NEUTRINOS AS PROBES OF THE SUN'S CORE AND EARTH'S INTERIOR - I

LIVIA LUDHOVA

GSI DARMSTADT & JGU MAINZ UNIVERSITY, GERMANY

JUNE 23 & 24, MAYORANA CHOOL, MODICA, SICILY

Mitglied der Helmholtz-Gemeinschaft

✓ W2 Professor at JGU Mainz and head of the neutrino group at GSI Darmstadt since September 2024.

- ✓ W2 Professor at RWTH Aachen and head of the neutrino group at IKP-2 FZ Jülich, Germany, November 2015 – September 2024.
- ✓ Postdoc and researcher @ INFN Milano, Italy, 2005 2015.
- ✓ Ph.D. in Physics in 2005, Fribourg University, Fribourg, Switzerland.
- ✓ Ph.D. (1999) & M.Sc. (1996) in Geology and M.Sc. in Physics (2001), Comenius University, Bratislava, Slovakia.

✓ **Geology:** evolution of metamorphic rocks in the Tatra Mts., Slovakia

✓ Exotic atoms:

- ο **DAΦNE/DEAR** (Kaonic hydrogen spectroscopy), INFN Frascati, Italy.
- ο **CREMA** (μp-Lamb shift), PSI, Switzerland.
 - * my PhD with Randolf Pohl as a postdoc (now Prof. at JGU)!

✓ Neutrino Physics:

- ✓ **Borexino** @ LNGS, Italy data taking 2007 2021.
 - \circ solar neutrinos and geoneutrinos.
- ✓ JUNO in Jiangmen, China topic of today!

ABOUT ME

Passion for Physics: at the JUNO site.

Passion for Geology: Mutnovka Volcano, Kamchatka, Russia.

ABOUT MY NEUTRINO GROUP

http://neutrino.gsi.de/

- Focused on experimental neutrino physics with liquid scintillator detectors.
- Dynamic and international group established in November 2015.
- Funded from Helmholtz recruitment initiative and DFG JUNO Research Unit.
- Typically about 10 persons: 2-3 postdocs, 7-8 PhDs, 1-2 Master/Bachelors.

OUTLINE

- 1. Introduction to neutrinos
- 2. Detection of MeV neutrinos
- 3. Solar neutrinos
- 4. Geoneutrinos

Ask questions

There are no stupid questions (and if, it happened to all of us ③)

- Historical perspective
- Motivation of the measurements
- Overview of the results
- Personal perspective analysis details from "my" experiments – Borexino and JUNO
- Outlook

WHAT ARE NEUTRINOS?

Basic constituents of matter:

There are 3 neutrino flavours and their antiparticles, so antineutrinos of 3 flavours.

NEUTRINO SOURCES

NEUTRINO INTERACTIONS

NEUTRINOS AS MESSENGERS

Taken from https://nbi.ku.dk/english/re search/experimental-particle-physics/icecube/astroparticle-physics/

6

NEUTRINOS ARE SPECIAL

Small interaction cross sections → low rates in the detector!

Imagine.....

7 x 10¹⁰ solar neutrinos / cm² / s

and about 200 interactions / day / 100 tons of liquid scintillator

NEUTRINOS ARE SPECIAL

Only weak interactions

✓ Difficult to detect

- Large detectors
- Underground laboratories
- o Extreme radio-purity
- Bring unperturbed information about the source (Sun, Earth, SN)

Open questions in neutrino physics

Mass Hierarchy
 (Normal vs Inverted)

linked

- \circ CP-violating phase
- \circ Octant of θ_{23} mixing angle
- Absolute mass-scale
- Origin of neutrino mass (Dirac vs Majorana)
- Existence of sterile neutrino

 Δm_{31}^2 = has opposite signs in the two hierarchies!

NEUTRINO MIXING AND OSCILLATIONS

i = 1, 2, 3

Mass eigenstates

PROPAGATION

Courtesy M. Wurm

$$|\nu_{\alpha}
angle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}
angle$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric Reactor Solar Majorana

Reactor

Solar

v detection v production v propagation as flavor-eigenstate: as coherent superposition e.g. β⁺-decay Superposition of mass of mass-eigenstates. eigenstates has changed because of phase factors. P_=100% $P = P_{\%} : v_{\phi}$ $\frac{P_{\mu}\%:v_{\mu}}{P_{\tau}\%:v_{\tau}}$ Weak interaction Different masses create a creates neutrino in Finite probability to detect phase difference over time. flavor-eigenstate. a different neutrino-flavor!

- **3 mixing angles** θ_{ii} **:**
 - θ_{23} H45° (which quadrant?)
 - $\circ \theta_{13}$ H9° (non-0 value confirmed in 2012)
 - $\circ \theta_{12}$ H33°
- **Majorana phases** $\alpha 1$, $\alpha 2$ and **CPviolating phase** δ unknown

Neutrino oscillations

- Non-0 rest mass (Nobel prize 2015)
- Survival probability of a certain flavour = f(baseline L, E_v)
- \circ Different combination (L, E_v) => sensitivity to different (θ_{ii} , Δm_{ii}^2)
- Appearance/disappearance experiments
- **Oscillations in matter** -> effective (θ_{ii} , Δm_{ii}^2) parameters = f(e⁻ density N_e, E_v)

v-oscillations in matter: MSW effect

Electrons exist in standard matter $-\mu$, τ do not. Electron neutrinos travelling in matter can experience an extra charged current interaction that other flavours cannot.

Oscillation probabilites are now function of $(\Delta m^2_M, \sin^2 2\theta_M)$ Effective oscillation parameters $(\Delta m^2_M, \theta_M)$ instead of the vacuum ones $(\Delta m^2_V, \theta_V)$

$$\Delta m_{M}^{2} = \Delta m_{V}^{2} \sqrt{\sin^{2}(2\theta) + (\cos 2\theta_{\nabla} \zeta)^{2}}$$

$$\sin^{2} 2\theta_{M} = \frac{\sin^{2} 2\theta_{V}}{\sin^{2} 2\theta_{V} + (\cos 2\theta_{\nabla} \zeta)^{2}}$$

$$\zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{V}^{2}}$$

v-oscillations in matter: MSW effect

Mixing angle determines flavors (flavor content) of eigenstates of propagation

 θ_m depends on n_e , E

$$\Delta m_{M}^{2} = \Delta m_{V}^{2} \sqrt{\sin^{2}(2\theta) + (\cos 2\theta_{V} - \zeta)^{2}}$$
$$\sin^{2} 2\theta_{M} = \frac{\sin^{2} 2\theta_{V}}{\sin^{2} 2\theta_{V} + (\cos 2\theta_{V} - \zeta)^{2}}$$

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_V^2}$$

 N_e = matter electron density

E= neutrino energy

Flavour content of mass eigenstates changes.

Resonance character of the MSW effect

$$\sin^{2}2\theta_{M} = \frac{\sin^{2}2\theta}{\sin^{2}2\theta_{V} + (\cos 2\theta_{V} - \zeta)^{2}} \qquad \zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{Vac}^{2}}$$

- ✓ The effect can be enhanced by a resonance
 <u>Mikheyev–Smirnov–Wolfenstein effect</u>
- There is a combination of electron density N_e and neutrino energies E, for which the effective mixing angle = 1 (even if the vacuum mixing is small)

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m^2} = \cos 2\theta_V \Rightarrow \sin^2 2\theta_M = 1$$

Maximal mixing

 ✓ This yields the energy dependence of the "survival probability": Pee(E) ∨

Adiabatic conversion in the Sun

MSW for solar neutrinos

Before reaching the Earth:

- pp neutrinos: ~15 million oscillation lengths
- **^8B neutrinos**: ~900,000 oscillation lengths

Vacuum oscillation (57%):

$$P_{ee} = 1 - \sin^2 2 heta \, \sin^2 \left(rac{\Delta m^2 L}{4E_
u}
ight)$$

 sin^2 averages to $\frac{1}{2}$.

Matter enhanced oscillation (33%):

 $|\langle
u_e |
u_2
angle|^2 = \sin^2 heta$

NEUTRINO SOURCES

Neutrino detection is special

Cosmogenic background -> underground laboratories

Small neutrino interaction rates \rightarrow shielding against cosmic rays

Muon flux in undeground laboratories

Laboratori Nazionali del Gran Sasso

- Muon flux: 3.0 10⁻⁴ m⁻²s⁻¹
- Neutron flux: 2.92 10⁻⁶ cm⁻²s⁻¹ (0-1 keV) 0.86 10⁻⁶ cm⁻²s⁻¹ (> 1 keV)
- Rn in air: 20-80 Bq m⁻³
- Surface: 17 800 m²
- Volume: 180 000 m³
- Ventilation: 1 vol / 3.5 hours
- Mechanical Design and Workshop
- Electronics Lab & Service
- Chemistry Lab & Service
- ULB Lab & Service
- > 900 users from 29 countries
- ~ 100 Staff
- 225 avg. daily presence in 2014
- ~ 8000 visitors/y
- Virtual tour via Street View

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus ve ONLY at MeV energies

• Muon and Tau lepton too heavy

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus v_e ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

Elastic scattering on a nucleus

- either with the emission of a recoil neutron
- All neutrino flavors have the SAME cross section

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus ve ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

Elastic scattering on a nucleus

- either with the emission of a recoil neutron
- All neutrino flavors have the SAME cross section

3) Elastic scattering off an electron

(charged current (CC) + neutral current (NC))

- Cross section for v_e and $v_{\mu,\tau}$ is different
- for $v_{\mu,\tau}$ NC only;

The secondary particles are typically detected in :

Water – Cherenkov radiation (solars)
 Liquid scintillator – scintillation light (solars and geoneutrinos)

Water Cherenkov detection

Pavel Cherenkov Physicist

Pavel Alekseyevich Cherenkov was a Soviet physicist who shared the Nobel Prize in physics in 1958 with Ilya Frank and Igor Tamm for the discovery of Cherenkov radiation, made in 1934. Wikipedia

Born: July 28, 1904, Novaya Chigla, Russia

Died: January 6, 1990, Moscow, Russia

Cherenkov radiation

When a charged particle moves in the dielectric medium, it polarises the material

Katharina Muller (UZH)

n : refraction index

time dependent dipole field → dipole radiation

v < c/n dipoles symmetric \rightarrow no net radiation v > c/n asymmetric \rightarrow Cherenkov radiation

When a charged particle travels faster than the speed of the light in that medium (= c/n): de-excitation gives rise to a coherent radiation "Cherenkov radiation"

Cherenkov cone

The geometry of the emitted photon with speed of c/n, being slower than the charged particle with speed of v = β c, results in a cone-shaped shock wave front

Momentum threshold : $(m\beta c > mc/n \text{ in the figure})$ $\beta > 1/n$ (with the n~1.34 in the water, the momentum thresholds (MeV/c) are: e : 0.57 $\mu : 118$ $\pi^{+-} : 156$ p : 1051

26

Energy threshold $\frac{E_s}{m_0 c^2} = \frac{1}{\sqrt{1-\beta_s^2}} = \frac{1}{\sqrt{1-1/n^2}}$

 m_0 : particle mass

Cherenkov angle:
$$\cos \theta_C = \frac{c/n}{\beta c} = \frac{c}{nv}$$

1) maximum angle for a particle with the speed v=c \sim 42° in the water 2) slower particle -> smaller Cherenkov angle

Mach cone

Cherenkov light is produced in a reactor water pool, into which the core is submerged.

In water, light is travelling at 0.75 x the speed in vaccum.

Cherenkov light spectrum

The number of photons emitted by a charged particle of charge ze per unit path length x per wavelength λ is, travelling with velocity v:

$$rac{d^2N}{dxd\lambda}=rac{2\pilpha z^2}{\lambda^2}(1-rac{c^2}{n(\lambda)^2v^2})$$

The spectrum has a
$$\frac{1}{\lambda^2}$$
 dependence.

Refractive index n depends on wavelength!

Cherenkov radiation in neutrino detection

Solar neutrinos

Kamiokande (past) /<u>Superkamiokand</u>e (present) /Hyperkamiokande (future) SNO (past) – Nobel Prize for solar detection!

Atmospheric and accelerator neutrinos:

Kamiokande/Superkamiokand /Hyperkamiokande

String detectors for atmospheric and Ultra High-Energy neutrinos

Ice-Cube KM3NET – ORCA & ARCA Baikal Super-Kamiokande Kamioka, Japan 50 kton water

SNO Sudbury, Canada 1 kton water

Cherenkov cone in SuperK

By reconstruction of timing & spacial pattern of Cherenkov ring, one can learn

 \rightarrow vertex position, direction,

Particle ID (PID): rings are identified as e-like or μ -like, based on the geometry of the Cherenkov ring

Liquid-scintillator based detection

Scintillation based neutrino detection

Detection of ionizing radiation through the scintillation light induced in special organic liquid materials = scintillators

Important characteristics:

- High scintillation efficiency and high light yield.
- Good energy and position resolution.
- Low energy threshold.
- No directionality.
- Real time measurement (energy of single events).
- Quenching: non-linearities between energy deposit and produced light.
- Pulse shape discrimination (alpha/beta, positron/electron).
- High transparency.
- Fast pulses (short decay time of the scintillation light production).
- Refractive index similar to the glass (phototube matching).

σ -Bonds and π -Bonds

- σ-bonds are in the plane, bond angle 120°, from sp² hybridization
- π -orbitals are out of the plane
 - in the benzene ring (and other carbon double bonds) they overlap each other
 - result is the π-electrons are completely delocalized

from http://www.monos.leidenuniv.nl/smo/index.html?basics/photophysics.htm

from Encyclopedia Brittanica web

Molecular states in aromatic hydrocarbons: π bonds

Absorption higher frequencies and smaller wavelengths than emission.

Fast fluorescence

has higher frequencies and smaller wavelengths than **slower phosphorescence**.

Stokes shift

an important, general concept to keep in mind for all scintillators

- emitted photons are at longer wavelengths (smaller energies) than the energy gap of the excitation
- the processes that produce this "Stokes shift" are different in different scintillating materials
- this allows the scintillation light to propagate through the material
 - emitted photons can't be self-absorbed by exciting the material again

Scintillator cocktails - SOLVENTS

Pseudocumene (PC) as a solvent

1,2,4-trimethylbenzene

LAB

linear-alkylbenzene

LAB is used in new detectors (SNO+, JUNO), as compared to pseudocumene, it is:

- Non toxic and safer (high flash point).
- Cheaper we need always larger detectors.
- Compatible with acrylic vessels holding LS (SNO+, JUNO).
- Excellent transparency.
- Drawback: worse particle discrimination.

Scintillator cocktails: additions

Called fluor / solute Added at the level of g/l 2,5-diphenyloxazol: PPO

Addition of this fluorescence dye serves as:

- Efficient non-radiative transfer of excitation energy from the solvent to fluor.
- ✓ Fast decay times.
- ✓ Wavelength shift.

Wavelength shifter (secondary fluor) Added at the level of mg/l

1,4-Bis(2-methylstyryl)benzene: bisMSB

Shifts wavelength to longer values to match quantum efficiency of the phototubes and decrease self-absorption in LS.

Emission spectra

Quenching

- Quenching is an external process that de-excites the scintillator without fluorescence.
- Impurity quenching: Oxygen!
- Ionisation quenching: high ionization density quenches the excited π -electrons

Important consequences:

1) Non-linearity in the energy response

heavy particles with <u>higher dE/dx (e.g. α , protons) produce less light</u> for the same energy deposit (by a factor of >10 for α 's)

2) Particle discrimination:

the scintillation pulse shape (fast/slow components) is different

Quenching

from Gooding and Pugh

Liquid scintillators in neutrino detection

Solar neutrinos

Borexino (ended in 2021), SNO+ (first data), JUNO - (about to start)

Geoneutrinos

```
Borexino, KamLAND (present), SNO+, JUNO
```

Reactor antineutrinos

KamLAND Daya Bay, RENO, Double Chooz (just ended) JUNO

0-ββ decay

KamLAND – Zen (present) SNO+ (present)

Sterile neutrino search with reactor antineutrinos

NEOS, Stereo, Neutrino-4, Prospect (present)

Supernovae neutrinos

LVD (past) Accelerator neutrinos LSND (past)

Solar neutrinos

Millennia of fascination continued.

Solar Neutrinos

"For 35 years people said to me: `John, we just don't understand the Sun well enough to be making claims about the fundamental nature of neutrinos, so we shouldn't waste time with all these solar neutrino experiments.'

Then the SNO results came out.

And the next day people said to me, `Well, John, we obviously understand the Sun perfectly well! No need for any more of these solar neutrino experiments.'"

---- John Bahcall, 2003

THE SUN

(26.7 MeV) + 2 v

- Luminosity $(3.8418.10^{33} \text{ erg/s} (\pm 0.35\%) (1 \text{ erg} = 10^{-7} \text{ J})$
- Age (~4.6.10⁹ years old meteorites)
- Mass M = $1.989 \cdot 10^{30}$ kg (± 0.02%)
- Radius R = $6.9598 \cdot 10^8 \text{m} (\pm 0.01\%)$

- Nucleosynthesis occurs only in the core.
- Neutrinos reach the Earth in ~ 8 minutes.
- Photons take order of 100,000 years to reach the photosphere.

HYDROGEN-TO-HELIUM FUSION $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7MeV$

pp-chain: ~99% solar energy

CNO-cycle: < 1% solar energy

HYDROGEN-TO-HELIUM FUSION $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7 MeV$

pp-chain: ~99% solar energy

CNO-cycle: < 1% solar energy

In stars with M > 1.3 solar mass, the CNO cycle is the dominant energy source.

That makes the CNO fusion cycle the main Hydrogen-to-Helium conversion process in the stars.

WHERE DOES THE FUSION OCCUR

STANDARD SOLAR MODELS (SSM)

Inputs:

- Basic properties of the Sun:
 - luminosity
 - age, mass, radius
- Nuclear parameters
 - cross sections
 - Q-values...
- Radiation opacity
- Surface abundance of metals (C, N, O, Ne, Mg, Si, Ar, Fe) to hydrogen ratio (Z/X = metallicity)
- Elemental physics laws
 - Equations of state
 - Energy-transport equations
 - Conservation laws

Outputs: to be compared with independent data

- Helioseismology (sound-waves speed profiles)
- Neutrino fluxes

Metallicity influences **the solar neutrino fluxes** in two ways:

- Indirect for all neutrinos: opacity -> temperature -> cross sections -> flux
- Direct for the CNO neutrinos: influence through C, N, O catalyzing the fusion

SOLAR METALLICITY PROBLEM

B16 Standard Solar Model with different metallicity inputs: **High-Metallicity HZ-SSM:** older GS98 metallicity input: Z/X = 0.0229 **Low-Metallicity LZ SSM:** newer AGSS09 metallicity input: Z/X = 0.0178

Low metallicity inputs, based on the new spectroscopic analysis and 3D models of solar atmosphere, spoil the agreement of the **HZ-SSM (using older metallicity)** with the helio-seismological data. The **LZ-SSM** in contrast with the helio-seismological data.

EVOLUTION OF THE METALLICITY PREDICTIONS

1998

GS98*: high

hydrodynamical

*Grevesse et al.,Space

Sci.Rev. (1998)85]

model of solar

atmosphere

Z/X = 0.023

metallicity

Uses 1D

SOLAR NEUTRINOS AND WHY TO STUDY THEM

Neutrino physics

- Neutrino oscillation parameters: solar sector (θ_{12} , Δm_{12}^2) and global fits.
- Survival probability P_{ee} as f(E_v): matter effects, testing LMA-MSW prediction and its upturn.
- Searches for Non-standard Neutrino Interactions.

Solar and stellar physics

- Direct probe of **nuclear fusion**.
- Photon vs neutrino luminosity: testing thermo-dynamical stability of the Sun.
- Standard Solar Models:
 - ✓ Metallicity problem.

SOLAR NEUTRINOS FROM THE PP AND CNO

ENERGY SPECTRUM OF SOLAR NEUTRINOS

Experimental techniques in a nutshell

1) Radiochemical

- ✓ CC: <u>v_e only</u>
- \checkmark ^AX + $\bar{v_e} \rightarrow$ ^AY + e⁻ W-exchange
- ✓ only integral flux above the threshold T
- ✓ T (Ga) = 233 keV,
- ✓ $T(C_2CI_4) = 814 \text{ keV}$
- ✓ Homestake, Gallex/GNO, SAGE

2) Water Cherenkov

- ✓ Elastic Scattering ES
- ✓ In heavy water: also NC & CC.
- $\checkmark \quad \frac{\text{Real-time technique: } E_{v}}{\text{spectrum!}}$
- \checkmark ~3 to 5 MeV threshold.
- ✓ Directionality.
- ✓ (Super)-Kamiokande, SNO/

3) Liquid scintillator

- ✓ Elastic scattering: T ~200 keV for neutrino.
- ✓ IBD: T = 1.8 keV for antineutrino.
- ✓ Real- time technique: E_v spectrum!
- ✓ High light yield (Borexino: 500 pe/MeV)
- ✓ No directionality.
- ✓ Extreme radio-purity needed.
- ✓ Particle identification (α/β , e⁺/e⁻ separation).
- ✓ Borexino, KamLAND, SNO+, JUNO.

Short history of solar v experiments in 1 slide

Radiochemical methods in detection of solar neutrinos (³⁷Cl)

Pioneering Chlorine-based Homestake Experiment •

```
v_e + {}^{37}Cl --> e^- + {}^{37}Ar (threshold 0.814 MeV)
```

EC (electron capture) back to ³⁷Cl (32 days)

Method proposed by Bruno Pontecorvo (1946) and Luis Alvarez (1949)

Luis Alvarez

HOMESTAKE - NOBEL PRIZE 2002

- In Homestake Gold Mine, South Dakota, USA
- 1438 m underground

Target: a tank with 614 ton of liquid soap (C_2Cl_4)

Ray Davis (1914 – 2006)

Perchlorethylen

Cross section for ⁸B-v ~1.1 x 10⁻⁴¹ cm²

 $v_e + {}^{37}Cl --> e^- + {}^{37}Ar$

(threshold 0.814 MeV)

Only 2200 atoms of ³⁷Ar counted in 25 years (1970 - 1994).

Tank construction in Homestake (1966).

Ray Davis swimming in water shield around perchlorethylen tanks (1971).

FIRST SOLAR NEURINO DETECTION: HOMESTAKE

1 SNU (Solar Neutrino Unit) = 10^{-36} interactions on target nuclei per second

Radiochemical methods in detection of solar neutrinos (⁷¹Ga)

• Gallium experiments (Gallex/GNO, SAGE)

Method proposed by V. Kuzmin (1965) and R. J. Raghavan (1978)

Vadim Kuzmin (1937 – 2015)

Raju Raghavan (1937 – 2011)

Gallium experiments

 $v_e + {^{71}Ga} --> e^- + {^{71}Ge}$ (threshold 233.2 MeV)

Detection of low energy pp-chain neutrinos (pp - 53%, ⁷Be - 27%, ⁸B - 12%, CNO ? - 8%)

GALLEX/GNO@LNGS, Italy

Till Kirsten MPI Germany

SAGE @ Baksan, Russia

Vladimir Gavrin Russia

Gallex (1991-1997)/GNO (1998-2003) at LNGS, Italy

- 101 ton of GaCl3 solution in water and HCl containing 30.3 ton of natural Gallium.
- When equilibrium between the production and the decay rates is reached, there are about 10⁷¹Ge atoms among ~10²⁹ atoms of ⁷¹Ga.

- Extraction of ⁷¹Ge every 4 weeks
- ⁷¹Ge is present as a volatile GeCl₄, which is extracted by purging with 3000 m³ of Nitrogen.
- ⁷¹Ge is converted to GeH₄ (German gas) and inserted to proportional counters filled with Xe and observed for 6 month: ⁷¹Ge completely decays and the background can be determined.

Important part of the overall methodology: global calibration with a ⁵¹Cr neutrino source

⁵¹Cr decays via EC into ⁵¹V,
Emitting two neutrino (electron flavour)
lines:
750 keV (90%)
430 keV (10%),

H₂O N₂+GeCl₄ N_{21} GaCla

Soviet–American Gallium Experiment

SAGE, Baksan

(1989 – 2007)

Calibration with ³⁷Ar and ⁵¹Cr neutrino sources

Liquid metallic Ga in the window of chemical reactor

1991-2003 GALLEX-GNO @ LNGS, **ITALY RADIOCHEMICAL EXPERIMENT EXPERIMENTAL RESULTS**

Till Kirsten (MPI Germany)

Final result: 67.6 ± 5.1 SNU

0.541 ± 0.081

as a fraction of the SSM prediction (difference wrt to Homestake)

SUPER-KAMIOKANDE: START IN 1986, NOBEL IN 2002, STILL ONLINE! THE FIRST REAL-TIME SOLAR NEUTRINO DETECTION

Neutrinos detected through elastic scattering: singles

@ 1-2 MeV for electron flavour: ~10⁻⁴⁴ cm²

for μ,τ flavours about 6 x smaller cross section

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

SNO- HEAVY WATER CHERENKOV DETECTOR

- Sudbury Neutrino Observatory (SNO), Ontario, Canada, at 2070 m depth.
- SNO 1000 tones of ultra-pure heavy water(D_2O) in ultrapure acrylic vessel, 12 m diameter.
- Cherenkov light detected with 9600 PMTs, mounted at the geodesic sphere, 17 m diameter.
- Detector was immersed in the ultrapure water, contained in the barrel-shaped cavern 22 m in diameter and 34 m in heights.
- 10 neutrino events/day.

SNO Charge Current measurement

$$\begin{split} \mathsf{E}_{\mathsf{thresh}} &= \mathsf{1.4}\;\mathsf{MeV} \qquad \nu_e \,+\, d \to p \,+\, p \,+\, e^- \quad (\mathrm{CC})\,, \\ &\qquad \nu_x \,+\, d \to p \,+\, n \,+\, \nu_x \quad (\mathrm{NC})\,, \\ &\qquad \nu_x \,+\, e^- \to \nu_x \,+\, e^- \quad (\mathrm{ES})\,. \end{split}$$

SNO Neutral Current measurement

Cross section of gamma rays interactions

SNO Phase 3 NC measurement (2004 – 2006)

78

- to increase neutron detection efficiency
- 36 strings of Ni proportional counters filled with ³He gas

 $^{3}\text{He} + n \rightarrow ^{3}\text{H} + p$

• ³H + p have total kinetic energy of 0.76 MeV and travel in opposite directions and were detected by the proportional counter itself

SNO Elastic Scattering measurement

$$\nu_e + d \rightarrow p + p + e^- \quad (CC),$$

$$\nu_x + d \rightarrow p + n + \nu_x \quad (NC),$$

$$\nu_x + e^- \rightarrow \nu_x + e^- \quad (ES).$$

The best directionality measurement!

79

SNO 2001: DISCOVERY OF SOLAR NEUTRINO OSCILLATIONS

- Prove that $\Phi(v_e)$ is DIFFERENT from $\Phi(v_{\mu}, v_{\tau})$.
- Prove that the TOTAL neutrino flux is consistent with the Standard Solar Model.
- Big success for SNO, neutrino oscillations, and solar model theoreticians.

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

PRECISE MEASUREMENT OF Δm²₁₂ AND FINAL PROOF OF OSCILLATIONS (ON ANTI-NEUTRINOS FROM REACTOR!)

OSCILLATION PATTERN WAS SEEN!

Borexino era

Isotropic scintillation light is produced by charged particles

Credit: Borexino Collaboration

Solar neutrino detection: SINGLES

- <u>Elastic scattering</u> off electrons both in liquid scintillator (Borexino, SNO+) and water Cherenkov (SNO, Super-Kamiokande) based detectors.
- No threshold.
- All flavours (cross section for v_e ~6x higher) MEASURED RATE DEPENDS ON P_{ee.}
- Even mono-energetic neutrinos continuous spectrum with a Compton-like edge.
- Undistinguishable from normal radioactivity.

IMPORTANCE OF RADIOPURITY

- In 100 ton of scintillator: ~200 events/day from solar v expected
 (200 / 86400 / 100 000 kg ~ 2 10⁻⁸ Bq/kg)
- The scattering of a neutrino on an electron is **intrinsically not distinguishable** from a β **radioactivity** event or from Compton scattering from γ **radioactivity**
- <u>Typical natural radioactivity:</u>

✓ Good mineral water:	~10 Bq/kg	⁴⁰ K, ²³⁸ U, ²³² Th
✓ Air:	$\sim 10 \ Bq/m^3$	²²² Rn, ³⁹ Ar, ⁸⁵ Kr
✓ Typical rock	~100-1000 Bq/kg	^{40}K , ^{238}U , ^{232}Th , + many others

If you want to detect solar neutrinos with liquid scintillator, you must be **9-10 orders of magnitude more radio-pure than anything on Earth!**

BOREXINO @ LNGS, ITALY

- Data taking: 2007 2021;
- PC based LS: 280 tons;
- Depth: 3800 m.w.e.

Main goal:

solar neutrinos below 2 MeV

<u>Unprecedented radio-purity</u> was the key to the success of the experiment.

BOREXINO: UNPRECEDENTED RADIOPURITY LEVELS

1990: Start of R&D for innovative radiopurity methods
 1995: Counting Test Facility (CTF) testing the radiopurity
 1997: Approval of the experiment
 2007: Begin of data taking

G. Bellini

- Purification of the scintillation (distillation, vacuum stripping with low Ar/Kr N2);
- Detector design: concentric shells to shield the inner scintillator from external background
- Material selection and surface treatment, clean construction and handling;
- Radiopurity even exceed design goals in some cases ²³⁸U chain <9.4x10⁻²⁰ g/g and ²³²Th chain <5.7x×10⁻¹⁹ g/g;
- Some background out of specifications (²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi)

BOREXINO DETECTOR

Laboratori Nazionali del Gran Sasso, Italy

- the world's radio-purest LS detector $< 5.7 \times 10^{-19} \text{ g(Th)/g}, < 9.4 \times 10^{-20} \text{ g(U)/g}$
- ~50 keV trigger threshold
- effective LY ~500 photoelectrons with 2000 PMTs/ MeV
- energy reconstruction: 50 keV (5%) @ 1 MeV
- position reconstruction: 10 cm @ 1 MeV
- pulse shape identification (α/β , e⁺/e⁻)

More about detector in: NIM A600 (2009) 568

BOREXINO TIMELINE AND SOLAR NEUTRINO RESULTS⁹¹

CNO observation with the Correlated Integrated Directionalty (CID) using Cherenkov photons PRD 108 (2023) 102005

STRATEGY TO EXTRACT SOLAR NEUTRINO SIGNAL

- A fit is performed to the energy distribution of events assumed to be the sum of signal and backgrounds;
- The spectral shapes are those determined with MC simulations;
- We include in the fit also the radial distribution of events to separate external backgrounds;
- The rates of each species are the only free parameters of the fit;

- Neutrino signal (pp chain and CNO)
- **Backgrounds**
 - ✓ in the LS (¹⁴C, ²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi)
 - external gammas
 - ✓ cosmogenic (¹¹C)

RAW SPECTRUM AND EVENT SELECTION

to detect neutrons: example with several tens of neutrons.

Exposure divided to 2 categories: TFC-tagged (36% of exposure, 92% of ¹¹C) TFC-subtracted (64% of exposure, 8% of ¹¹C) Likelihood that a certain event is ¹¹C uses in input time and space correlations between muons and cosmogenic neutrons.

n-capture

TFC TAGGED (~90% OF ¹¹C)

BOREXINO CALIBRATION

JINST 7 (2012) P10018

Internal calibration

- ~300 points in the whole scintillator volume
- LED-based source positioning system

Source	Туре	E [MeV]	Position	Motivations	
⁵⁷ Co	γ	0.122	in IV volume	Energy scale	
¹³⁹ Ce	γ	0.165	in IV volume	Energy scale	
²⁰³ Hg	γ	0.279	in IV volume	Energy scale	
⁸⁵ Sr	γ	0.514	z-axis + sphere R=3 m	Energy scale + FV	
⁵⁴ Mn	Y	0.834	along z-axis	Energy scale	
⁶⁵ Zn	γ	1.115	along z-axis	Energy scale	
⁶⁰ Co	γ	1.173, 1.332	along z-axis	Energy scale	
⁴⁰ K	γ	1.460	along z-axis	Energy scale	
$^{222}Rn+^{14}C$	β,γ	0-3.20	in IV volume	FV+uniformity	
	α	5.5, 6.0, 7.4	in IV volume	FV+uniformity	
²⁴¹ Am ⁹ Be	n	0-9	sphere R=4 m	Energy scale + FV	

External calibration 9 positions with ²²⁸Th source (y 2.615 MeV)

Laser calibration

- PMT time equalisation •
- PMT charge calibration (charge calib. also using ¹⁴C)

BOREXINO MONTE CARLO

Better than 1% (1.9%) precision

for all relevant quantities in the solar analysis <2 (>3) MeV

- Tuning on calibration data.
- Independently measured input parameters: emission spectra, attenuation length, PMT after-pulse, refractive index, effective quantum efficiencies.
- Biasing technique for external background.
- Simulation of pile-up events.

BOREXINO LATEST PP-CHAIN RESULTS

Full pp chain spectroscopy with NATURE 25/10/2018

- Multivariate fit of the energy spectra
- Interaction rates of **pp**, ⁷Be, **pep neutrinos**

High Energy Range (HER) [3.2 – 16.0 MeV]

- Fit of the radial distribution
- Interaction rate of ⁸B neutrinos

BOREXINO PP-CHAIN RESULT

Measurement of the interaction rates:

LER: *pp* (10.5%), ⁷**Be** (2.7%), *pep* (>5 σ , 17%) HER: ⁸B (3 MeV threshold, 8%)

First Borexino limit on **hep** neutrinos

Slight preference towards the HZ SSM

Solar neutrino	Rate (counts per day per 100 t)	
pp	$134\!\pm\!10^{+6}_{-10}$	
⁷ Be	$48.3 \pm 1.1 \substack{+0.4 \\ -0.7}$	
pep (HZ)	$2.43 \!\pm\! 0.36 \substack{+0.15 \\ -0.22}$	
pep (LZ)	$2.65 {\pm} 0.36 {}^{+0.15}_{-0.24}$	
⁸ B _{HER-1}	0.136+0.013+0.003 -0.013-0.003	
⁸ B _{HER II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	
⁸ B _{HER}	0.223+0.015+0.006	
CNO	<8.1 (95% C.L.)	
hep	<0.002 (90% C.L.)	

Nature

Oct 25th 2018

- Neutrino and photon luminosity in agreement: thermo-dynamical stability of the Sun in O(100k) years
- Testing the pp-chain: $BR(pp_{II}/pp_{I}) = <^{3}He + ^{4}He > /<^{3}He + ^{3}He > = 0.18 +$ 0.03 in agreement with the expectations

P_{ee} survival probability at different energies Vacuum-LMA model excluded at 98.2% CL

CHALLENGES TO MEASURE CNO SOLAR NEUTRINO Page 100

- Low rate (3-5 counts/day/100 ton of liquid scintillator)
- No prominent spectral features
- Buried under the cosmogenic ¹¹C background Three Fold Coincidence & exposure division
- Correlation with
- ✓ **pep solar neutrino: 1.4%** constraint from the solar luminosity and global fit of solar data without Bx Phase III
- ✓ ²¹⁰Bi contamination of liquid scintillator: THE CHALLENGE

- Neutrino signal (pp chain and CNO)
- Backgrounds
 - ✓ in the LS (¹⁴C, ²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi)
 - external gammas
 - cosmogenic (¹¹C)
 - ¹¹C subtracted spectrum

BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH Page 101

Assuming secular equilibrium, all these rates are the same.

BOREXINO STRATEGY TO CONSTRAIN 210-BISMUTH Page 102

Problem: seasonal convective currents bringing ²¹⁰Po from the nylon vessel to the fiducial volume of the analysis; **breaking the secular equilibrium**

Page **TEMPORAL EVOLUTION OF 210-POLONIUM RATE** 103

Thermal insulation

210-BISMUTH UPPER LIMIT CONSTRAINT

- 1. LOW POLONIUM FIELD (LPoF): clean region in the core of the detector
- 2. Fitting LPoF \rightarrow ²¹⁰Po minimal rate, that is an upper limit on ²¹⁰Bi rate

 $R(^{210}Bi) < R(^{210}Po_{min}) = R(^{210}Bi) + R(^{210}Po^{vessel})$

- 3. R(²¹⁰Bi) is homogeneous in the whole fiducial volume of the analysis within 0.68 cpd/100 ton (major systematics)
- 4. Upper limit on R(²¹⁰Bi) applied as a half-Gaussian constraint in the spectral fit

R(²¹⁰Bi) ≤ (10.8 ± 1.0) counts / day / 100 ton including all systematic errors

MULTIVARIATE SPECTRAL FIT

Phase III data (Jan 2017 – Oct 2021)

with exposure 1072 days x 71.3 ton

We disfavor the hypothesis CNO=0 with ~ 7σ significance

SOLAR IMPLICATIONS: C+N ABUNDANCE

The precise measurement of Φ (⁸B) can be used as a ``thermometer" of the solar core temperature;

First determination of C+N abundance in the Sun using neutrinos Can be directly compared with measurements from solar photosphere

$$N_{CN} = (5.78^{+1.86}_{-1.00}) \cdot 10^{-4}$$

Agreement with SSM-HZ predictions. Moderate $\sim 2\sigma$ tension with SSM-LZ

FIRST DIRECTIONAL DETECTION OF SUB-MEV SOLAR NEUTRINOS BASIC IDEAS

<u>First Directional Measurement of sub-MeV Solar Neutrinos with Borexino</u>, **Phys. Rev. Lett. 128 (2022) 091803.** <u>Correlated and Integrated Directionality for sub-MeV solar neutrinos in Borexino</u>, **Phys. Rev. D 105 (2022) 052002.**

- Selection of the **region of interest** (ROI) using the dominant and **isotropic scintillation light**.
- Using the subdominant Cherenkov light, that is fast and directional, to recognize the solar neutrino signal correlated with the known position of the Sun.
- Method was eveloped on "easy" ⁷Be and then applied on CNO neutrinos.

FIRST DIRECTIONAL DETECTION OF SUB-MEV SOLAR NEUTRINOS <u>NEW METHOD: CORRELATED INTEGRATED DIRECTIONALITY (CID)</u>

108

Solar neutrino event: correlated with the Sun

Background event:

UN-correlated with the Sun

Correlated:

* we correlate the reconstructed photon direction (hit-PMT - vertex) with the **known direction from the Sun**

Integrated:

* event-by-event discrimination not possible, we integrate over all events from the Rol

Directionality:

* we exploit directional

Cherenkov light

Angular analysis of the first hits (after ToF) of each event from the **ROI**, characterized by the highest fraction of the Cherenkov light.
OBSERVATION OF CNO SOLAR NEUTRINOS WITH CID DATA CID DISTRIBUTIONS AND FIT

Early hits (1 to 4): Direct information from the Cherenkov light

Later hits (5 to 15/17): Indirect information

from the effect of Cherenkov light on the vertex reconstruction (bias)

CNO observation with the CID method at 5.3σ CL No 210Bi constraint needed!

FINAL BOREXINO RESULT ON CNO

Final results of Borexino on CNO solar neutrinos

SPECTRAL FIT OF THE PHASE III WITH THE CID (PHASE I+II+III) CONSTRAINT

SUPERKAMIOKANDE

Higher backgrounds as expected, but 4 /4.5 MeV threshold is possible.

Water Cherenkov detector Large FV mass of 22.5 kton

> 20 years of ⁸B solar data in 4 Phases 1996 – 2018

Phase	SK-I	SK-II	SK-III	SK-IV
Period (Start)	April '96	October '02	July '06	September '08
Period (End)	July '01	October '05	August '08	May '18
Livetime [days]	1,496	791	548	2,970
ID PMTs	11,146	5,182	11,129	11,129
OD PMTs	1,885	1,885	1,885	1,885
PMT coverage [%]	40	19	40	40
Energy thr. [MeV]	4.49	6.49	3.99	3.49

Phase IV

- 90% triggering efficiency down to 2.99 MeV;
- Improved analysis techniques and clear ⁸B measurement above <u>3.5 MeV;</u>

Complete analysis of SK phases I – IV

PHYS. REV. D 109, 092001 (2024)

Since 2020: Gd loading of LS for neutron capture to observe DSNB via IBDs.

- SK-V: preparation
- SK-VI (0.01% Gd)
- SK-VII (0.03% Gd)

SUPER-KAMIOKANDE PHYS. REV. D 109, 092001 (2024)

- ⁸B flux measurement consistent among different phases total precision 2%.
- Spectrum still compatible with flat survival probability, but predicted low energy **MSW upturn is favoured at 1.2** σ . Jointly with SNO data, at 2.1 σ .
- No time variations except eccentricity and **Day/Night variation** (MSW electron flavour regeneration when crossing the Earth):

 $A_{D/N}^{SK,fit} = -0.0286 \pm 0.0085 (stat.) \pm 0.0032 (syst.).$

SUPERKAMIOKANDE: SOLAR OSCILLATIONS

PHYS. REV. D 109, 092001 (2024)

Solar best-fit value

$$\Delta m_{21}^2 = 6.10^{+0.95} - 0.81 \times 10^{-5} \, eV^2$$

~1.5 σ away from KamLAND Previously, larger tensions.

P_{ee}: VACUUM TO MATTER TRANSITION

Transition region crucial for testing BSM ideas.

SNO+ IN SUDBURY, CANADA

J. Maneira. Neutrino 2024

FIRST EVENT-BY-EVENT DIRECTIONALITY IN LS BY SNO+

PRD 109, 072002 (2024)

Data from partial fill & early scint phases, where PPO loading low (0.6 g/L), leading to slow scintillation: good separation with Cherenkov light.

Distribution of photon hits in $\cos \theta \gamma$ and tres for simulated 6 MeV electrons. A clear peak can be seen at low tres near the expected Cherenkov angle, $\cos \theta \gamma = 0.66$, highlighted in blue.

Results of direction reconstruction for measured (solid) and simulated (dashed) ⁸B solar neutrinos, where simulation sampled from a nominal ⁸B energy spectrum.

SNO+ AND 8B SOLAR ANALYSIS

$\nu_e + {}^{13}C \rightarrow e^{-} {}^{13}N_{13}N_{-} e^{+} + \nu_e + {}^{13}C$

Elastic scattering (singles)

- ES interactions in 143.1 live days of scintillator data.
- Fitted oscillation parameters compatible with global fits.
- Smaller FV opens door towards < 3 MeV.

Charge current on ¹³C (coincidence)

- 1.1% isotopic abundance, but σ ~12× higher than ES.
- 3.8 σ CL FIRST OBSERVATION of this interaction with solar neutrinos!

A MULTI-PURPOSE OBSERVATORY

MODEL INDEPENDENT MEASUREMENT OF ⁸B SOLAR NEUTRINOS

ES: Chinese Phys. C 45 (2021) 1 ES+NC+CC: Ap. J. 965 (2024) 122

Potential to search for possible discrepancies

14

16

SENSITIVITY TO 7Be, pep, CNO SOLAR NEUTRINOS

ES: $v_x + e^- \rightarrow v_x + e^-$

- Several radio-purity scenarios: from the Borexino level up to the "IBD" one (minimum required for the NMO)
- JUNO has potential to improve the precision of the existing Borexino measurements
 - ⁷Be: in 1-2 years time < 2.7% (current Borexino precision) for all radiopurity scenarios
 - pep: in 1-2 years time < 17% (current Borexino precision), only in IBD scenario after more than 6 years
 - CNO: constraining *pep* rate is crucial, precision of 20% possible in 2 to 4 years (except for the IBD scenario)
 - constraint of ²¹⁰Bi radioactive background not needed (applied in Borexino analysis *Nature* 587 (2020) 577–582)
 - Independent measurement of ¹³N and ¹⁵O might be possible for the first time.

- Borexino (Italy): comprehensive solar neutrino spectroscopy, CNO discovery, stopped data-taking in October 2021.
- SuperKamiokande (Japan): the most precise ⁸B analysis, data taking with Gd loading ongoing, solar analysis with special analyses possible.
- **SNO+** (Canada): first ⁸B analyses, CC on ¹³C seems feasible.
- JUNO (China): 20 kton LS & comprehensive solar neutrino program. Fully filled detector in summer 2025.
- HyperKamiokande (Japan): 260 kton water, the largest solar detector, upturn & MSW test, precise D/N asymmetry, potential for *hep* discovery. Start expected in 2027.
- JINPING (China): deepest lab, 500 m³ to be filled with water and later LS (slow or loaded), data 2027.
- **DUNE, THEIA, SUPER CHOOZ** solar also among their goals, further future.

WATER-BASED LS DETECTORS

scintillation B.W.Adams et al. NIM A Volume 795, 1 (2015)

T. Kaptanoglu et al. Phys. Rev. D 101, 072002 (2020)

SLOW SCINTILLATORS

- Adjust conc. of flour and shifters (Guo et. al., j.astropartphys.2019.02.001)
- Utilize slow fluor and WLS (Biller et. al., j.nima.2020.164106)

METAL LOADED SCINTILLATORS

• Originally proposed by R. Raghavan in '70s

 v_e^{+115} ln →¹¹⁵Sn* + e⁻ (E_{kin}=E_v-114 keV) $\tau = 4.76 \,\mu s$ \checkmark → ¹¹⁵Sn + γ (115 keV) + γ (497 keV)

R. Raghavan

(1941 - 2011)

- Pioneering LENS experiment (until ~2015)
- Technical problems & funding issues (intrinsic In background, light reduction, scalability)

More candidates of loading: ¹⁷⁶Yb, ¹⁰⁰Mo, ⁷Li, ²⁰⁹Bi.

Several ongoing R&D forloaded LS: THEIA, LiquidO, SNO+, JUNO (Gd R&D), ANNIE (WbLS tests), EOS (WbLS + metal loading studies).

Solar neutrinos

- Discovery of neutrino oscillations and neutrino mass.
- Evidence for matter effects shaping neutrino transformations.
- Detection of neutrinos from pp chain and CNO cycle, key to probing solar metallicity.
- Future: precision oscillation studies, new physics searches, deeper understanding of solar fusion and core composition.

