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Introduction to neutrinoless double beta decay (Ov[3[3),
its significance (nature of neutrino mass & baryon asymmetry),

and the discovery potential of current experimental searches

(N,Z) > (N—=2,Z+2)+ e+ e~




e Significance of neutrinoless double beta decay & connection to big questions

* Oirigin and nature of neutrino mass

* The baryon asymmetry of the universe

* Discovery potential of OVB[3 — overview

* End-to-end Effective Field Theory for Lepton Number Violation (LNV) and Ov[3[3
* OVPP from high-scale see-saw (LNV @ dim 5 = 3 light v exchange mechanism)
* OVPP from (multi)TeV-scale dynamics (LNV @ dim 7,9, ...)

e 0OvV[B from sterile neutrinos

e Conclusions and outlook
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e Significance of neutrinoless double beta decay & connection to big questions

* Oirigin and nature of neutrino mass g 45
* The baryon asymmetry of the universe %
* Discovery potential of OVB[3 — overview ¢
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* End-to-end Effective Field Theory for Lepton Number Violation (LNV) and Ov[3[3 o 45
* OVPP from high-scale see-saw (LNV @ dim 5 = 3 light v exchange mechanism) ®
* OVPP from (multi)TeV-scale dynamics (LNV @ dim 7,9, ...) o

e 0OvV[B from sterile neutrinos ; o0
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e Conclusions and outlook

Special thanks to collaborators on these topics:
W. Dekens, ].deVries, M. Graesser, M. Hoferichter, E. Mereghetti, S.Pastore, M. Piarulli,
S. Urrutia-Quiroga, U. van Kolck, A.Walker-Loud, R.Wiringa
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* The Standard Model encodes our knowledge of nature’s building blocks and interactions, but it is incomplete!

749% Dark Energy
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ol y ‘tau neutrino
clectn trino tau neutrino

Leptons

» ’
Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/
D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Credit: Fermilab

No Neutrino Mass, no Baryon Asymmetry, no Dark Matter, no Dark Energy

Addressing these shortcomings requires physics beyond the Standard Model (BSM)



Context: open questions in subatomic physics

* The Standard Model encodes our knowledge of nature’s building blocks and interactions, but it is incomplete!

(NZ) >(N—=2,Z+2)+ e+ e~

0v3B decay plays a prominent role in
the quest for new physics by addressing

two major questions related to
shortcomings of the Standard Model

N

Demonstrate Majorana nature of massive Demonstrate that an excess of matter over antimatter
neutrinos (neutrino=antineutrino) = can be created in an elementary process =
Shed light on the origin of neutrino mass Point to baryogengesis via leptogenesis




The neutrino and its mysteries

Nature of massive neutrinos:
is the neutrino its own antiparticle?

A cosmic mystery

Nuclear OV[33 decay

How did matter survive
the big bang!?




The neutrino and its mysteries

Nature of massive neutrinos:

is the neutrino its own antiparticle?

Nuclear OV[33 decay




Elusive particles: feel only the weak force, form a “weak isospin doublet” with electrons

Va=e,u,t

V-A current (e%)a=e,ut
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e Elusive particles: feel only the weak force, form a “weak isospin doublet” with electrons L7 = ( 6% )

 Massive neutrinos produced in a given interaction (“‘flavor™) state can “oscillate” into another flavor
through QM interference

Vi=1,2,3
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Elusive particles: feel only the weak force, form a “weak isospin doublet” with electrons

 Massive neutrinos produced in a given interaction (“‘flavor™) state can “oscillate” into another flavor

through QM interference
Image credit: B. Kayser
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Elusive particles: feel only the weak force, form a “weak isospin doublet” with electrons

S
I =

(

(@7
e )
(@7
€r

T —

T——

Massive neutrinos produced in a given interaction (“flavor”) state can “oscillate” into another flavor
through QM interference
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Elusive particles: feel only the weak force, form a “weak isospin doublet” with electrons

Massive neutrinos produced in a given interaction (“flavor”) state can “oscillate” into another flavor
through QM interference

Neutrinos have masses and they are tiny compared to other fermion’s masses!

neutrinos de se pe
P
u-o cC® 1@
H. Murayama
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So what'’s the big deal?



The Standard Model

‘

lr

R No
vi=| @ * neutrino

ZR mass
i=123\ “R / ;

Credit: CERN

We currently don’t even know what’s the quantum mechanical nature of massive neutrinos!
(= we don’t know what is the form of the neutrino mass term to be added to the SM Lagrangian)



* Lorentz invariance = two options: Dirac or Majorana

B. Kayser 1984

S (a)

Dirac:

Isl (v_ 7y 4 states
V(R)=V+

|0



* Lorentz invariance = two options: Dirac or Majorana

B. Kayser 1984

s (a) -
v(L)=v- :p; I Lorentz, (m=0)
I 1 Dirac:
Ww_ , 7y : v_ . vy 4 states
V(R)=v+ i | } b

P CPT CPT J
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* Lorentz invariance = two options: Dirac or Majorana

B. Kayser 1984

S (a) i ) - |
v(L)=v- —— l Lorentz, (m=0)
P
lr Dirac:
({y_ . (v _

|
; 7y vyl 4 states
V(R)=V+ r 1‘
-

f
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P cP CPT J
(b)
Lorentz (m:tO) Majorana:
[ | 2 states (V,= V,)
(V _ P V + )
Only possible if there no
l j internal quantum number
CPT that flips sign under “C”
L
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* Lorentz invariance = two options: Dirac or Majorana

B. Kayser 1984

S (a) )
v(L)=v- —— Lorentz, (m=0)
P
Dirac:
; - 4 states
V(R)=V+ .
P CPT J
Lorentz (m¢0) Majorana:
2 states (V,= V,)
Only possible if there no
internal quantum number
that flips sign under “C”
L
VL(X) VR(X)
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* Lorentz invariance = two options: Dirac or Majorana

Up to effects of O(m\/Ev), only
these states participate in SM
(V-A) weak interactions

4 )
V- = will be pair-produced with e*

V1 = will be pair-produced with e~

\_ J

| (a)

by B 1N
Xl
11
b B0 L
o o it

g =

B. Kayser 1984

l Lorentz, (m=0)

!_

o
-
= =
1y .
s y
2

f

CPT

Dirac:
4 states

CPT

(b)

Lorentz (m=#0)

Majorana:
2 states (V,= V,)

Only possible if there no
internal quantum number
that flips sign under “C”

ViL(x): takes part in weak interactions

|0

VR(X): no interactions in the SM



* Lorentz invariance = two options: Dirac or Majorana

Recall: can build two Lorentz-invariant bilinears from spin-1/2 fields @DL,R

Dirac mass: Majorana mass:
AR T
mp v ¥p + h.c. i 1/)L Cvr + h.c.
(" )
. 1 /5 oz C INA - *
Yi/p=—5V C =727 Ve =CyY =iy

\_ Y,




* Lorentz invariance = two options: Dirac or Majorana

Dirac mass: Majorana mass:
mUrvg + h.c.=mbv mviCvr, + h.c. =miv
T — T e —

V=1V + Up v=uvp+v] =1°

—————

Both options written this way clash with the Standard Model particle content and symmetries

12



* Lorentz invariance = two options: Dirac or Majorana

* Lorentz and weak isospin [SU(2)w] invariance = need new degrees of freedom

Dirac mass: Majorana mass:
mUrvg + h.c.=mbv mviCvr, + h.c. =miv
T — T T

vV =1V + VR v=uvp+v] =1°

|3



Lorentz invariance = two options: Dirac or Majorana

Lorentz and weak isospin [SU(2)w] invariance = need new degrees of freedom

Dirac mass: Majorana mass:

mUrvg + h.c.=mbv ngCVL + h.c.=mvvv

T — B ——— e
V=1V + Up v=uvp+v] =1°
H X
XX
La Spin 1/2
L Gauge ‘singlet’
To 1T .0
L H v

|3



* Lorentz invariance = two options: Dirac or Majorana

* Lorentz and weak isospin [SU(2)w] invariance = need new degrees of freedom

Dirac mass:

mUVpVr —+ h.c. =mvvv

?f

*

V =V + VR

H

La Spin 1/2
L Gauge ‘singlet’

Majorana mass:

mvi Cvr, + h.c.=miv

e —
v=v+v; =1°"

H x X H Higgs xx

: triplet
Ly,

LECeH H €L
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* Lorentz invariance = two options: Dirac or Majorana

* Lorentz and weak isospin [SU(2)w] invariance = need new degrees of freedom

Dirac mass: Majorana mass:
mUrvg + h.c.=mbv mviCvr, + h.c. =miv
e — T ——
V=1V + Up v=uvp+v] =1°
H X H x )f H Higgs xx

La Spin 1/2
L Gauge ‘singlet’
Crucial for

. Violates L¢ 1, conserves L Violates Leyr and L (AL=2) experimental
3 probes!



Neutrino (V): emitted with e*, when interacts with matter can transform into e- Left-handed: S - p = —1/2
e+

c
n
Weak VvV
interae:tion ‘ / M ' (

process

»

— ° . A
Anti-neutrino (V): emitted with e~, when interacts with matter can transform into e* Right-handed: S -p = +1/2
e- e’
- Vv P
Weak V \"
interaction ‘ / (

process n
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Neutrino (V): emitted with e*, when interacts with matter can transform into e- Left-handed: S - p = —1/2
e+

c
Weak Y, n
interae:tion ‘ / v ’ (

process

»

° ° =\ ° ° ° ° ° A
Anti-neutrino (V): emitted with e~, when interacts with matter can transform into e* Right-handed: S -p = +1/2
e- e’
Weak Vv \ P
Interaction ‘ / (

process n

Are these two different spin states of the same particle?

Neutrino # anti-neutrino Neutrino = antineutrino

4 states:
V- V. Vi V-

N\

Participate in A new type of spin=1/2 fermion!

weak interactions 14

Dirac

2 states:  V_ V4

Majorana




Neutrino (V): emitted with e*, when interacts with matter can transform into e- Left-handed: S - p = —1/2
e+

c
Weak Y, n
interae:tion ‘ / v ’ (

process

»

° ° =\ ° ° ° . ° A
Anti-neutrino (V): emitted with e~, when interacts with matter can transform into e* Right-handed: S -p = +1/2
e- e’
Weak Vv \ P
Interaction ‘ / (

process n

Can assign conserved lepton number Cannot assign a conserved lepton number

4 states:
V- V. Vi V-

N\

Participate in
weak interactions 15

2 states:  V_ V4



Neutrino (V): emitted with e*, when interacts with matter can transform into e- Left-handed: S - p = —1/2
e+

c
Weak Y, n
interae:tion ‘ / v ’ (

process

»

° ° =\ ° ° ° . ° A
Anti-neutrino (V): emitted with e~, when interacts with matter can transform into e* Right-handed: S -p = +1/2
e- e’
Weak Vv \ P
Interaction ‘ / (

process n

For m = 0 the two options are not distinguishable: Lepton Number = helicity

Can assign conserved lepton number Cannot assign a conserved lepton number

4 states:
V- V. Vi V-

N\

Participate in
weak interactions 15

2 states:  V_ V4



Neutrino (V): emitted with e*, when interacts with matter can transform into e- Left-handed: S - p = —1/2
e+

c
Weak Y, n
interae:tion ‘ / v ’ (

process

»

° ° =\ ° ° ° . ° A
Anti-neutrino (V): emitted with e~, when interacts with matter can transform into e* Right-handed: S -p = +1/2
e- e’
Weak Vv \ P
Interaction ‘ / (

process n

For m # 0 the distinction between Dirac and Majorana matters.
The Majorana option blurs the notion of matter and antimatter!

Can assign conserved lepton number Cannot assign a conserved lepton number

4 states:
V- V. Vi V-

N\

Participate in
weak interactions 15

2 states:  V_ V4



=—=1/2

©

‘Anti-neutrino’ (V): emitted with e- Right-handed: S - p = +1/2 Left-handed: S -
Majorana e- Ifm 0,

case Weak /v Vs i Lorentz boost i
interaction ‘ V+ —_— —— V- —
process p p

For a massive particle, helicity is frame-dependent =

The emitted massive (anti)neutrino can be in both Vv+/- states and hence can transform into both e* and e~!

|6



=—=1/2

©

‘Anti-neutrino’ (V): emitted with e- Right-handed: S - p = +1/2 Left-handed: S -
Majorana e- Ifm 0,

case Weak /v Vs i Lorentz boost i
interaction ‘ V+ —_— —— V- —
process p p

* Weak interactions produce massive ‘antineutrino’ in both helicity states

Behaves as an 0(1) V+ O(m/E) V- Behaves as a

‘antimatter particle’ ‘matter particle’

+

o
VA v- N
»

Perturbatively, the two helicity states
mix through mass insertion

S
V+ P
e
n

|6



‘Anti-neutrino’ (V): emitted with e- Right-handed: S - p = +1/2 Left-handed: S - p = —1/2
Majorana o- ] |fn:¢b0, t
orentz boos
Cas€ Weak V 4
interaction ‘ / : V+ —_— — V- 4
process p p

* Weak interactions produce massive ‘antineutrino’ in both helicity states

Behaves as an 0(1) V+
‘antimatter particle’
+

(S
V+ P
e
n

Behaves as a
‘matter particle’

7 Non-relativistic neutrinos

* To detect the Majorana signature (e~ in final state)

need to overcome the m/E factor ~ Avogadro’s number: double beta decay!

|6



* |f neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n P This is just V+, which via
mass insertion turns into V-

W. H. Furry, 1939

|7



If neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n p This is just V+, which via

> = mass insertion turns into V-
c
V+

V+

N\ V- converts into e~ in
i R h d interacti
W H. Furr),’ 1939 W the second Interaction V-

“Subject to the usual limitations on the meaning of such language, one can
say that a (virtual) neutrino is emitted together with one
of the electrons and reabsorbed when the other electron is emitted.”

|7
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* |f neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n P This is just v+, which via
ot - mass insertion turns into V- i
c

/ Vi —p

Vir P

L B M ~ V- converts into e~ in ‘S

- \ the second interaction Vv

W. H. Furry, 1939 W e - =

n p @

—= —=

e Key point:in OV[3[3 Lepton Number changes by two units. Majorana vV exchange is just one possible mechanism.
Furry understood this:

“The Majorana form of the theory is not the only one that permits this new form of disintegration
[...]. The Majorana theory provides, so to speak, a canonical form.”

|7



* |f neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n P This is just v+, which via
= = mass insertion turns into V- i
c
/ Vi ——)p
V+ p
m v . . S
V- converts into e~ in e
W Al the second interaction Vo ——p
c
n p P
— —
* Modern viewpoint on Lepton Number Violation:
d Gr u
—— d . Exchange of heavier
Ve ‘\ c e- neutrinos or other
M Mee but also Majorana particles. At low-
Ve 1 ~ e energy induce six-fermion
J J operator ~|/N\3
d Gr u

|7



If neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n p This is just V+, which via

= = mass insertion turns into V-
e ‘
Vi

Vs P

N V- converts Into e” In ‘
& \ the second interaction \Y; e
W. H. Furry, 1939 N P
— ==

If OV3[3 decay happens, through quantum mechanical fluctuations a v+ can convert into V- = hallmark of Majorana v!

h- Schechter-Valle 1982

17 Vi+ V-



* |f neutrinos are Majorana particles, a virtual anti-neutrino can convert into a neutrino and mediate OV[3[3

n p This is just V+, which via

= = / mass insertion turns into V- i
AV Y / €

Vi

It’s a two-way arrow:

W. H. Neutrino is a Majorana fermion <— O0V[3[3 decay happens at some rate ——

e If OVB decay happens, through quantum mechanical fluctuations a v+ can convert into v- = hallmark of Majorana v!

Schechter-Valle 1982




A cosmic mystery

Nuclear OV[33 decay

|18

How did matter survive
the big bang!?




What's the origin of matter in the universe!
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What's the origin of matter in the universe!
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The concept for the above figure originated in a 1986 paper by Michael Turner.
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What's the origin of matter in the universe!

RHIC &
Accelerators JEHC

HISTORY OF THE UNIVERSE

Cosmic Microwave
Background radiation
is visible

Structure
formation

Dark energy
accelerated
expansion

A

Equal number of particles and

antiparticles right after the big bang e -

protons chle | . ' PR

P E . o . PN ) - 1 I
= WA N But cosmological observations

require a non-zero matter-
antimatter asymmetry!
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High-energy
cosmic rays
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5
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3 2 : _ _
o | N = (ns - ng)/ny
% Big Bang
Nucleosynthesis

(t ~ 3 min) and the
Cosmic Microwave
Background

(t ~ 300,000 yr)
pointton ~ 6 X [0-10

t = Time (seconds
Photons (units GeV = 1.6 x 10710 joules)

As the universe expands and cools,

particle-antiparticle annihilation takes work o e K
. . . . ‘s“‘* - neutrino # ion star
over: end up with just radiation! " M o
0 electron 7N ° atom G galaxy

(qd meson
black

M muon
o @ b M oo @

The concept for the above figure originated in a 1986 paper by Michael Turner.

Particle Data Group, LBNL © 2015 Supported by DOE

ng/ny = ng/ny ~ 10-18
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What's the origin of matter in the universe!

Equal number of particles and
antiparticles right after the big bang
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To obtain O(l) protons per
cubic meter today, early on need
a tiny imbalance of @ over @
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The concept for the above figure originated in a 1986 paper by Michael Turner.
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What's the origin of matter in the universe!

Equal number of particles and
antiparticles right after the big bang

Today

To obtain O(l) protons per
cubic meter today, early on need
a tiny imbalance of @ over @
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The concept for the above figure originated in a 1986 paper by Michael Turner.
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What's the origin of matter in the universe!

HISTORY OF THE UNIVERSE A

Dark energy

Sometime before nucleosynthesis a dynamical mechanism Today

Equal number of particles and

must have generated a ~ part-per-bilion imbalance, but how!?

antiparticles right after the big bang

High-energy PTRON® S is! g & 9. i &
cosmic ra)é \' , [ 0
k (o Ve d Stars,
Today A L o e X | galaxies,
us...

N

Matter Antimatter

t = Time (secg years)

Bray of photons (units GeV = 1.6 x 10710 joules)

ke Credit: H. Murayama
To obtain O(l) protons per D " @ e B W e R
. *”G): gluon RPA” / ‘
cubic meter today, early on need B cocron TR G B gl
. . qd) meson -
M muon . ae
a tiny imbalance of @ over @ R 8 o Hoom ik

The concept for the above figure originated in a 1986 paper by Michael Turner. P(] rﬁcle DO'I'(] G[’OU P, I_BN L © 20 ] 5 SU pporTed by DO E
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Andrei Sakharov, 1967

#1. Processes that “create matter” [B, L violation]
1,000,000,001 1,000,000,000

g A # of particles — # of antiparticles
A — B is different in A and B
- J

#2. “Asymmetrically” (faster than corresponding antimatter-creating process) [€, GP]

A — B 2 A - B

\_ J

Matter  Antimatter #3. “Irreversibly” (faster than matter annihilating inverse process)

Credit: H. Murayama a )

A — B -
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#1. Processes that “create matter” [B, L violation]

1,000,000,001 1,000,000,000
g A # of particles =+ ok
A — B ST W ?\(\\’S\
9 y eed ne
o Y’ .
#2. “Asymmetrically” (faster than c~ e aﬂﬁ\m .amatter-creating process) [Z, GP]
<
—a e(\e"ate
xO R

e - B + )

4 )

A — B - B — A
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L
Andrei Sakharov, 1967

#1. Processes that “‘create matter’

1,000,000,001 1,000,000,000
g A # of particles — # of antiparticles
A — B is different in A and B
N\ Y
/ OvBp decay is a matter-creating process! \

(N,Z)>(N=2,Z+2)+ e+ e”

Matter ~ Antimatter Before: N + Z nucleons, no antiparticles

Credit: H. Murayama K After: N + Z nucleons plus two electrons, no antiparticles j
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Andrei Sakharov, 1967

#1. Processes that “‘create matter”
1,000,000,001 1,000,000,000

g A # of particles — # of antiparticles
A — B is different in A and B

/ OvBp decay is a matter-creating process! \

(N,Z)>(N=2,Z+2)+ e + e

Matter ~ Antimatter Before: N + Z nucleons, no antiparticles

Credit: H. Murayama K After: N + Z nucleons plus two electrons, no antiparticles j

This is deeply related to the Majorana nature:

neutrino = anti-neutrino
22




= VL
Andrei Sakharov, 1967

#1. Processes that “‘create matter”
1,000,000,001 1,000,000,000

g A # of particles — # of antiparticles
A — B is different in A and B

/ OvBp decay is a matter-creating process! \

(N,Z) > (N=2,Z+2)+ e + e~

Matter ~ Antimatter Before: N + Z nucleons, no antiparticles

K After: N + Z nucleons plus two electrons, no antiparticles J

Credit: H. Murayama

But there’s more! The same physics could be responsible for both Ov[33 decay and for generating

the matter excess in the universe through the leptogenesis mechanism
22



= VL
Andrei Sakharov, 1967

#1. Processes that “‘create matter”
1,000,000,001 1,000,000,000

#2. “Asymmetrically” (faster than corresponding antimatter-creating process)

#3. “Irreversibly” (faster than matter annihilating inverse process)

0OV directly address first condition

* Explicit models of Majorana neutrino mass satisfy the other two
Matter Antimatter conditions, as well: baryogengesis via leptogenesis

Credit: H. Murayama Fukugita-Yanagida 1987
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* Simple / natural option: add three R-handed neutrinos VR (gauge singlets = no interaction)

1 _
L,svy = Loy + iDRaVR — (§V£CI\IRVR +C0Y, vpo + hC)
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Simple / natural option: add three R-handed neutrinos Vr; (gauge singlets = no interaction)

Losv = Lsy + ivpdvp — (

Mrvr +LY, vRQ + hC)

Dirac neutrinos: Mr = 0. Same as quarks & charged leptons , except for tiny (O(10-19)) Yukawa couplings

-

Y, = VYV,

Y, = V;/JrL Y;/djag‘/VR

Unitary mixing in
Charged Current
vertex: 3 angles, | phase

~

J

24

W—I—

;

V-A current

Va=e,u,1



* Simple / natural option: add three R-handed neutrinos VR (gauge singlets = no interaction)

1 _
L,svy = Loy + il?RaI/R — (51/%;01"\[31/}3 +C0Y, vpo + hC)

: : : VL : : :
* Majorana neutrinos: Mr# 0 = L not conserved & 6x6 mass matrix for ( e ): six Majorana (V=V¢) eigenstates

* If Mr >>vYy: 3 light (VL= Vi) and 3 heavy (VR N)) eigenstates

% O
1 T
Lospy D 5 vy C'my, vg
Seesaw 2 v -1 A v Vi @ v,
mechanism n,, — U Yv M R Yu Yyt

(Type l)
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Simple / natural option: add three R-handed neutrinos Vr; (gauge singlets = no interaction)

1 _
Loy = Loy + iﬁRaI/R — (QV};CA[RVR +C0Y, vpo + hC)

: : : VL : : :
* Majorana neutrinos: Mr# 0 = L not conserved & 6x6 mass matrix for ( e ): six Majorana (V=V¢) eigenstates

If Mr >> vYy: 3 light (VL= Vi) and 3 heavy (VR— N;) eigenstates

-

\_

Va=e,,
Unitary mixing in CC \ et
m, = VT mdiegy, q vertex: 3 angles, | +2 phases W
= \/— N 7ul . L . I
dia, :
Ye = VetLYe *Ver U = Upirac X ( e’ ) /
g
U=V, V;,TL : " ) V-A current
(e+)0.=e,p.,T
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Seesaw mechanism summary:

Heavy (Majorana) singlets are introduced to give mass to the light neutrinos in a
way consistent with Lorentz and weak interaction symmetries

They also provide an avenue to generate the baryon asymmetry...

P - / my ~ Y2 Vew2 MR- ~ eV

M y~O(l) = Mr—10!5 GeV

Minkowski 1977, k

Gell-Mann, Ramond, Slanksy 1979, ...
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Fukugita-Yanagida 1987

|) CP- and L- violating out-of-equilibrium
decays of heavy N = n_

I'(N — HYV)#T'(N — H/) |

\.

2) Electroweak sphalerons = ng =# n_

Early Uiverse

SL. b,
Heavy neutrinos (N) play key role in ¢y Y b,
generating the matter-antimatter asymmetry
S . . . d, b,
by decaying into (anti)neutrinos and Higgs (H)
particles ‘asymmetrically’ and ‘slowly’ d; V.
ur. Vp.
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Fukugita-Yanagida 1987

Early Uiverse

Heavy neutrinos (N) play key role in
generating the matter-antimatter asymmetry
by decaying into (anti)neutrinos and Higgs (H)

particles ‘asymmetrically’ and ‘slowly’

29

Higegs = 4¢.....
vacuum

expectation
value X

Nucleus

In OV[33 decay, through the lens of
Quantum Mechanics, we probe within a
nucleus the same interactions that operated
in the early universe**

** An anti-neutrino scatters off the Higgs field vacuum expectation value (VEV)
and becomes N, then N scatters off the Higgs VEV and becomes a neutrino



The neutrino and its mysteries

Nuclear OV[33 decay

A cosmic mystery

A ‘matter-creating’ nuclear
process whose observation
would have far reaching
implications

30




* For certain even-even nuclei (48Ca, 76Ge,!36Xe, ...), single 3 decay is energetically forbidden — 33 decay

* 2V[3[3 is the rarest process ever observed, with T\, ~ 102! years

M. Goppert
Mayer, 1935

<|

31

Credit: C. Bertulani’s book

m{Z, A), A even

1]

A =

N +

Z

-

. 3

<+— 0dd Z,0dd N

Even Z, Even N




* For certain even-even nuclei (48Ca, 76Ge,!36Xe, ...), single 3 decay is energetically forbidden — 33 decay

* 2V[3[3 is the rarest process ever observed, with T\, ~ 102! years

* Several “ton-scale” experiments with different isotopes and technologies are searching for Ov[3[3, with sensitivity

up to T2 ~1028 yr, which is 10!8 times the age of the universe!

1.0

N GERDAI
2vﬁﬂ LEGEND
08P e” , i) o]
©
Ny
=
© o4k
0.2F
‘ g D L) l“l
0.0 =" —EXO/nEXO mJland.Zen
0 0.2 0.4 0.6 0.8 1.0

(Eel + EeZ)/Q
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms
that involve different mass scales and interaction strengths

Somewhere out here there must be new
physics responsible for neutrino masses

)

7))

‘z" A

60 If Lepton Number is not conserved
= most of this uncharted territory can
o be explored only by Ov[3[3 decay
> Stand

= Mod

n

Decreasing Coupling Strength
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms
that involve different mass scales and interaction strengths

T

LNV up to 1015 GeV scale:
mpp~(Vew)?/A

. High-scale see-saw ¢
a )
“ A
>
b0
C
I
«
: l
c
B 2
(mpp)* =
> | E :U2.m 12
Decreasing Coupling Strength | _ e vil

Half-life is related to neutrino mass: concrete discovery targets & falsifiable correlations with other probes of my
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms
that involve different mass scales and interaction strengths

g — Normal Ordering
LNV up to 101°GeV scale: = — Inverted Ordering
~ 2 A~
T nmpp (Vew)2/A \5%150 |
§ High-scale see-saw Q\\,ée’& ] é
s s 100 ¢
o0 S
= S
7] <
O l = 50,
S O
v >
= 2 5
(mpp)” = 2
‘ DL S T T T
> My 10 10 10
Decreasing Coupling Strength —~ e

Lightest neutrino mass (meV)

Half-life is related to neutrino mass: concrete discovery targets & falsifiable correlations with other probes of my
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms

— Normal Ordering
— Inverted Ordering

that involve different mass scales and interaction strengths

T

)
-
-

LNV up to 1015 GeV scale:
mpp~(Vew)?/A

[
N
-

>
O
g
§ High-scale see-saw K é
z ] s 100 ¢
3 ae
£ =
(/)] g
: l = 50,
0 O
U a
= , 2
(mpg)” = 2
o
> | z :U2.m 12
Decreasing Coupling Strength | _ e vil

= ' 3
109 101 102 O

Lightest neutrino mass (meV)

Half-life is related to neutrino mass: concrete discovery targets & falsifiable correlations with other probes of my
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms

that involve different mass scales and interaction strengths
— Normal Ordering
— Inverted Ordering

)
-
-

LNV up to 1015 GeV scale:
mpp~(Vew)?/A

[
N
-

T Goal for ‘ton-scale’

High-scale see-saw experiments Is
mgg ~ 18 meV.

100 ¢

Large discovery
potential regardless

Increasing Mass

Effective Majorana mass (mgg) (meV)

l 50 . of the mass ordering
2
(mpp)” =
g Uz-m |2 0 1 ) 03
Decreasing Coupling Strength | Z eiMwil 10 10 10

Lightest neutrino mass (meV)

Half-life is related to neutrino mass: concrete discovery targets & falsifiable correlations with other probes of my
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms
that involve different mass scales and interaction strengths

Example: LRSM with type-Il seesaw

109
T LNV @ the TeV scale L
d 4 - '_ | y : GERDA + HDM + IGEX 90% C.L.
7)) High-scale see-saw 107 \ i -
(/)]
« A4 g g IH
z A R > e ;' L
Left-Right SM S 2L
00 RPV SUSY Vv 8 10
c R e E
.‘7’ - NH
: cow .
dL) R 10
u -
C 30 Range - Prior ——
[ Posterior s
104 tl AT Sy
107 104 1073 1072 1071
N mq 3 [eV]
Decr'easing Coupling Str'ength Tello-Nemevesek-Nesti-Senjanovic-Vissani 1011.3522

Ge-Lindner-Patra 1508.07286
Li, Ramsey-Musolf, Vasquez 2009.01257

Contributions to OV[3[3 not directly related to the exchange of light neutrinos:

within reach of planned experiments & possibly correlated with signal at LHC in pp — ee jj
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* Ton-scale OV[33 searches can discover Lepton Number Violation from a broad variety of mechanisms
that involve different mass scales and interaction strengths

Dekens, de Vries, Mereghetti, Menendez, Soriano,
2303.04168

1 .
T ¢3+2” scenario LNC prob
LNV @ the MeV-GeV scale 102

High-scale see-saw

1074

Left-Right SM
RPV SUSY

2 2
|U6N1 | +|UeN2|

uy

Stand
Moc

Increasing Mass

Light sterile V’s

Decreasing Coupling Strength

Contributions to OV[3[3 not directly related to the exchange of light neutrinos:
Ov[3 decay is an extremely competitive probe of VR’s — plenty of opportunity for discovery
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 Connecting sources of LNV to nuclei is a multi-scale problem.

O(l) theoretical uncertainty in matrix elements hinders the
interpretation of a positive or null experimental signal

T

N —

. Engel-Menendez 1610.06548
v High-scale see-saw 8
v - I\J | || I —~
S C  NREDF A .
7 REDF ¥ —
z Left-Right SM - QRPAJy X ah -
& RPV SUSY 6 -omPATu I Aa =
- . ~— QRPACH + | T'w I A v -
e — 1BM2 H A VvV A —
Ay~ GeV & afpam IT, 0w EYEY S
X | - = :sm StMTk @ | _ ) < . O -
Light sterile V’s 3w o, = b o = g
ke~ 100 MeV ,E A . ® A S
- O I ;- —
- - -
11— @ —
oF 1 | | L |-
> | | | [l | | | | |
48 7682 96100 116124130136 150
Decreasing Coupling Strength A

["<|Mov|? (mpp)?
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 Connecting sources of LNV to nuclei is a multi-scale problem. Best tackled through a tower of EFTs™*
coupled to lattice QCD and ab-initio nuclear many-body calculations to achieve controlled uncertainty

T

High-scale see-saw

** Effective Field Theory:

exploit separation of scales & use appropriate
degrees of freedom at each scale

v

Left-Right SM
RPV SUSY

asing Mass
>

/\X ~ GeV LNV

Light sterile V’s barameter SMEFT LEFT  Chiral EFT

ke ~ 100 MeV

: (T2 )t & (gin)? (mw/A)A (Axdmw)® (ke Ay)©
Decreasing Coupling Strength

White papers 2203. 21169 & 2207.01085 and refs therein
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https://arxiv.org/abs/2207.01085

® Gauge group:

SU(3)C x SUR)w x U(1)y

N e, V(@) = (w)
(color triplets an

weak doublets)

D v



® Building blocks: gauge bosons

SU(3)c x SU(2)w x U(1)y

representation
gIUOflSI G:, A=1"'8o (8 I O)
G, =0,G7 —8,Gn+ 8. fancGrGY
Wbosons: W,, I=1--:3,
(1,3,0)

W, =0, W.-9,W. +ge ,x WLW5

B boson: B, .

B, =8,B,—8.B,. (1,1,0)

4 p
/ i [-
. /rr 0 A T (e y /" 0 | ‘}’1’ .
Gauge transformation: Wi 9 r Vi) W, ) Vi)
V (1’) — e'l'gﬁa(;t)%"




® Building blocks: fermions and Higgs

SU(3)c x SU(2)w x U(l)y representation:
(dim[SU(3).], dim[SU(2)w], Y)

SU(2)w

transformation

1:(7L) (1,2,-1/2)

q — Vsue) q

; e (1,1,-1)
| ¢ . U’
o= i = ((éj) (3,2,1/6)
. v — (3,1,2/3)
_(l'i = (1’}? ) —WB) )

5‘9+
;:(po) (1,2,112)

A0
95:/699*: (_HV\P_) (|,2,-|/2)

4

~ ~

P — Vsu@) ¢

J

P = Vsu) ¢

Left- and right-
handed fermions
have different
gauge charges



® The SM Lagrangian: all operators of dimension <4 that respect gauge and Lorentz symmetry

Homework: work out mass dimension of fields

® Spinor: [W]=3/2

® Scalar and vector: [P] = [Vu] =

42



® The SM Lagrangian: all operators of dimension <4 that respect gauge and Lorentz symmetry

ESA[ — EGauge T £Higgs 1 ﬁYukawa

A a
D,=10, — ig ):—C A g%u-’; —igYB,
4 )
_ 4;11/ 7L 117y N

+ Z (Zﬂlﬁ& + i&;De; + iqiDq; + iuiPu; + iJilDdi)
1=1,2,3
. 2, J
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® The SM Lagrangian: all operators of dimension <4 that respect gauge and Lorentz symmetry

ESA[ — LGauge T £Higgs T £Yukawa

A a
D,=10, — igs )\—( 4 — ig%”}‘f — 'z'g'}""Bﬂ_
4 )
_ v Apv I Yy v LV
[:Gauge o _(T/_“/ 1“ /_“/‘H‘ _BA[.I/B

+ z (z’l@lD& + ie;De; + i Dqi + i Du; + z‘(Zlde)
- e \ f / / / Y,

NS S S

U(3) for each gauge multiplet,e.g. q —Miq;, M e U(3)

No notion of “flavor”: three identical copies
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® The SM Lagrangian: all operators of dimension <4 that respect gauge and Lorentz symmetry

LSA[ — ACGa.ugc T LHiggs T L:Yuka.wa

A a
D, =10, — ig, A—( A _ g%u;f — ig'YB,
4 )
_ 4;11/ v vy N

+ Z (Z'ZJM +ieilDe; + i Dq + iw;Du; + id; 1D di)

i=1,2.3

- | EWSB (0
Litiges = (D,p) (D) — Ml — v?)° - 9) = <>
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® The SM Lagrangian: all operators of dimension <4 that respect gauge and Lorentz symmetry

ESA[ — LGa.ugc 1 ‘CHiggs T »C'Yuka.wa \

A a
D,=10, — iy, )\—( A g%”"ﬁ —ig'Y B,
4 )
_ ~l LV 7L 1171 LV

+ Z (ZEJD& + ieiDei + iqilDq + iuiDu; + ijjlpd»

i=1,2.3

: , _ 9.9 EVWSB N
‘C’Higgs — (D#Q)T(Dﬁ “fg) _ )‘(79179 _ 1}2) - ) (

LYuka.wa. — 2 Y. €Y q Y;[ dg@ q Yu UQB h.c. (

- p =€y

*

U(3)°> symmetry broken by Yukawa couplings Y¢ . 4. flavor physics & fermion masses
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| ( : )
Y = h
,U—I_E

* Fermion mass matrices diagonalized by bi-unitary transformation

io dia
Yy =V] Y8V, f=ec.du . mypi=v (Yf g)

(X)

 Higgs coupling to fermions is flavor-diagonal and proportional to mass

_ h
Lvukawa = Z mfff (1 | \/§’U> f=JL+ IR

f=e.d,u
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