2013: PLB 722 (2013) 295–300
 14.3 ± 4.4 geonu's
 3.69 x 10³¹ target-proton year (Dec 2007 Aug 2012)
- 5.9σ CL in 2015: PRD 92 (2015) 031101 (R)
 23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys) geonu's
 5.5 x 10³¹ target-proton year (Dec 2007 Mar 2015)
- Latest result in 2020 (Phys. Rev. D 101 (2020) 012009)
 52.6 +9.4 (stat) +2.7 (sys) geonu's
 1.29 x 10³² proton x year, (Dec 2007 Apr 2019)

2600

2000

34-410/0

3100

24-270/0

17-1800

SELECTING IBD CANDIDATES

- Charged particles produce scintillation light.
- Gamma rays from the positron annihilation and from the neutron capture are neutral particles but in the scintillator they interact mostly via Compton scattering producing several electrons = charged particles.
- Scintillation light is detected by an array of phototubes (PMTs) converting photons to electrical signal (photoelectrons – pe).
- Number of photoelectrons = function of (energy deposit) $\rightarrow E_{\text{prompt}}, E_{\text{delayed.}}$
- Hit PMTs time pattern = vertex reconstruction $\rightarrow \Delta \mathbf{R}$ of events.
- Each trigger has its GPS time -> Δtime of events.

IBD candidates due to:
Geo-neutrinos;
Reactor antineutrinos;
Non-antineutrino backgrounds;

This principle is the same for all LS detectors

OPTIMIZED IBD SELECTION CUTS (Borexino)

Efficiency: (86.98 ± 1.50)%

Charge of prompt	Charge of delayed	Time correlation	Space correlation
Q _p > 408 pe	Q _d > 700 (860) – 3000 pe	dt = <mark>(2.5-12.5) μs</mark> + (20-1280) μs	dR < 1.3 m
 Prompt spectrum starts at 1 MeV 5% energy resolution @ 1 MeV 	 Neutron captures on proton (2.2 MeV) and in about 1% of cases on 1²C (4.95 MeV) Spill out effect at the nylon inner vessel border Radon correlated ²¹⁴Po(α + γ) decays from ²¹⁴Bi and ²¹⁴Po fast coincidences 	Neutron capture $\tau = (254.5 \pm 1.8) \mu s$ 2 cluster event in 16 μs DAQ gate	8000 8000 9000 2000 0 0 0 0 0 0 0 0 0 0 0 0
Muon veto	Dynamic Fiducial Volume	Multiplicity	α/β discrimination
Muon veto 2s 1.6 s : ⁹ Li(β + n)	Dynamic Fiducial Volume > 10 cm from IV (prompt)	No event with Q >400 pe	α/β discrimination MLP _{delayed} > 0.8
	 > 10 cm from IV (prompt) • Exposure vs accidental bgr 		MLP _{delayed} > 0.8
2s 1.6 s : ⁹ Li(β + n)	> 10 cm from IV (prompt)	No event with Q >400 pe	

Borexino GOLDEN CANDIDATES: 154

(Phys. Rev. D 101 (2020) 012009

• December 9, 2007 to April 28, 2019

- 3262.74 days of data taking
- Average FV = (245.8 ± 8.7) ton
- Exposure = (1.29 ± 0.05) x 10³² proton x year
- Including systematics on position reconstruction and muon veto loss, for 100% detection eff.

Distance to the Inner Vessel

EXPECTED GEONEUTRINO SIGNAL AT GRAN SASSO

U, Th abundances & distribution + density profiles

~50% of the signal comes from the area of a few 100 km radius

LOC – Local Crust FFL – Far Field Lithosphere Mantle

1 TNU (Terrestrial Neutrino Unit) = 1 event / 10³² target protons (~1kton LS) / year with 100% detection efficiency

- 2. GEONEUTRINO ENERGY SPECTRA
- 3. $\sigma(IBD)$ as f (E_v) ~10⁻⁴² cm²
- 4. <P_{ee}> ~0.55

	S (U + Th) [TNU]	S(Th)/S(U)	H (U + Th +K) [TW]
Local Crust (LOC) (~500 km radius)	9.2 ± 1.2	0.24	-
Bulk Lithosphere (including LOC)	25.9 ^{+4.9} -4.1	0.29	8.1 ^{+1.9} -1.4
Mantle = Bulk Silicate Earth model – lithosphere	2.5 – 19.6	0.26 (assuming for BSE chondritic value of 0.27)	3.2 - 25.4
Total	28.5 - 45.5	0.27 (chondritic)	11.3 – 33.5

NEUTRINO BACKGROUNDS for Borexino

Reactor antineutrinos from nuclear powerplants

	Mueller et al 2011	With "5 MeV bump"
Signal [TNU]	84.5 ^{+1.5} -1.4	79.6 ^{+1.4} -1.3
# Events	97.6 ^{+1.7} -1.6	91.9 ^{+1.6} -1.5

- For all ~440 world reactors (1.2 TW total power)
 - ✓ their nominal thermal powers (PRIS database of IAEA)
 - ✓ monthly load factors (PRIS database)
 - ✓ distance to LNGS (no reactors in Italy)
- ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu fuel
 - ✓ power fractions for different reactor types
 - ✓ energy released per fission
 - ✓ energy spectra (Mueller at al. 2011 and Daya Bay)
- P_{ee} electron neutrino survival probability
- IBD cross section
- Detection efficiency = 0.8955 ± 0.0150

Atmospheric neutrinos (minor)

Energy window	Geoneutrino	Reactor antineutrino	> 1 MeV
Events	2.2 ± 1.1	6.7 ± 3.4	9.2 ± 4.6

- Estimated 50% uncertainty on the prediction
- Indications of overestimation
- Included in the systematic error
- Atmospheric neutrino fluxes from HKKM2014 (>100 MeV) and FLUKA (<100 MeV)
- Matter effects included

Charge spectrum after IBD selection cuts

1 MeV ~ 500 p.e.
37 **CALCULATION OF THE EXPECTED REACTOR ANTI-v FLUX**

$$\Phi\left(E_{\bar{v}_{e}}\right) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_{m}}{4\pi L_{r}^{2}} P_{rm} \sum_{i=1}^{4} \frac{f_{ri}}{E_{i}} \Phi_{i}\left(E_{\bar{v}_{e}}\right) P_{ee}\left(E_{\bar{v}_{e}};\hat{\vartheta},L_{r}\right)$$

Nuclear and neutrino physics:

- E: energy release per fission of isotope i (Huber-Schwetz 2004);
- Oi: antineutrino flux per fission of isotope i (polynomial parameterization, Mueller et al. 2011, Huber-Schwetz 2004);
- Pee: oscillation survival probability;

Experiment-related:

Tm: live time during the month m;

- Prm: thermal power of reactor r in month m (IAEA, EDF, and UN data base);
- fri: power fraction of isotope i in reactor r;

Expected reactor signal at LNGS

NON-ANTINEUTRINO BACKGROUNDS

1) Cosmogenic background

- ⁹Li and ⁸He ($\tau_{1/2}$ = 119/178 ms)
 - ✓ decay: β (prompt) + neutron (delayed);
- fast neutrons
 - scattered protons (prompt)

Estimated by studying IBD-like coincidences detected AFTER muons.

2) Accidental coincidences; Estimated from OFF-time IBD-like coincidences.

3) Due to the internal radioactivity: (α , n) reactions: ${}^{13}C(\alpha, n){}^{16}O$ Prompt: scattered proton, ${}^{12}C(4.4 \text{ MeV}) \& {}^{16}O (6.1 \text{ MeV})$ Estimated from ${}^{210}Po(\alpha)$ and ${}^{13}C$ contaminations, (α , n) cross section.

Borexino SPECTRAL FIT with fixed chondritic Th/U ratio 40

- Unbinned likelihood fit of charge spectrum of 154 prompts
- S(Th)/S(U) = 2.7 (corresponds to chondritic Th/U mass ratio of 3.9)
- Reactor signal unconstrained and result compatible with expectations
- ⁹Li, accidentals, and (α, n) background constrained to expectations
- **Systematics** includes atmospheric neutrinos, shape of reactor spectrum, vessel shape and position reconstructions, detection efficiency

In agreement with expectations based on different BSE models:

Resulting number of geoneutrinos

$$52.6_{-8.6}^{+9.4}(stat)_{-2.1}^{+2.7}(sys)$$
 events

 $^{+18.3}_{-17.2}$ % total precision

Comparison with KamLAND (SPECTRAL FIT with fixed chondritic Th/U ratio) 41

Borexino (PRD101 (2020) 012009)

KamLAND (Geophys. Res. Lett. 49 e2022GL099566)

1.29 x 10³² (3262 days, 280 m ³ of FV)	Exposure [proton x year]	6.39 x 10³² (5227 days, 905 m ³)
154 in total (~90 in the geonu energy window)	IBD candidates	1178 in the geoneutrino energy window
52. $6^{+9.4}_{-8.6}$ (stat) $^{+2.7}_{-2.1}$ (sys) $^{+18.3}_{-17.2}$ %	Geoneutrinos (mass Th/U fixed to 3.9)	183 ⁺²⁹ ₋₂₈ (stat + sys): ^{+15.8} _{-15.3} %
47. $0^{+8.4}_{-7.7}$ (stat) $^{+2.4}_{-1.9}$ (sys) / (39.3 - 55.4)	Signal [TNU] / (68% CL interval)	Not provided
Shape only, reactor- v free	Analysis	Rate + shape + time

MANTLE SIGNAL: IMPORTANCE OF LOCAL GEOLOGY

Distance [km]

BOREXINO: MANTLE SIGNAL & RADIOGENIC HEAT

PRD101 (2020) 012009

Lithospheric signal: (28.8 ± 5.6) events with S(Th)/S(U) = 0.29 Mantle: S(Th)/S(U) = 0.26

Maintaining for the bulk Earth chondritic Th/U

LOC: Coltorti et al. Geochim. Cosmoch. Acta 75 (2011) 2271. FFL: Y. Huang et al., Geoch. Geoph. Geos. 14 (2013) 2003.

Mantle events	23 .7 ^{+10.7} _{-10.1}
Mantle signal U + Th [TNU]	21.2 ^{+9.6} -9.1
Mantle heat U + Th [TW]	24 . 6 ^{+11.1.} -10.4
Earth U + Th + K [TW]	38 . 2 ^{+13.6.} -12.7

Mantle null hypothesis rejected at 99.0% C.L.

Borexino is compatible with geological predictions but least (2.4σ) compatible with the BSE models predicting the lowest U+Th mantle abundances (CC & LowQ BSE).

+ 18% contribution of ⁴⁰K in the mantle

+ $8.1_{-1.4}^{+1.9.}$ TW from lithosphere (U+Th+K)

MANTLE SIGNAL: BOREXINO VS KAMLAND

Borexino		KamLAND
Fit with lithospheric contribution constrained	Analysis	Direct subtraction of crustal contribution
23.7 ^{+10.7} _{-10.1}	Mantle events	-
21 . 2 ^{+9.6} -9.1	Mantle signal U + Th [TNU]	6. 0 ^{+5.6} _{-5.7} (crust S. Enomoto et al. EPSL 258 (2007) 147)
24. 6 ^{+11.1} /(14.2 – 35.7) 68%CL interval)	Mantle heat U + Th [TW]	<mark>∼ 5.4</mark> (= 12.4 ^{+4.9} - 7)

Borexino excludes null mantle signal at 99% CL

RADIOGENIC HEAT: Borexino vs KamLAND

- General agreement data vs BSE models: big success
- * Borexino is least (2.4 σ) compatible with the BSE models predicting the lowest U+Th mantle abundances
- KamLAND preference for Low Q and Middle Q BSE models

Some tension between the two experiments, assuming laterally homogeneous mantle.

45

SPECTRAL FIT with Th and U free

U: $29.0^{+14.1}_{-12.9}$ events Th: $21.4^{+9.4}_{-9.1}$ events U + Th: $50.4^{+10.1}_{-9.2}$ events

The resulting Th/U ratio is compatible with the chondritic value,

but with the achieved exposure **1.29 x 10³² proton x years,** Borexino has no sensitivity to measure the Th/U ratio.

 Due to the strong anticorrelation of U and Th components, the total geonu signal is very similar in this fit.
But to measure the Th/U ratio, large statistics is needed.

KamLAND (Geophys. Res. Lett. 49 e2022GL099566)

	N of event	Osignal rejection
U	117 +41 ₋₃₉	3.3σ
Th	58 ⁺²⁵ -24	2.4σ
U+Th	174 ⁺³¹ -29	8.3σ

BOREXINO + KAMLAND COMBINED

Bellini at al.: La rivista del Nuovo Cimento 45 (2022) 1

- Analysis assumes laterally homogeneous mantle
- Some level of disagreement between the two experiments
- Combined analysis perfectly compatible with MiddleQ BSE Models

SNO+ EXPERIMENT IN CANADA – LATEST NEWS

SNO+ can measure solar oscillation parameters with reactor neutrinos.

The first data: May 7 2025 arXiv: 2505.04469v1

SNO+ EXPERIMENT IN CANADA – LATEST NEWS

MANTLE SIGNALS COMPARISON

Intriguing question: is mantle not homogeneous?

Limits on the existence of a GEOREACTOR

Borexino

- Hypothetical fission of Uranium deep in the Earth
- Three locations considered
- ²³⁵U : ²³⁸U = 0.76 : 0.23 (Herndon)
- Fit with reactor spectrum constrained

KamLAND

fission ration from commercial reactors assumed averaged oscillation probability U and Th left free in fit

Borexino

Upper limit (95% CL): 18.7 TNU – conversion to TW depends on the location of the georeactor: 2.4 TW in the Earth's center 0.5 TW near CMB at 2900 km 5.7 TW far CMB at 9842 km

KamLAND

1.26 TW at 90% CL (center?)

Jiangmen Underground Neutrino Observator The first multi-kton liquid scintillator (LS) detector ever built

Jan 24, 202

Neutrino Mass Ordering (NMO) - 3σ in ~6 years. Many other goals: GEONEUTRINOS, but also neutrino properties, astrophysics, and rare processes

JUNO & Neutrino Mass Ordering with the strongest human-made neutrino source

Neutrino Mass Ordering (NMO)

https://news.fnal.gov/2015/10/neutrino-mixings-masses/

A typical nuclear reactor emits every second about 10²⁰ electron flavour antineutrinos (E > 1.8 MeV = detectable with present day technology)

JUNO AMONG REACTOR NEUTRINO EXPERIMENTS AT DIFFERENT BASELINES

REACTOR ANTINEUTRINO SPECTRUM @ JUNO

•

(matter effect contributes maximal ~4% correction at around 3 MeV, *arXiv:1605.00900, arXiv:1910.12900*)

- Method for the Neutrino Mass Ordering with reactors antineutrinos suggested by Petcov and Piai, PLB 553 (2002) 94.
- **Complementarity** to the method based on matter effects on long baseline oscillations of atmospheric and accelerator neutrinos that depend also on δ_{CP} and θ_{23} .
- High sensitivity to the oscillation parameters
 - solar mixing angle θ_{12}
 - solar mass splitting Δm^2_{21}
 - atmospheric mass splitting Δm^2_{31}

GEONEUTRINOS IN JUNO

Big advantage:

✓ Large volume and thus high statistics: **400 geoneutrinos / year.**

Main limitations:

- ✓ Large reactor neutrino background.
 - \checkmark Relatively shallow depth cosmogenic background.
 - Current (KamLAND and Borexino) precision on measured geoneutrino flux is ~16-18%.
- JUNO can reach this precision in a few years.
- JUNO will provide statistics sufficient to separate with a high significance U and Th.
- **Geological study of the local crust** important in order to separate the mantle contribution and it is ongoing.

Expected precision of the total geoneutrino signal: ~8% in 10 years (Th/U mass ratio fixed to 3.9)

Precision of U and Th individual components in 10 years:
²³²Th ~35%
²³⁸U ~30%
²³²Th + ²³⁸U ~15%
²³²Th/²³⁸U
~55%

- Borexino (Italy): stopped data-taking in October 2021 (last update till April 2019)
- KamLAND (Japan): latest update in summer 2022 more data expected to come this year.
- SNO+ (Canada): 780 ton & DAQ started & 30-40 geonus/year; Low cosmogenics; first events just detected!
- JUNO (China): 20 kton & completion this & 400 geonus/year! about to start (J. Phys. G: Nucl. Part. Phys. 43 (2016) 030401);
- JINPING (China): 5 kton; deepest lab, far away from reactors, very thick continental crust at Himalayan region; (PRD 95 (2017) 053001)
- HanoHano / Ocean Bottom Detector (Hawaii): ~10 kton movable underwater detector with ~80% mantle contribution: "THE" GEONU DETECTOR

Photo by L.L., Shiveluch volcano, Kamchatka, Russia

Geoneutrinos

- Measurements of geoneutrinos in general agreement with Bulk Silicate Earth (BSE) models.
- Slight tension in mantle contributions.
- Key to understanding Earth's heat budget and geodynamics.
- Future: precision studies of mantle composition, radioactive element distribution, and thermal evolution of the Earth.

Thank you!

© Lívía Ludhova Photography