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✓ W2 Professor at JGU Mainz and head of the neutrino group at 

GSI Darmstadt since September 2024. 
______________________________________________________________________________________________________________________________________

✓ W2 Professor at RWTH Aachen and head of the neutrino group at 

IKP-2 FZ Jülich, Germany,  November 2015 – September 2024.

✓ Postdoc and researcher @ INFN Milano, Italy, 2005 – 2015.

✓ Ph.D. in Physics in 2005, Fribourg University, Fribourg, Switzerland.

✓ Ph.D. (1999) & M.Sc. (1996) in Geology and M.Sc. in Physics (2001), 

Comenius University, Bratislava, Slovakia.

✓ Geology: evolution of metamorphic rocks in the Tatra Mts., Slovakia 

✓ Exotic atoms:

o DANE/DEAR (Kaonic hydrogen spectroscopy), INFN Frascati, Italy.

o CREMA (p-Lamb shift), PSI, Switzerland.

❖ my PhD with Randolf Pohl as a postdoc (now Prof. at JGU)!

✓ Neutrino Physics: 

✓ Borexino @ LNGS, Italy – data taking 2007 – 2021.

o  solar neutrinos and geoneutrinos.

✓ JUNO in  Jiangmen, China  - topic of today!

Passion for Physics: at the JUNO site.

Passion for Geology:

Mutnovka Volcano, Kamchatka, Russia.
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ABOUT MY NEUTRINO GROUP

• Focused on experimental neutrino physics with liquid scintillator detectors.

• Dynamic and international group established in November 2015.

• Funded from Helmholtz recruitment initiative and DFG JUNO Research Unit.

• Typically about 10 persons: 2-3 postdocs, 7-8 PhDs, 1-2 Master/Bachelors.

http://neutrino.gsi.de/

Ujwal Luca
Cornelius

Yury

Apeksha

Cristobal
Livia

Mariam

Marco

Sahar

Ze

14 nationalities passed through the group!
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OUTLINE

1. Introduction to neutrinos

2. Detection of MeV neutrinos

3. Solar neutrinos 

4. Geoneutrinos • Historical perspective

• Motivation of the measurements

• Overview of the results

• Personal perspective – analysis 
details from “my” experiments – 
Borexino and JUNO

• Outlook

Ask questions 

There are no stupid questions
 (and if, it happened to all of us ☺)



WHAT ARE NEUTRINOS?

Basic constituents of matter:
Standard Model of Elementary Particles

NEUTRINO SOURCES

There are 3 neutrino flavours and their antiparticles, so antineutrinos of 3 flavours.
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Geo:
Terrestrial 

anti-



NEUTRINO INTERACTIONS

Strong

Electromgnetic

Weak

Gravitational large scales & mases

VERY Weak

NEUTRINOS AS MESSENGERS
T
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Small probability to interact with matter

+  Difficult detection

    Bringing unperturbed information

-

+
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NEUTRINOS ARE SPECIAL
7

Small interaction cross sections  → low rates in the detector!



NEUTRINOS ARE SPECIAL

Only weak interactions
✓ Difficult to detect 

o Large detectors
o Underground laboratories
o Extreme radio-purity

✓ Bring unperturbed information 
about the source (Sun, Earth, SN)

Open questions in neutrino physics
✓ Mass Hierarchy 
     (Normal vs Inverted)

o CP-violating phase
o Octant of 23 mixing angle
o Absolute mass-scale
o Origin of neutrino mass 
     (Dirac vs Majorana)

✓ Existence of sterile neutrino

m2
31= has opposite signs in the two hierarchies!  
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v

i = 1, 2, 3

Mass eigenstates

PROPAGATION

 = e,   

Flavour eigenstates

INTERACTIONS

NEUTRINO MIXING AND OSCILLATIONS

• 3 mixing angles ij: 

o   ° (which quadrant?)
o   ° (non-0 value confirmed in 2012)

o  ° 

• Majorana phases    and CP-
violating phase  unknown

• Neutrino oscillations

o Non-0 rest mass (Nobel prize 2015)

o Survival probability of a certain flavour 

= f(baseline L, E) 

o Different combination (L, E) = 

sensitivity to different (ij, mij
2)

o Appearance/disappearance 

experiments

o Oscillations in matter -> effective (ij, 

mij
2) parameters = f(e- density Ne, E)
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-oscillations in matter: MSW effect 

  



 

(m
 sin)

Effective oscillation parameters (m2
M, M) instead of the vacuum ones (m2

V, V)  

Ne = matter  electron density 

V V

V

VV
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-oscillations in matter: MSW effect 

  

Ne = matter  electron density

E= neutrino energy 

Flavour content of mass 

eigenstates changes.
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✓ The effect can be enhanced by a resonance
Mikheyev–Smirnov–Wolfenstein effect 

✓ There is a combination of electron density 
Ne and neutrino energies E, for which the 

effective mixing angle = 1 (even if the 

vacuum mixing is small)

✓ This yields the energy dependence of the 

“survival probability”: Pee(E)

Resonance character of the MSW effect

Maximal mixing

V

V

VV

V
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https://en.wikipedia.org/wiki/Mikheyev%E2%80%93Smirnov%E2%80%93Wolfenstein_effect
https://en.wikipedia.org/wiki/Mikheyev%E2%80%93Smirnov%E2%80%93Wolfenstein_effect
https://en.wikipedia.org/wiki/Mikheyev%E2%80%93Smirnov%E2%80%93Wolfenstein_effect
https://en.wikipedia.org/wiki/Mikheyev%E2%80%93Smirnov%E2%80%93Wolfenstein_effect
https://en.wikipedia.org/wiki/Mikheyev%E2%80%93Smirnov%E2%80%93Wolfenstein_effect


  

Adiabatic conversion in the Sun
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MSW for solar neutrinos
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Vacuum

region

Matter

enhanced

region

Transition region

Energy

sin² averages to ½.

Vacuum oscillation (57%):

Before reaching the Earth:

Matter enhanced oscillation  (33%):



NEUTRINO SOURCES
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Neutrino detection is special

Cosmogenic background -> underground laboratories
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Muon flux in undeground laboratories 

Small neutrino interaction rates → shielding against cosmic rays

BOREXINO 

GALLEX

KAMIOKANDE

KAMLAND

SNO/

SNO+

Jinping (China)
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Active mine
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BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction 

 Inverse β decay on a proton or a nucleus

νe ONLY at MeV energies

• Muon and Tau lepton too heavy 

νe

e-

N(A,Z)

W

N(A,Z+1)
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BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction 

 Inverse β decay on a proton or a nucleus

νe ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

   Elastic scattering on a nucleus 

• either with the emission of a recoil neutron 

• All neutrino flavors have the SAME cross section 

νe

e-

N(A,Z)

W

N(A,Z+1)

νx

Z

d

n

p

νx
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BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction 

 Inverse β decay on a proton or a nucleus

νe ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

   Elastic scattering on a nucleus 

• either with the emission of a recoil neutron 

• All neutrino flavors have the SAME cross section 

3) Elastic scattering off an electron 

(charged current (CC) + neutral current (NC) )

• Cross section for νe and νμ,τ is different

• for νμ,τ NC only;

νx

Z

d

n

p

νx

νe

e-

e-
νe

W

e,

e-

e-

Z+

e,

νe

e-

N(A,Z)

W

N(A,Z+1)
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The secondary particles are typically detected in :

1) Water – Cherenkov radiation (solars)

2) Liquid scintillator – scintillation light (solars and geoneutrinos) 

23



Water Cherenkov detection

24



Cherenkov radiation

When a charged particle travels faster than the 

speed of the light in that medium (= c/n):

de-excitation gives rise to a coherent radiation

“Cherenkov radiation”

Katharina Muller (UZH)

When a charged particle moves in the 

dielectric medium, it polarises the material

n : refraction index

25
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Cherenkov cone

The geometry of the emitted photon with speed of c/n, 

being slower than the charged particle with speed of v = 

𝛽c, results in a cone-shaped shock wave front

Momentum threshold :
(m𝛽c > mc/n in the figure)

𝛽 > 1/n 
(with the n~1.34 in the water, the 

momentum thresholds (MeV/c) are:

e : 0.57

μ : 118

π⁺⁻ : 156

p : 1051

Energy threshold :

m₀ : particle mass

Cherenkov angle:

1) maximum angle for a particle with the speed v=c ~ 42° in the water

2) slower particle -> smaller Cherenkov angle

26



Mach cone
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File:TrigaReactorCore.jpeg

Cherenkov light is produced in a reactor water pool,

into which the core is submerged.

In water, light is travelling at  0.75 x  the speed in vaccum.

28

http://upload.wikimedia.org/wikipedia/commons/6/68/TrigaReactorCore.jpeg


The spectrum has a       dependence.2

1



The number of photons emitted by a charged particle of charge ze 

per unit path length x per wavelength 𝞴 is, travelling with velocity 

v:

Cherenkov light spectrum

Refractive index n depends on wavelength!

29



Cherenkov radiation in neutrino detection 

Solar neutrinos

          Kamiokande (past) /Superkamiokande (present) /Hyperkamiokande (future)  

          SNO (past) – Nobel Prize for solar detection!

Atmospheric and accelerator neutrinos:
Kamiokande/Superkamiokand /Hyperkamiokande 

String detectors for atmospheric and Ultra High-Energy neutrinos

Ice-Cube

KM3NET – ORCA & ARCA
Baikal

30



Super-Kamiokande

  Kamioka, Japan 

50 kton water

SNO

Sudbury, Canada

1 kton water

31



By reconstruction of timing & spacial 
pattern of Cherenkov ring, one can 
learn

➜ vertex position, direction,

Cherenkov cone

 in SuperK

MeV eventGeV event

32



Particle ID (PID): rings are identified as e-like or µ-like, based on 
the geometry of the Cherenkov ring

33



Liquid-scintillator 

                       based detection

34



Scintillation based neutrino detection

Detection of ionizing radiation through the scintillation 

light induced in special organic liquid materials = 

scintillators

Important characteristics:

• High scintillation efficiency and high light yield. 

• Good energy and position resolution.

• Low energy threshold.

• No directionality.

• Real time measurement (energy of single events).

• Quenching: non-linearities between energy deposit and produced light.

• Pulse shape discrimination (alpha/beta, positron/electron).

• High transparency.

• Fast pulses (short decay time of the scintillation light production).

• Refractive index similar to the glass (phototube matching).
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Molecular states in aromatic hydrocarbons:  bonds

Absorption higher 

frequencies and 

smaller wavelengths 

than emission.

Fast fluorescence 

has  higher 

frequencies and 

smaller wavelengths 

than slower 

phosphorescence.
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Stokes shift
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Scintillator cocktails - SOLVENTS

Pseudocumene (PC) as a solvent

1,2,4-trimethylbenzene

LAB

linear-alkylbenzene

LAB is used in new detectors (SNO+, JUNO), as compared to pseudocumene, it is:

• Non toxic and safer (high flash point).

• Cheaper – we need always larger detectors.

• Compatible with acrylic vessels holding LS (SNO+, JUNO).

• Excellent transparency.

• Drawback: worse particle discrimination.
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Scintillator cocktails:  additions 

Called fluor / solute

Added at the level of g/l

2,5-diphenyloxazol: PPO

Addition of this fluorescence dye serves as:

✓ Efficient non-radiative transfer of excitation 

energy from the solvent to fluor.

✓ Fast decay times.

✓ Wavelength shift.

Wavelength shifter (secondary fluor)

Added at the level of mg/l

 

1,4-Bis(2-methylstyryl)benzene: bisMSB

Shifts wavelength to longer values to match 

quantum efficiency of the phototubes and 

decrease self-absorption in LS.
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Emission spectra
41



Quenching

• Quenching is an external process that de-excites the scintillator without 

fluorescence.

• Impurity quenching: Oxygen!

• Ionisation quenching: high ionization density quenches the excited π-electrons

Important consequences:

1) Non-linearity in the energy response

  heavy particles with higher dE/dx (e.g. α, protons) produce less light

  for the same energy deposit (by a factor of >10 for α’s)

2) Particle discrimination:

   the scintillation pulse shape (fast/slow components) is different

42



Quenching

For electrons in Borexino

43



Liquid scintillators in neutrino detection 

Solar neutrinos

          Borexino (ended in 2021), SNO+ (first data), JUNO – (about to start)

Geoneutrinos

         Borexino, KamLAND (present), SNO+, JUNO

Reactor antineutrinos

        KamLAND 

  Daya Bay, RENO, Double Chooz (just ended)

  JUNO 

0- decay

         KamLAND – Zen (present)

         SNO+ (present)

Sterile neutrino search with reactor antineutrinos

         NEOS, Stereo, Neutrino-4, Prospect (present)

Supernovae neutrinos

         LVD (past)

Accelerator  neutrinos

        LSND (past)
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Solar neutrinos

Millennia of fascination continued.

45
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THE SUN

47

• Luminosity (3.8418.1033 erg/s (± 0.35%) (1 erg = 10-7 J)

• Age (~4.6.109 years - old meteorites)

• Mass М = 1.989⋅1030 kg (± 0.02%)

• Radius R = 6.9598 ⋅108m (± 0.01%)

(26.7 MeV) + 2 ν

• Nucleosynthesis occurs only in the core.

• Neutrinos reach the Earth in ~ 8 minutes.

• Photons take order of 100,000 years to 

reach the photosphere.



pp-chain: ~99% solar energy CNO-cycle: < 1% solar energy

HYDROGEN-TO-HELIUM FUSION
48



pp-chain: ~99% solar energy CNO-cycle: < 1% solar energy

HYDROGEN-TO-HELIUM FUSION
49

In stars with M > 1.3 solar mass,
the CNO cycle is the dominant energy 
source.

That makes 
the CNO fusion cycle
the main Hydrogen-to-Helium
conversion process in the stars.



WHERE DOES THE FUSION OCCUR

50



Inputs:

• Basic properties of the Sun:

• luminosity 

• age, mass, radius 

• Nuclear parameters

• cross sections

• Q-values…

• Radiation opacity

• Surface abundance of metals (C, N, O, Ne, Mg, Si, Ar, 

Fe) – to - hydrogen ratio (Z/X = metallicity) 

• Elemental physics laws

• Equations of state

• Energy-transport equations 

• Conservation laws

Outputs: 
to be compared with independent data

•  Helioseismology
(sound-waves speed profiles)

• Neutrino fluxes

STANDARD SOLAR MODELS (SSM)

Metallicity influences the solar neutrino fluxes 

in two ways:

• Indirect for all neutrinos:   

     opacity -> temperature -> cross sections -> flux

• Direct for the CNO neutrinos:

     influence through C, N, O catalyzing the fusion

• Surface abundance of metals (C, N, O, Ne, Mg, Si, 

Ar, Fe) – to - hydrogen ratio (Z/X = metallicity) 
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Low metallicity inputs, based on the new spectroscopic analysis and 3D models of solar atmosphere, spoil the agreement of the 

HZ-SSM (using older metallicity) with the helio-seismological data. The LZ-SSM in contrast with the helio-seismological data.

Radial distance/ solar radius
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B16 Standard Solar Model with different metallicity inputs:

High-Metallicity HZ-SSM: older       GS98 metallicity input: Z/X = 0.0229 

Low-Metallicity  LZ SSM: newer AGSS09 metallicity input: Z/X = 0.0178 

LZ-SSM

HZ-SSM

SOLAR METALLICITY PROBLEM

Fractional sound speed difference as a function of radius 

From J. Maneira @ 
Neutrino 2024
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EVOLUTION OF THE METALLICITY PREDICTIONS

Recent studies still discrepant

53



SOLAR NEUTRINOS AND WHY TO STUDY THEM

Solar and stellar physics
• Direct probe of nuclear fusion.

• Photon vs neutrino luminosity: testing thermo-dynamical stability of the Sun. 

• Standard Solar Models:

✓ Metallicity problem.

Neutrino physics
• Neutrino oscillation parameters: solar sector ( m

) and global fits.

• Survival probability Pee as f(E): matter effects, testing LMA-MSW 
prediction and its upturn.

• Searches for Non-standard Neutrino Interactions.
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SOLAR NEUTRINOS FROM THE PP AND CNO
55



The fluxes
as predicted by 
the Standard Solar Model
[error on theoretical predictions].
N. Vinyoles et al. Astrop. J 836 (2017) 202

ENERGY SPECTRUM OF SOLAR NEUTRINOS

Borexino threshold
with liquid scintillator

Super-Kamiokande threshold
with water Cherenkov 

56

11% Borexino

2.7% Borexino

18% Borexino

2% SuperK

NOT YET OBSERVED

Ga Cl
John N. Bahcall

1934 - 2005



Experimental techniques in a nutshell

1) Radiochemical
✓ CC: e only

✓
AX + e → AY + e- W-exchange

✓ only integral flux above the 

threshold T

✓ T (Ga) = 233 keV, 

✓ T(C2Cl4) = 814 keV

✓ Homestake, Gallex/GNO, SAGE

33) Liquid scintillator
✓ Elastic scattering: T ~200 keV for neutrino. 

✓ IBD: T = 1.8 keV for antineutrino.
✓ Real- time technique: E spectrum!

✓ High light yield (Borexino: 500 pe/MeV)

✓ No directionality.

✓ Extreme radio-purity needed.

✓ Particle identification (, e+/e- separation).
✓ Borexino, KamLAND, SNO+, JUNO.

2) Water Cherenkov
✓ Elastic Scattering ES

✓ In heavy water: also NC & CC. 
✓ Real- time technique:  E 

spectrum!

✓ ~3 to 5 MeV threshold.

✓ Directionality.

✓ (Super)-Kamiokande, SNO/
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Short history of solar ν experiments  in 1 slide

70’s-80’s: Homestake (R. Davies): Radiochemistry: Eν > 814 keV

✓ 37Cl + ν --> 37Ar + e-

✓THE FIRST DETECTION! deficit in the observed flux, skepticism 

✓final triumph, Nobel prize 2002

✓J. Bahcall continues the development of the Standard Solar Model

80’s-90’s: (super)Kamiokande: Water Cherenkov: Eν > 5 MeV

✓confirms deficit on 8B-ν and with a real-time technique 

✓first neutrino picture of the Sun (directionality)

✓neutrinos from other stars observed (supernova SN1987-A)

90’s: Gallex (GNO) and Sage: Radiochemistry: Eν > 233 keV

✓ e + 71Ga → 71Ge + e-

✓deficit observed also at low energy, but is energy dependent! 

2001: SNO: Water Cherenkov: Eν > 5 MeV

✓flavour transformation of solar neutrinos proved

✓CC (electron flavor) and NC (all flavors) interactions separately in D2O

✓total flux agrees with Standard Solar Model !

2002: KamLAND: Liquid scintillator 

✓observes and measures oscillations of electron anti-neutrinos from reactors

2007 - 2021: Borexino: Liquid scintillator of extreme radiopurity: : Eν > 300 keV

✓First real-time observation of 7Be, pep, pp neutrinos

✓Observation of CNO 

✓Low-energy 8B neuttrinos (> 3 MeV recoiled e-)

First detection

Solar-neutrino

puzzle

Solution:

Neutrino oscillations!

Real-time 

precision spectroscopy

SNO+ - first 8B data  & JUNO in commissioning phase
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Radiochemical methods 

in detection of solar neutrinos (37Cl)
•  Pioneering Chlorine-based Homestake Experiment
         

               νe + 37Cl --> e- + 37Ar               (threshold 0.814 MeV) 

                   

      

         Method proposed by Bruno Pontecorvo (1946) and Luis Alvarez (1949)

Luis Alvarez

EC (electron capture) back to 37Cl (32 days)
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HOMESTAKE  - NOBEL PRIZE 2002

Only 2200 atoms of 37Ar counted in 25 years (1970 - 1994).

νe + 37Cl --> e- + 37Ar               (threshold 0.814 MeV) 

Ray Davis

(1914 – 2006)

• In Homestake Gold Mine, South Dakota, USA

• 1438 m underground

Perchlorethylen

Cross section for 8B-

~1.1 x 10-41 cm2

Target: a tank with

 614 ton of liquid soap (C2Cl4)

60



Tank construction in Homestake (1966).
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Ray Davis swimming in water shield around perchlorethylen tanks (1971).
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FIRST SOLAR NEURINO DETECTION: HOMESTAKE 

Solar Model prediction

Final Result

   only about 32% of the expectation!

2.56 ± 0.16 ± 0.16 SNU 

1 SNU (Solar Neutrino Unit) = 10-36 interactions on target nuclei per second

DEFICIT 
WITH RESPECT 
TO SSM EXPECTATIONS

Nobel 2002 to Ray Davis
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Radiochemical methods 

in detection of solar neutrinos (71Ga)
• Gallium experiments  (Gallex/GNO, SAGE)

           νe + 71Ga --> e- + 71Ge                    (threshold 0.233 MeV) 

         Method proposed by V. Kuzmin  (1965) and R. J. Raghavan (1978)

Vadim Kuzmin      

(1937 – 2015)

Raju Raghavan

(1937 – 2011)

EC (electron capture) back to 71Ga (16 days)
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Detection of low energy pp-chain neutrinos 

(pp – 53%, 7Be – 27%, 8B – 12%, CNO ? – 8%)

Till Kirsten

MPI Germany

Vladimir Gavrin 

Russia

νe + 71Ga --> e- + 71Ge                    (threshold 233.2 MeV) 

Gallium experiments

GALLEX/GNO@LNGS, Italy SAGE @ Baksan, Russia

(from Bahcall)
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Gallex (1991-1997)/GNO (1998- 2003) at LNGS, Italy

• 101 ton of GaCl3 solution in water and HCl containing 30.3 ton of natural Gallium. 

• When equilibrium between the production and the decay rates is reached,

     there are about 10 71Ge atoms among  ~1029 atoms of 71Ga.

• Extraction of 71Ge every 4 weeks

• 71Ge is present as a volatile GeCl4, 

which is extracted by purging with 

3000 m3 of Nitrogen.

• 71Ge is converted to GeH4 (German 

gas) and inserted to proportional 

counters filled with Xe and observed 

for 6 month: 71Ge completely decays 

and the background can be 

determined.
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Important part of the overall methodology: 

global calibration with a 51Cr neutrino source

51Cr decays via EC into 51V,

Emitting two neutrino (electron flavour) 

lines: 

750 keV (90%) 

430 keV (10%),

67
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Liquid metallic Ga in 

the window of 

chemical reactor

Gavrin & Bahcall

SAGE, Baksan
Soviet–American Gallium Experiment

(1989 – 2007)

Calibration with 
37Ar and 51Cr 

neutrino 

sources
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1991-2003 GALLEX-GNO @ LNGS, 

ITALY

RADIOCHEMICAL EXPERIMENT

EXPERIMENTAL RESULTS

6

9

Final result:

67.6 ± 5.1 SNU

0.541 ± 0.081 
as a fraction 

of the SSM prediction

(difference wrt to Homestake) 

Till Kirsten

 (MPI 

Germany)e + 71Ga → 71Ge + e-
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1990-2011 SAGE EXPERIMENTAL 

RESULTS, BAKSAN, RUSSIA

7

0

Final result:  65.4+3.1
-3.0

+2.6
-2.8 SNU 

Liquid metallic 

Ga

Vladimir Gavrin (Russia)
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SUPER-KAMIOKANDE: START IN 1986, NOBEL IN 2002, STILL 

ONLINE! THE FIRST REAL-TIME SOLAR NEUTRINO DETECTION

Detection in 

Water 

7

1

elastic scattering 

on electrons

Points = HIT PMTS

BACKGROUND

8B solar 

From 2016

Events from the energy range 3.49 – 19.5 MeV
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Neutrinos detected through elastic scattering: singles

@ 1-2 MeV for electron flavour: ~10-44 cm2

for  flavours about 6 x smaller cross section

ν
e

e
-

e
-

ν
e

W

e,



e
-e

-

Z+
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SNO 

solution
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SNO- HEAVY WATER CHERENKOV DETECTOR
• Sudbury Neutrino Observatory (SNO), Ontario, Canada, at 2070 m depth.  

• SNO - 1000 tones of ultra-pure heavy water(D2O) in ultrapure acrylic vessel, 12 m diameter. 

• Cherenkov light detected with 9600 PMTs, mounted at  the geodesic sphere, 17 m diameter.

• Detector was immersed in the ultrapure water, contained in the barrel-shaped cavern 22 m in 
diameter and 34 m in heights. 

• 10 neutrino events/day.
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SNO Charge Current measurement

νe

e-

n

W

p

Ethresh = 1.4 MeV
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SNO Neutral Current measurement
νx

Z

d

n

p

νx

n + 35Cl → 36Cl + 

(E = 8.6 MeV)

n + d → 3H + 

(E = 6.25 MeV)

Salt Phase 2 

dissolved 2000 t  

NaCl (2001-2003)

Phase 1

(1999 – 2001)

Gammas are detected through the detection 

of Compton electrons.

Neutron detection is critical!
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Cross section of gamma rays 

interactions

Dominates 

Compton scattering 

at MeV energies

77



SNO Phase 3 NC measurement (2004 – 2006)

• to increase neutron detection efficiency

• 36 strings of Ni proportional counters filled with 3He gas

         3He + n → 3H + p
• 3H + p have total kinetic energy of 0.76 MeV and travel in opposite 

directions and were detected by the proportional counter itself
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SNO Elastic Scattering measurement

νe

e-

e-
νe

W

e,

e-

e-

Z+

The best directionality measurement!
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ES

NC

CC (only e-flavour)

SNO 2001: DISCOVERY OF SOLAR NEUTRINO OSCILLATIONS

• Prove that Φ(νe) is DIFFERENT from Φ(νμ, ντ).
• Prove that the TOTAL neutrino flux is consistent with the Standard Solar Model.
• Big success for SNO, neutrino oscillations, and solar model theoreticians.
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PRECISE MEASUREMENT OF Δm2
12 

AND FINAL PROOF OF OSCILLATIONS 

(ON ANTI-NEUTRINOS FROM REACTOR!)

8

2

OSCILLATION 

PATTERN

WAS

SEEN!

                      

                    KamLAND, 2002
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Isotropic scintillation light is produced by charged particles 

Borexino era



vv

νe

e-

e-
νe

W

e,

e-

e-

Z+

e,

Solar neutrino detection: SINGLES
• Elastic scattering off electrons both in liquid scintillator (Borexino, SNO+) and water 

Cherenkov (SNO, Super-Kamiokande) based detectors.
• No threshold.
• All flavours (cross section for ve ~6x higher) – MEASURED RATE DEPENDS ON Pee.

• Even mono-energetic neutrinos – continuous spectrum with a Compton-like edge.
• Undistinguishable from normal radioactivity.

Credit: 
Borexino Collaboration
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– In  100 ton of scintillator: ~200 events/day from solar ν expected 

(200 / 86400 / 100 000 kg  ~ 2 10-8 Bq/kg)

– The scattering of a neutrino on an electron is intrinsically not distinguishable from a β 
radioactivity event or from Compton scattering from γ radioactivity

• Typical natural radioactivity:

✓ Good mineral water:        ~10 Bq/kg                     40K, 238U, 232Th

✓ Air:                                    ~10 Bq/m3                              222Rn, 39Ar, 85Kr

✓ Typical rock                      ~100-1000 Bq/kg        40K, 238U, 232Th,  + many others

If you want to detect solar neutrinos with liquid scintillator, you must be 

9-10 orders of magnitude more radio-pure than anything on Earth!

IMPORTANCE OF RADIOPURITY 
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BOREXINO @ LNGS, ITALY
86

• Data taking: 2007 – 2021;

• PC based LS: 280 tons;

• Depth: 3800 m.w.e. 

Main goal: 

solar neutrinos  below 2 MeV

Unprecedented radio-purity                             

was the key to the success of the 

experiment. 



BOREXINO: UNPRECEDENTED RADIOPURITY LEVELS
87

G. Bellini







BOREXINO DETECTOR

280 ton

liquid scintillator
in the IV

Laboratori Nazionali del Gran Sasso, Italy

3600 m.w.e
4300 muons/day
crossing  the inner detector

More about detector in:
NIM A600 (2009) 568

• the world’s radio-purest LS detector

       < 5.7 × 10-19 g(Th)/g , < 9.4 × 10-20 g(U)/g

• ~50 keV trigger threshold
• effective LY ~500 photoelectrons with 2000 PMTs/ MeV
• energy reconstruction: 50 keV (5%) @ 1 MeV
• position reconstruction: 10 cm @ 1 MeV
• pulse shape identification (, e+/e-)
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BOREXINO TIMELINE AND SOLAR NEUTRINO RESULTS

CNO  
1st observation

NATURE 25/11/2020

2007 2010 2012 2016 Oct 2021

Phase I LS Purification Phase II Phase III The end 

2020

Full pp chain 
spectroscopy
NATURE 25/10/2018

First observation 
7Be

 pep
 8B > 3MeV

First observation 

pp reaction

NATURE 28/08/2014

Directional
detection of sub-
MeV solar 
neutrinos & 7Be 
rate (CID method)

Source Calibration

CNO improved and final  
PRL 12/12/2022

PRD 108 (2023) 102005,

CNO observation with the Correlated Integrated Directionalty (CID) using Cherenkov photons

PRD 108 (2023) 102005,

2017
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STRATEGY TO EXTRACT SOLAR NEUTRINO SIGNAL

• Neutrino signal (pp chain and CNO)

• Backgrounds
✓ in the LS (14C, 210Po, 85Kr, 210Bi)
✓ external gammas
✓ cosmogenic (11C)
        

CNO 
210Bi

pep  

CNO discovery: NATURE 25/11/2020
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14C

210Po

Cosmogenic
11C7Be ’s

1 MeV

85Kr
210Bi

RAW SPECTRUM AND EVENT SELECTION

Residual

external

background

+ FV CUT

+ MUON VETO

RAW DATA
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THREE-FOLD COINCIDENCE (TFC) TO TAG 11C
Critical for pep and CNO neutrinos

 + 12C →   + 11C + n 

n + p → d +  ( MeV) 

   s 

11C →  11B + e+ + e

 ~ 30 min

 Cylindrical cut 

around -track

Exposure divided to 2 categories:

TFC-tagged (36% of exposure, 92% of 11C)

TFC-subtracted (64% of exposure, 8% of 11C)

Muon detection  = 99.992%:

• Outer Detector trigger

• Cluster of hits in Outer 
Detector data

• Pulse-shape of Inner 

Detector data

Likelihood that a certain event is 11C 

uses in input time and space correlations 

between muons and cosmogenic 

neutrons.

Neutron detection:  after each ID  1.6 ms gate is opened 

to detect neutrons: example with several tens of neutrons.
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TFC SUBTRACTED

(～10% OF 11C)

95

TFC TAGGED

（～90% OF 11C)



BOREXINO CALIBRATION
JINST 7 (2012) P10018

Internal calibration
• ~300 points in the whole 

scintillator volume
• LED-based source 

positioning system

External calibration
9 positions with 228Th source
                         ( 2.615 MeV)

Laser calibration
• PMT time equalisation
• PMT charge calibration
     (charge calib. also using 14C)

Optical 
fibers 
reaching 
each 
PMT
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BOREXINO MONTE CARLO
Astrop. Phys. 97 (2018) 136

 peaks from internal calibration

Geant-4 based

Tracking code
• Full detector geometry
• Energy loss 
• Photon production & propagation

C++ Borexino custom

Electronics simulation
Follows real DAQ conditions

• PMT quality and calibration
• Dark noise

• Trigger condition
• Number of working channels on an 

event-by-event basis

Echidna: C++ Borexino custom

Reconstruction
• Several energy estimators
• Position reconstruction
• Pulse-shape variables
• Output in the same format as 

reconstructed data files

• Tuning on calibration data.
• Independently measured input parameters: 

emission spectra, attenuation length, PMT 
after-pulse, refractive index, effective quantum 
efficiencies.

• Biasing technique for external background.
• Simulation of pile-up events.

Better than 1% (1.9%) precision 
for all relevant quantities in the solar analysis <2 (>3) MeV
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BOREXINO LATEST PP-CHAIN RESULTS Full pp chain 
spectroscopy with 
NATURE 25/10/2018

Low Energy Range (LER) [0.19 – 2.93 MeV] High Energy Range (HER) [3.2 – 16.0 MeV]

• Multivariate fit of the energy spectra
• Interaction rates of pp, 7Be, pep neutrinos

• Fit of the radial distribution 
• Interaction rate of 8B neutrinos 
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BOREXINO PP-CHAIN RESULT

Measurement of the interaction rates:

LER: pp (10.5%), 7Be (2.7%), pep (>5 )

HER: 8B (3 MeV threshold, 8%)

First Borexino limit on hep neutrinos

• Neutrino and photon luminosity in agreement: 

thermo-dynamical stability of the Sun in 
O(100k) years

• Testing the pp-chain: 

BR(ppII/ppI)=<3He+4He>/<3He+3He> = 0.18 + 
0.03 in agreement with the expectations

Vacuum dominated Matter dominatedTransition region

Slight preference towards the HZ SSM
Pee survival probability at different energies 

Vacuum-LMA model excluded at 98.2% CL

Nature 

Oct 25th 2018
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CHALLENGES TO MEASURE CNO SOLAR NEUTRINO

CNO 
210Bi

pep  

CNO discovery: NATURE 25/11/2020

• Low rate (3-5 counts/day/100 ton of liquid scintillator)

• No prominent spectral features

• Buried under the cosmogenic 11C background – Three Fold Coincidence & exposure division

• Correlation with

✓ pep solar neutrino: 1.4% constraint from the solar luminosity and global fit of solar data without Bx Phase III

✓
210Bi contamination of liquid scintillator: THE CHALLENGE

Page 
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• Neutrino signal (pp chain and CNO)

• Backgrounds
✓ in the LS (14C, 210Po, 85Kr, 210Bi)
✓ external gammas
✓ cosmogenic (11C)
        11C subtracted spectrum



BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH
F. Villante et al., Phys. Lett. B 701 (2011)

Assuming secular equilibrium, all these rates are the same.

• contaminant of the scintillator

• long-lasting source of 210Bi
• below the analysis threshold

anti-correlated 
background to CNO

• event-by-event identification using 

MLP  pulse shape discriminator

(1160 keV)

Page 
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BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH
F. Villante et al., Phys. Lett. B 701 (2011)

• contaminant of the scintillator

• long-lasting source of 210Bi
• below the analysis threshold

anti-correlated 
background to CNO

• event-by-event identification using 

MLP  pulse shape discriminator

(1160 keV)

Page 
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Problem: seasonal convective currents 
bringing 210Po from the nylon vessel 
to the fiducial volume of the analysis;
breaking the secular equilibrium



TEMPORAL EVOLUTION OF 210-POLONIUM RATE
Page 
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210-BISMUTH UPPER LIMIT CONSTRAINT

1. LOW POLONIUM FIELD (LPoF): 
       clean region in the core of the detector 

2.    Fitting LPoF → 210Po minimal rate,
       that is an upper limit on 210Bi rate

R(210Bi) < R(210Pomin) = R(210Bi) + R(210Povessel)

3. R(210Bi) is homogeneous in the whole 
fiducial volume of the analysis within 0.68 
cpd/100 ton (major systematics)

4. Upper limit on R(210Bi) applied
    as a half-Gaussian constraint
    in the spectral fit

Fiducial volume

LPoF

Inner Vessel

R(210Po)

Nature 587 (2020) 577

R(210Bi) < (10.8 + 1.0) counts / day / 100 ton
including all systematic errors

Page 
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MULTIVARIATE SPECTRAL FIT

11C(e+)  
210Po()   

210Po()   

210Bi   

210Bi   

CNO
CNO

pep pep

External
Background

Radial distribution
TFC-11 C subtracted energy spectrum TFC-11C tagged energy spectrum

Constraints in the fit:

R(pep) = (2.74 + 0.04) cpd/100 t
R(210Bi) < (10.8 + 1.0) cpd/100 t

Phase III data (Jan 2017 – Oct 2021 )

with exposure 1072 days x 71.3 ton

External
Background

105



SOLAR IMPLICATIONS: C+N ABUNDANCE 
106



FIRST DIRECTIONAL DETECTION OF SUB-MEV SOLAR NEUTRINOS

BASIC IDEAS

Phase I spectral fit PRD 89 (2014)112007

ROI

7Be

First Directional Measurement of sub-MeV Solar Neutrinos with Borexino, Phys. Rev. Lett. 128 (2022) 091803.

Correlated and Integrated Directionality for sub-MeV solar neutrinos in Borexino, Phys. Rev. D 105 (2022) 052002.

• Selection of the region of interest (ROI) using the dominant and isotropic scintillation light.

• Using the subdominant Cherenkov light, that is fast and directional, to recognize the solar neutrino signal 
correlated with the known position of the Sun.

• Method was eveloped on “easy” 7Be and then applied on CNO neutrinos.

Slower scintillation light
>99% of total light

Cherenkov and scintillation light

(emission times in Monte Carlo in RoI)

Faster Cherenkov light
<1% of total light
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https://arxiv.org/abs/2112.11816
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FIRST DIRECTIONAL DETECTION OF SUB-MEV SOLAR NEUTRINOS

NEW METHOD: CORRELATED INTEGRATED DIRECTIONALITY (CID)

Angular analysis of the first hits (after ToF) of each event from the 
ROI, characterized by the highest fraction of the Cherenkov light.

Solar neutrino event:

correlated with the Sun
Background event:

UN-correlated with the Sun
Correlated:
 *  we correlate  the reconstructed 
photon direction (hit-PMT - vertex) with the 
known direction from the Sun 

 
Integrated:
 * event-by-event discrimination 
not possible, we integrate over all 
events from the RoI

Directionality:
 * we exploit directional 
Cherenkov light
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OBSERVATION OF CNO SOLAR NEUTRINOS WITH CID

DATA CID DISTRIBUTIONS AND FIT

 

Early hits (1 to 4):
Direct information 
from the Cherenkov light

Later hits (5 to 15/17): 

Indirect information 
from the effect of  Cherenkov light on the vertex 
reconstruction (bias)

CNO observation  with the CID method at 5.3 CL
No 210Bi constraint needed!
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FINAL BOREXINO RESULT ON CNO

SPECTRAL FIT OF THE PHASE III WITH THE CID (PHASE I+II+III) CONSTRAINT

We disfavour the hypothesis CNO = 0 with  ~8 significance. 

The same spectral analysis 
of the Phase III as in PRL 12/12/2022
with constraints on pep and 210Bi
and additional CID constraint. 

Phase III

NEW  CID

WITH SYS
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Phase IV 

• 90% triggering efficiency down to 2.99 MeV;

• Improved analysis techniques and clear 8B 

measurement above 3.5 MeV;

Complete analysis of  SK phases I – IV

Since 2020: Gd loading of  LS  for neutron capture 

to observe DSNB via IBDs.

• SK-V: preparation 

• SK-VI (0.01% Gd)

• SK-VII (0.03% Gd)

SUPERKAMIOKANDE Water Cherenkov detector

Large FV mass of 22.5 kton
> 20 years of 8B solar  data in 4 Phases 1996 – 2018

Higher backgrounds as expected, but 

4 /4.5 MeV threshold is possible.
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SUPER-KAMIOKANDE

63,890−379
+381) stat.) events

SK IV

SK I – II – III - IV

• 8B flux measurement consistent among different phases – total precision 2%.
• Spectrum still compatible with flat survival probability, but predicted low energy 

MSW upturn  is favoured at 1.2 σ . Jointly with SNO data, at 2.1 σ.

• No time variations except eccentricity and Day/Night variation (MSW electron 
flavour regeneration when crossing the Earth): 
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SUPERKAMIOKANDE: SOLAR OSCILLATIONS

Solar best-fit value 

Δm 221 = 6.10+0.95 −0.81 × 10−5 eV 2

 ~1.5 σ away from KamLAND

Previously, larger tensions.
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Pee: VACUUM TO MATTER TRANSITION

M. Maltoni et al., Eur. Phys. J. A 52 (2016) 87

Transition region crucial for testing BSM ideas.
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MSW

QUAD.



SNO+ IN SUDBURY, CANADA

J. Maneira. Neutrino 2024
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FIRST EVENT-BY-EVENT DIRECTIONALITY IN LS BY SNO+

Distribution of photon hits in cos θγ and tres for

simulated 6 MeV electrons. A clear peak can be seen at low 

tres near the expected Cherenkov angle, cos θγ = 0.66, 

highlighted in blue.

Results of direction reconstruction for measured (solid) 

and simulated (dashed) 8B solar neutrinos, where 

simulation sampled from a nominal 8B energy spectrum.
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PRD 109, 072002 (2024)
Data from partial fill & early scint phases, where PPO loading low (0.6 

g/L), leading to slow scintillation: good separation with Cherenkov light.



SNO+  AND 8B SOLAR ANALYSIS

• ES interactions in 143.1 live days of  scintillator data. 

• Fitted oscillation parameters compatible with global fits.

• Smaller FV opens door towards < 3 MeV.

Elastic scattering (singles) Charge current on 13C (coincidence)

• 1.1% isotopic abundance, but  ~12× higher than ES.

• 3.8  CL – FIRST OBSERVATION of this interaction 

with solar neutrinos!
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225.4 days

Cookman  @ WIN 2025 Conference



JUNO
20 kton LS detector in China designed for NMO with reactor neutrinos
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(see talk by Y. Wang)
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Central Detector

20 kton scintil. 
~17612 20’’ PMTs +

~25600 3’’ PMTs

43.5 m

MUON VETO

Water Cherenkov
~2400 20’’ PMTs +

8x

78%

Eff. ~ 1600 p.e./MeV

8.5% /
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A MULTI-PURPOSE OBSERVATORY

Neutrino oscillation & properties
Neutrinos as a probe

~60 / day ~400 / yearSeveral / day
8B: ~50/day

CNO: ~1000/day
7Be: ~10000/day

Core Collapse SN 

@ 10 kpc:
thousands in few sec.

Diffuse SN signal:
few / year

+ New 

physics

Reactor anti- Atmospheric  Solar  Supernovae (SN)   Geoneutrinos

Proton decay

Neutrino magnetic 
moment

Sterile neutrinos

Non-standard 

interactions

Lorentz invariance 

violation

Others
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MODEL INDEPENDENT MEASUREMENT OF 8B SOLAR NEUTRINOS

ES: Chinese Phys. C 45 (2021) 1

ES+NC+CC: Ap. J. 965 (2024) 122

Expected precision in 10 years: 

8B flux:   5% JUNO

sin212: +9% / -8%

m
21: +27% / -17%
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SENSITIVITY TO 7Be, pep, CNO SOLAR NEUTRINOS

• Several radio-purity scenarios: from the Borexino level up to the “IBD” one (minimum required for the NMO)

• JUNO has potential to improve the precision of the existing Borexino measurements

• 7Be: in 1-2 years time < 2.7% (current Borexino precision) for all radiopurity scenarios

• pep:  in 1-2 years time < 17% (current Borexino precision), only in IBD scenario after more than 6 years

• CNO:  constraining pep rate is crucial, precision of 20% possible in 2 to 4 years (except for the IBD scenario)

• constraint of 210Bi radioactive background not needed (applied in Borexino analysis Nature 587 (2020) 577–582)
• Independent measurement of 13N and 15O might be possible for the first time.
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J. Cos. Astro. Phys. 10 (2023) 022.



Solar neutrino

Summary &  outlook
• Detection of 40K

• Directionality

• More statistics

• Multi-site experiments

• Experiments at 

geologically particular 

locations

• Borexino (Italy): comprehensive solar neutrino spectroscopy, CNO discovery, stopped data-taking in October 2021.

• SuperKamiokande (Japan):  the most precise 8B analysis, data taking with Gd loading ongoing, solar analysis with special 

analyses possible.

• SNO+ (Canada): first 8B analyses,  CC on 13C seems feasible.

• JUNO (China): 20 kton LS & comprehensive  solar neutrino program. Fully filled detector in summer 2025.

• HyperKamiokande (Japan): 260 kton water, the largest solar detector, upturn & MSW test, precise D/N asymmetry, 

potential for hep discovery. Start expected in 2027.

• JINPING (China): deepest lab, 500 m3 to be filled with water and later LS (slow or loaded), data 2027.

• DUNE, THEIA, SUPER CHOOZ – solar also among their goals, further future.

123



WATER-BASED LS DETECTORS



SLOW SCINTILLATORS



METAL LOADED SCINTILLATORS

• Originally proposed by R. Raghavan in ’70s

• Pioneering LENS experiment (until ~2015)

• Technical problems & funding issues 

(intrinsic In background, light reduction, scalability)

More candidates of loading: ¹⁷⁶Yb, ¹⁰⁰Mo, ⁷Li, ²⁰⁹Bi.

Several ongoing R&D forloaded LS:

THEIA, LiquidO, SNO+, JUNO (Gd R&D), ANNIE 

(WbLS tests), EOS (WbLS + metal loading studies).

(1941 – 2011)

R. Raghavan 



Generated with leonardo.ai

• Discovery of neutrino oscillations and neutrino mass.

• Evidence for matter effects shaping neutrino transformations.
• Detection of neutrinos from pp chain and CNO cycle, key to probing 

solar metallicity.

• Future: precision oscillation studies, new physics searches, deeper 
understanding of solar fusion and core composition.

Solar neutrinos



Thank you!
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