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Special thanks to collaborators on these topics: 
W. Dekens,  J. de Vries,  M. Graesser,  M. Hoferichter, E. Mereghetti,  S. Pastore,  M. Piarulli,

S. Urrutia-Quiroga, U. van Kolck,  A. Walker-Loud,  R. Wiringa

• Significance of neutrinoless double beta decay & connection to big questions 

• Origin and nature of neutrino mass 

• The baryon asymmetry of the universe 

• Discovery potential of  0νββ  — overview

• End-to-end Effective Field Theory for Lepton Number Violation (LNV) and 0νββ
• 0νββ from high-scale see-saw (LNV @ dim 5) [the 3-Majorana ν’s paradigm]

• 0νββ from (multi)TeV-scale dynamics (LNV @ dim 7, 9, …)

• 0νββ from sterile neutrinos

• Conclusions and outlook 

1
st  lecture

2
nd  lecture

3
rd  lecture
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Demonstrate that an excess of 
matter over antimatter can be 

created in an elementary process  

Point to baryogengesis via 
leptogenesis

Demonstrate Majorana nature of 
massive neutrinos 

(neutrino=antineutrino)  

A ‘matter-creating’ nuclear 
process whose observation 

would have far reaching 
implications

0νββ decay: summary of significance

A cosmic mystery        The neutrino and its mysteries 

Nuclear 0νββ decay



The quest is on…
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• For certain even-even nuclei (48Ca, 76Ge,136Xe, …),  single β decay is energetically forbidden → ββ decay 

• 2νββ is the rarest process ever observed, with T1/2 ~ 1021 years 

M. Goppert 
Mayer, 1935

Even Z, Even N

Odd Z, Odd N
A = N + Z

Credit:    C. Bertulani’s book



• Several  “ton-scale” experiments with different isotopes and technologies are searching for 0νββ, with 
sensitivity up to T1/2 ~1028 yr,  which is 1018 times the age of the universe!

The quest is on…
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2.2.1 CUPID625

The CUORE Upgrade with Particle Identification (CUPID) [100] is a future upgrade to the Cryo-626

genic Underground Observatory for Rare Events (CUORE), a multinational collaborative effort to627

detect lepton number violation through the 0⌫�� of 130Te. Approximately one-third of the insti-628

tutions in CUPID are U.S. universities and national laboratories involving faculty, students, and629

research scientists across the United States, with responsibilities in management, remote monitor-630

ing and operations, detector design and R&D, sensor testing, software development, and modeling631

detector performance.632

The baseline design for CUPID features an array of 1596 scintillating crystal bolometers and 1710633

light detectors, each instrumented with germanium neutron transmutation doped (NTD) sensors,634

and organized into 57 towers. While the current design is based on a full complement of Li2MoO4635

(LMO) crystals, one of the key scientific features of the detector design is the ability to flexibly636

incorporate multiple isotopes. The new detector will be installed in an upgraded cryostat at Gran637

Sasso National Laboratories (LNGS), taking advantage of the existing infrastructure and facilities638

developed for use in CUORE.639

CUPID builds on the success of the CUORE, CUPID-0, CUPID-Mo, and CROSS experiments,640

including years-long, stable operation of the CUORE detector at base temperatures on the order of641

10 mK. In addition to the current work on CUPID, a future, ton-scale version of the CUPID concept,642

Figure 8: Photos of some of the current generation of 0⌫�� experiments described in this report.
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2νββ

0νββ

(Ee1 + Ee2)/Q

• For certain even-even nuclei (48Ca, 76Ge,136Xe, …),  single β decay is energetically forbidden → ββ decay 

• 2νββ is the rarest process ever observed, with T1/2 ~ 1021 years 



Unexplored

0νββ decay: broad discovery potential
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• Ton-scale 0νββ searches can discover Lepton Number Violation from a broad variety of mechanisms 
that involve different mass scales and interaction strengths 

Standard 
Model

Decreasing Coupling Strength 
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Majorana neutrinos ⇒ 0νββ
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Furry 1939

• If neutrinos are their own antiparticles,  they can ‘annihilate’ and mediate 0νββ decay 

Equivalently: a ν emitted in 
the first β decay  can turn 

into a ν  and can be absorbed 
in the second vertex 

_
p

e−
n

νe
_

e−

n p

νe

nu
cle

us

vew ~ 100 GeV 
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Standard 
Model

0νββ decay: theoretical challenges

High-scale see-saw

Left-Right SM
RPV SUSY

...

Light sterile ν’s 

Decreasing Coupling Strength 

Λχ ~ GeV

kF ~ 100 MeV

vew~ 100 GeV

• Connecting sources of LNV to nuclei is a multi-scale problem.   Best tackled through a tower of EFTs** 
coupled to lattice QCD and ab-initio nuclear many-body calculations to achieve controlled uncertainty

(T1/2  )-1 ∝ (gLNV)2 (mW/ΛLNV)A  (Λχ/mW)B  (kF/Λχ)C

SMEFT LEFT Chiral EFTLNV 
parameter 

White papers 2203. 21169 &  2207.01085 and refs therein

** Effective Field Theory:    
exploit separation of scales & use appropriate 

degrees of freedom at each scale

https://arxiv.org/abs/2207.01085


Connecting scales
To connect UV physics to nuclei, use a tower of EFTs

Hadronic 
matrix 

elements 

Nuclear   
matrix 

elements 

Non-perturbative strong interactions

Matching      
with BSM 

theory  

Perturbative 
matching 
within SM

BSM dynamics

SMEFT

LEFT

ChPT (π, N)

Chiral EFT (NN, ..)
ΔEnuclear

• Use appropriate 
degrees of freedom 
in each range of 
energies 

• Write down all 
interactions 
consistent with the 
given symmetries  

• At each threshold, 
need  appropriate 
perturbative and 
non-perturbative 
matching conditions:         
Ahi = Alow  

• Expand amplitudes 
to a given order in 
mhow/mhi 



         Probing exotic scalar and tensor CC couplings

• Current:  0+ →0+  (b) constrains εS ;  π → e ν γ constrains εT  [green band]

• Future:  neutron b, B @ 10-3 level (Nab; UCNB,b, abBA, ...) [red band], 6He (b) [yellow band]

• Plot uses input 
on scalar and 
tensor nucleon 
matrix elements 
from Lattice 
QCD

• gS  = 0.8 (4),         
gT = 1.05(35)

Bhattacharya, Cirigliano, Cohen, 
Filipuzzi, Gonzalez-Alonso, 
Graesser, Gupta, Lin,  2011

bGT @ 10-3   

(future 6He)

b,B  @ 10-3   

(neutron)

ΛT = 7 TeV ΛT = 5 TeV

ΛS = 5 TeV

ΛS = 3.2 TeV

Classic example
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q2 =(pe+pν)2  <<  MW2

Fermi’s theory of beta decay as the low-energy EFT of the Standard Model weak interactions
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d
u

g2

M2 � q2

 + O(q2/MW2)

W

d

u
g

g

g2

M2
W

GFermi  ~

GFermi 

q2 =(pe+pν)2  <<  MW2

Exchange of heavy particles  generates a series of local 
interactions of increasing mass dimension (multiplied by 
inverse power of the new physics mass scale) consistent 

with the underlying symmetries (Lorentz,  gauge, …)

More generally:  how do heavy particles affect physics at E << M? 

Homework

• Work out mass dimension of fields:

• Spin 1/2:  [Ψ]=3/2  

• Spin 0 and 1:   [φ] = [Vμ] =1 

Fermi’s theory of beta decay as the low-energy EFT of the Standard Model weak interactions



• “Standard Model EFT” (SMEFT): 

★ Build operators out of SM fields  

★ Impose Lorentz + SM gauge symmetry, but no other symmetry (B, L, CP,  flavor)**  

★ Organize operators according to mass dimension: power counting in E/Λ, MW/Λ.                                                       
At a given order the EFT is renormalizable and predictive

Standard Model EFT (SMEFT)

[ Λ ↔  MBSM ]

• In a model-independent way, describe effects of new physics originating at Λ >> vew through local operators 
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Standard Model EFT (SMEFT)
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• Comment on symmetries in the SM-EFT:

• B, L, Le,μ,τ  not enforced:  per Weinberg’s definition, they are ``accidental” in the SM,  i.e. 
consequence of keeping operators of dimension ≤ 4 built out of SM fields

ΔL=2 ΔB=1,  CPV,  FCNC, …   

• In a model-independent way, describe effects of new physics originating at Λ >> vew through local operators 

[ Λ ↔  MBSM ]



Standard Model EFT (SMEFT)
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• Other EFTs differ in particle content and/or symmetry realization:  

• νSMEFT:  SMEFT + νR 

• …

ΔL=2 ΔB=1,  CPV,  FCNC, …   

• In a model-independent way, describe effects of new physics originating at Λ >> vew through local operators 

[ Λ ↔  MBSM ]
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Λ  
(> TeV)

E

Λχ 
 (~GeV)

kF, mπ

vew , MW

BSM dynamics

SM-EFT

SM-EFT’

dim5 dim7 

dim9

dim3 dim9dim6 Hadronic matrix elements for �L = 2

n p

n p

e
-

e
-

2. L
(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

π-

π-νν

ν d

d u

u

Example:
Left-Right Symmetric Model

Chiral EFT 
Chiral EFT

J =

O(1) O

⇣
Q2

⇤2
�

⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)

Goals

1. write down O
�
� , Q�

�0

2. estimate the couplings
3. write down 0⌫�� currents

n

n p

p
e

e
 VI=2 Nuclear 

potential

d

d

u

u

e

e
L L

H H

H

νL

ed

u

y y

A. Kobach 1604.05726 • ΔL=2, ΔB=0 operators appear only at odd dimension

• Insertions of small dimensionless (Yukawa) coupling can make dim=5,7,9 
operators equally important for Λ~ TeV   

• νR with mass < Λ can be included in the framework Dekens et al. 2002.07182 
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‘End-to-end’ EFT framework for LNV

Weinberg’79
 Babu-Leung ’01 

…
Lehman  1410.4193  

Graesser 1606.04549
Liao and Ma 2007.08125 

Full or simplified model is needed to study the cosmological 
implications of LNV and the collider signatures, if  Λ~ TeV

For low-energy probes such as 0νββ,  it’s much more convenient to 
match to EFT and do the analysis ‘once and for all’
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Weinberg ’79. ’90. ’91

Map ΔL=2 interactions onto  π, N  operators, organized according to QCD symmetries 
and power-counting  in Q/Λχ  (Q ~ kF ~ mπ) →    NN transition operators Vnn→pp
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Chiral EFT

J =

O(1) O

⇣
Q2

⇤2
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⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)

Goals

1. write down O
�
� , Q�
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2. estimate the couplings
3. write down 0⌫�� currents
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 Vnn→pp Half-life (T1/2)76Ge 76Se
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Chiral EFT

J =

O(1) O

⇣
Q2

⇤2
�

⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)
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�
� , Q�
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2. estimate the couplings
3. write down 0⌫�� currents
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 Vnn→pp Half-life (T1/2)76Ge 76Se

Tower of EFTs   + 

hadronic & nuclear 
matrix elements T1/2 ~ (mW/Λ)A  (Λχ/mW)B  (kF/Λχ)C

Controllable uncertainties: 



0νββ from high-scale LNV
(dim-5 operator)

1/Coupling 

Λ

vEW

High-scale see-saw
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High scale LNV
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kF, mπ
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L L

H H

y y • LNV originates at very high scale                  
(Λ >> v) → dominant low-energy 
remnant is Weinberg’s dim-5 operator:  

… and other 
tree-level and 

loop-level 
mechanisms  
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   wee /Λ ~ yT mR-1 y 
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Chiral EFT
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⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)
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�
� , Q�
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hadronic & nuclear 
matrix elements T1/2 ~ (mW/Λ)A  (Λχ/mW)B  (kF/Λχ)C

Controllable uncertainties: 

ν

High scale LNV

Λ  
(>> TeV)

E

Λχ 
 (~GeV)

kF, mπ

vew , MW
dim5

dim3

ν

L L

H H

y y • LNV originates at very high scale                  
(Λ >> v) → dominant low-energy 
remnant is Weinberg’s dim-5 operator:  

• Below the weak scale this is just the 
neutrino Majorana mass (mββ ~ wee v2/Λ) 

• 0νββ mediated by active νM with 
potential Vnn→pp with long- and short-
range components proportional to mββ 

d u

d u

νM 

… and other 
tree-level and 

loop-level 
mechanisms  
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Example:
Left-Right Symmetric Model

Chiral EFT (N,π,…)

d

d

u

u

e

e
L L

H H

H

νL
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u

y y

Hadronic 
matrix 

elements 

Nuclear 
matrix 

elements 

‘End-to-end’ EFT framework
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Chiral EFT

J

O(1) O

⇣
Q2

⇤2
�

⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)

Goals

1. write down O
�
� , Q�

�0

2. estimate the couplings
3. write down 0⌫�� currents

n

n p

p

e

e
 Vnn→pp Half-life (T1/2)76Ge 76Se

Chain of EFTs   + 

hadronic & nuclear 
matrix elements T1/2 ~ (mW/Λ)A  (Λχ/mW)B  (kF/Λχ)C

Controllable uncertainties: 

ν

High scale LNV

Λ  
(>> TeV)

E

Λχ 
 (~GeV)

kF, mπ

vew , MW
dim5

dim3

ν

L L

H H

y y • LNV originates at very high scale                  
(Λ >> v) → dominant low-energy 
remnant is Weinberg’s dim-5 operator:  

• Below the weak scale this is just the 
neutrino Majorana mass (mββ ~ wee v2/Λ) 

• 0νββ mediated by active νM with 
potential Vnn→pp with long- and short-
range components proportional to mββ 

d u

d u

νM 

… and other 
tree-level and 

loop-level 
mechanisms  
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Discovery potential / target

• Within the high-scale seesaw, 0νββ can be predicted in terms of  ν mass parameters:  Γ∝|M0ν|2 (mββ)2

mlightest2 = ?

NORMAL SPECTRUM INVERTED SPECTRUM



Inverted Ordering
Normal 

Ordering

Bands: unknown 
Majorana phases
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Discovery potential / target

• Within the high-scale seesaw, 0νββ can be predicted in terms of  ν mass parameters:  Γ∝|M0ν|2 (mββ)2



Inverted Ordering
Normal 

Ordering

Bands: unknown 
Majorana phases

Assuming current range for matrix elements, discovery @ ton-scale possible for inverted 
spectrum or mlightest > 50 meV

KamLAND-Zen 2203.02139
Assume range for 

nuclear matrix 
elements from 

different nuclear 
calculations  

Ton scale
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Ton scale
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Discovery potential / target

Beyond ton scale target

Natural (but challenging!) beyond ton-scale target is mββ ~ meV

• Within the high-scale seesaw, 0νββ can be predicted in terms of  ν mass parameters:  Γ∝|M0ν|2 (mββ)2



Cosmology 

• High scale seesaw implies falsifiable correlation with other ν mass probes      

Tritium β decay0νββ decay
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Diagnosing power
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KATRINProject8
Ton scale Ton scale

Cosmology
2404.03002

(95% CL limit)

Bound is quite sensitive to 
prior on Σ  (Σ>0 used)

Diagnosing power

• Future data coupled with improved theory can challenge the 3-neutrino paradigm and reveal new 
sources of LNV or physics beyond  “ΛCDM + mν”              



Cosmology 

• High scale seesaw implies falsifiable correlation with other ν mass probes      

Tritium β decay0νββ decay

19

KATRINProject8
Ton scale Ton scale

Cosmology
2404.03002

(95% CL limit)

Bound is quite sensitive to 
prior on Σ  (Σ>0 used)

Diagnosing power

These important quantitative 
connections require knowing 
nuclear matrix elements and 
their uncertainties!           

Engel-Menendez 1610.06548

• Future data coupled with improved theory can challenge the 3-neutrino paradigm and reveal new 
sources of LNV or physics beyond  “ΛCDM + mν”              



Hadronic ΔL=2 amplitudes in EFT

n p

n p

νM 

e− e−

k

⊗ ⊗Quarks, 
gluons

mββ

GF GF 

V. C.,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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Scalar massless propagator

• ΔL=2 amplitudes determined by neutrino-less non-local effective action

V. C.,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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Hadronic ΔL=2 amplitudes in EFT

n p

n p

νM 

e− e−
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gluons

mββ

GF GF 



• ΔL=2 amplitudes determined by neutrino-less non-local effective action

V. C.,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729

22

Hadronic ΔL=2 amplitudes in EFT

n p

n p

νM 

e− e−

k

⊗ ⊗Quarks, 
gluons

mββ

GF GF 

Momentum space representation

Chiral EFT captures contributions 
from all relevant momentum regions 

LNV hadronic amplitudes such 
as nn → ppee in principle 
receive contributions from 

neutrinos of all virtualities (k)

m↵� ⌫↵L⌫
�

R
+ h.c.

m↵� ⌫
↵T

L
C⌫�

L
+ h.c.

m ⌫̄L⌫R + h.c. = m ⌫̄⌫ ⌫ = ⌫L + ⌫R

m ⌫T
L
C⌫L + h.c. = m ⌫̄⌫ ⌫ = ⌫L + ⌫c

L
= ⌫c

⌫c = C⌫̄T

�⌫ ⌫

 c = C ̄T = i�2 
⇤

C = i�2�0

 L/R =
1⌥ �5

2
 

m ⌫c
L
⌫L + h.c. = m ⌫̄⌫ ⌫ = ⌫L + ⌫c

L
= ⌫c

C1,2 =

✓
mNC

4⇡

◆2

C̃1,2

C1,2 =

✓
mNC1S0

4⇡

◆2

C̃1,2

g⌫ = C1

4

kμ = (k0, k)



Classifying contributions

n p

n p

νM 

e− e−

k

⊗ ⊗

π

e−

e−

π

g

“Hard neutrinos”:                                                
k0, |k| > Λχ ~ mN ~ GeV  

Short-range ΔL=2 operators at the hadronic level, 
still proportional to mββ
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νM 

e− e−

k

⊗ ⊗

g

“Hard neutrinos”:                                                
k0, |k| > Λχ ~ mN ~ GeV  

Short-range ΔL=2 operators at the hadronic level, 
still proportional to mββ

23

Short- and pion-range contributions to  
“Neutrino potential” mediating nn→pp            

Chiral realization of dim-9 operators

Pion-range 
effects

Short-range 
effects

Vergados 1982,  Faessler, Kovalenko, Simkovic, Schweiger 1996 
Prezeau, Ramsey-Musolf, Vogel  hep-ph/0303205 

Oi

20



Classifying contributions

n p

n p

νM 

e− e−

k

⊗ ⊗

24

“Soft” & “Potential” neutrinos:                                            
Soft:         (k0, |k|)~ Q ~ kF ~ mπ                     

Potential:  (k0,|k|) ~ (Q2/mN,  Q)   

At the nuclear level, these operators 
mediate the transition between the 

initial (0+) and final (0+)  nuclear states

Calculable  long- and pion-range contributions 
to the  “Neutrino potential” mediating nn→pp            



“UltraSoft” neutrinos:     

(k0, |k|) ~ Q2/mN <<  kF

Double insertions of the weak current 
at the hadronic / nuclear level

Sum over intermediate  nuclear states

n p

n p

νM 

e− e−

k

⊗ ⊗

νM 

e− e−

 i(0+) f (0+)n 

Classifying contributions

25



Nuclear scale effective Hamiltonian

n p

n p

νM 

e− e−

k

⊗ ⊗

26

“Isotensor” 0νββ potential mediates nn→pp.                   
It can be identified to a given order in Q/Λχ by 

computing 2-nucleon amplitudes

“Ultra-soft” (e, ν) with (E,|p|) <<  kF     
cannot be integrated out

Kinetic energy and strong NN potential 



Figure adapted from Primakoff-Rosen 1969

+  VI=2 

Anatomy of 0νββ amplitude in EFT

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

LO

 VI=2 

N2LO
27
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+  VI=2 

Anatomy of 0νββ amplitude in EFT

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

 Ultrasoft ν

Loop calculable in terms of En -Ei  and       
<f |Jμ|n><n|Jμ|i>, that also control 2νββ. 
Contributes to the amplitude at N2LO

LO

 VI=2 

N2LO
27



Figure adapted from Primakoff-Rosen 1969

Connection with non-EFT approach

28

Ĝ+(k0±). Performing the integration over k0 in Eq. (2.18) with Cauchy’s theorem,4 one arrives
at

ÔLL(k) =
1

|k|
JL
µ (0) Ĝ+(Ẽ � |k|) (2⇡)3

h
�(3)(P̂� k+) + �(3)(P̂� k�)

i
JLµ(0) . (2.21)

Further inserting a complete set of states between the current operators in Eq. (2.21) leads to
the spectral representation for the amplitude5

A⌫ = �

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf�|JL

µ |n(k+)ihn(k+)|JLµ
|i+i

|k|+ (En(k+)� Ẽ)� i✏
+

hf�|JL
µ |n(k�)ihn(k�)|JLµ

|i+i

|k|+ (En(k�)� Ẽ)� i✏

#
.

(2.22)
[Equation for talk]

A⌫ /

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf |JL

µ (k)|nihn|J
Lµ(�k)|ii

|k|+ (En � Ei + Ee2)
+

hf |JL
µ (k)|nihn|J

Lµ(�k)|ii

|k|+ (En � Ei + Ee1)

#
(2.23)

The representations (2.17) and (2.22) are quite general. The asymptotic behavior of the
integrand in Eq. (2.22) at large |k| is dictated by the OPE for ⇧̂LL

µ⌫ (k) or, equivalently, Ô
LL(k).

An explicit calculation to be described below shows the behavior d3k/|k|5, so the amplitude in
the full theory is finite. Moreover, Eq. (2.22) shows that once |k| > kF , so that k2/mN is above
the typical nuclear binding energies, one expects (En(k±)� Ẽ) > 0 even for bound intermediate
states (such as the deuteron), and therefore the energy denominators in Eq. (2.22) will not lead
to any singular behavior in the variable |k|. The matrix elements in the numerator are also
expected to have a smooth behavior in |k|, dictated by single- and multi-hadron form factors, as
shown by explicit EFT calculations. Based on these considerations, we conclude that a smooth
interpolation between the calculable regimes of |k| . ⇤� and |k| & ⇤ is adequate.

In order to make the integrand in Eqs. (2.17) and (2.22) more explicit, we use the expression
for the scattering states (2.16) in Eq. (2.17) and arrive at

A⌫ =

Z
d3k

(2⇡)3
hf0|

⇣
T̂ (E0)Ĝ(0)

+ (E0) + I
⌘
ÔLL(k)
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+ (E) T̂ (E)
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|i0i (2.24)

=

Z
d3k

(2⇡)3

(
hf0| Ô
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m
hm| ÔLL(k) |i0i
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X
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X
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+ (E0)
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m0
hm0

| ÔLL(k) |mi

h
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+ (E)
i

m
hm| T̂ (E) |i0i

)
,

4For each term in Eq. (2.19), one can close the contour in the upper or lower k0 plane so that the integral is
given by the residue at the k0 pole from the neutrino propagator in Eq. (2.18).

5The summation is over intermediate states |n(k±)i of total three-momentum k±, enforced by the �-functions
in Eq. (2.21). Therefore, for an N -particle intermediate state

P
n
involves phase space integrals over the N � 1

internal momenta (the total momentum being fixed to k±) and carries non-zero mass dimension. For example, for
two-nucleon intermediate states, using non-relativistic normalizations for the states hpn|p0

ni = (2⇡)3�(3)(pn�p0
n)

one has
P

n
!

R
d3pn/(2⇡)

3, where pn is the relative momentum of the two-nucleon pair. In general the
summation

P
n

|n(k±)ihn(k±)| carries mass dimension �3.

9

• EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): 
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The representations (2.17) and (2.22) are quite general. The asymptotic behavior of the
integrand in Eq. (2.22) at large |k| is dictated by the OPE for ⇧̂LL

µ⌫ (k) or, equivalently, Ô
LL(k).

An explicit calculation to be described below shows the behavior d3k/|k|5, so the amplitude in
the full theory is finite. Moreover, Eq. (2.22) shows that once |k| > kF , so that k2/mN is above
the typical nuclear binding energies, one expects (En(k±)� Ẽ) > 0 even for bound intermediate
states (such as the deuteron), and therefore the energy denominators in Eq. (2.22) will not lead
to any singular behavior in the variable |k|. The matrix elements in the numerator are also
expected to have a smooth behavior in |k|, dictated by single- and multi-hadron form factors, as
shown by explicit EFT calculations. Based on these considerations, we conclude that a smooth
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• EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): 

Quark-level weak currents Complete set of QCD states
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• EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): 

Quark-level weak currents Complete set of QCD states

• Note:   for hard, soft, and potential modes the ‘closure approximation’ is justified  (                                    )
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|k| >> En � Ei + Eej

The representations (2.17) and (2.22) are quite general. The asymptotic behavior of the
integrand in Eq. (2.22) at large |k| is dictated by the OPE for ⇧̂LL

µ⌫ (k) or, equivalently, Ô
LL(k).

An explicit calculation to be described below shows the behavior d3k/|k|5, so the amplitude in
the full theory is finite. Moreover, Eq. (2.22) shows that once |k| > kF , so that k2/mN is above
the typical nuclear binding energies, one expects (En(k±)� Ẽ) > 0 even for bound intermediate
states (such as the deuteron), and therefore the energy denominators in Eq. (2.22) will not lead
to any singular behavior in the variable |k|. The matrix elements in the numerator are also
expected to have a smooth behavior in |k|, dictated by single- and multi-hadron form factors, as
shown by explicit EFT calculations. Based on these considerations, we conclude that a smooth
interpolation between the calculable regimes of |k| . ⇤� and |k| & ⇤ is adequate.

In order to make the integrand in Eqs. (2.17) and (2.22) more explicit, we use the expression
for the scattering states (2.16) in Eq. (2.17) and arrive at

A⌫ =

Z
d3k

(2⇡)3
hf0|

⇣
T̂ (E0)Ĝ(0)

+ (E0) + I
⌘
ÔLL(k)

⇣
I + Ĝ(0)

+ (E) T̂ (E)
⌘
|i0i (2.24)

=

Z
d3k

(2⇡)3

(
hf0| Ô

LL(k) |i0i

+
X

m

hf0|T̂ (E
0)|mi

h
G(0)

+ (E0)
i

m
hm| ÔLL(k) |i0i

+
X

m

hf0| Ô
LL(k) |mi

h
G(0)

+ (E)
i

m
hm|T̂ (E)|i0i

4For each term in Eq. (2.19), one can close the contour in the upper or lower k0 plane so that the integral is
given by the residue at the k0 pole from the neutrino propagator in Eq. (2.18).

5The summation is over intermediate states |n(k±)i of total three-momentum k±, enforced by the �-functions
in Eq. (2.21). Therefore, for an N -particle intermediate state

P
n
involves phase space integrals over the N � 1

internal momenta (the total momentum being fixed to k±) and carries non-zero mass dimension. For example, for
two-nucleon intermediate states, using non-relativistic normalizations for the states hpn|p0

ni = (2⇡)3�(3)(pn�p0
n)

one has
P

n
!

R
d3pn/(2⇡)

3, where pn is the relative momentum of the two-nucleon pair. In general the
summation

P
n

|n(k±)ihn(k±)| carries mass dimension �3.
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Figure adapted from Primakoff-Rosen 1969

Connection with non-EFT approach

29

• Traditional approach uses this form at the nucleon level   

Nucleon-level weak currents
Complete set of nuclear states

(Built as bound states of nucleons) 

• Note:  the sum over nuclear states cannot reproduce effect of hard modes, that probe different degrees of freedom! 

Ĝ+(k0±). Performing the integration over k0 in Eq. (2.18) with Cauchy’s theorem,4 one arrives
at

ÔLL(k) =
1

|k|
JL
µ (0) Ĝ+(Ẽ � |k|) (2⇡)3

h
�(3)(P̂� k+) + �(3)(P̂� k�)

i
JLµ(0) . (2.21)

Further inserting a complete set of states between the current operators in Eq. (2.21) leads to
the spectral representation for the amplitude5

A⌫ = �

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf�|JL

µ |n(k+)ihn(k+)|JLµ
|i+i

|k|+ (En(k+)� Ẽ)� i✏
+

hf�|JL
µ |n(k�)ihn(k�)|JLµ

|i+i

|k|+ (En(k�)� Ẽ)� i✏

#
.

(2.22)
[Equation for talk]

A⌫ /

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf |JL

µ (k)|nihn|J
Lµ(�k)|ii

|k|+ (En � Ei + Ee2)
+

hf |JL
µ (k)|nihn|J

Lµ(�k)|ii

|k|+ (En � Ei + Ee1)

#
(2.23)

The representations (2.17) and (2.22) are quite general. The asymptotic behavior of the
integrand in Eq. (2.22) at large |k| is dictated by the OPE for ⇧̂LL

µ⌫ (k) or, equivalently, Ô
LL(k).

An explicit calculation to be described below shows the behavior d3k/|k|5, so the amplitude in
the full theory is finite. Moreover, Eq. (2.22) shows that once |k| > kF , so that k2/mN is above
the typical nuclear binding energies, one expects (En(k±)� Ẽ) > 0 even for bound intermediate
states (such as the deuteron), and therefore the energy denominators in Eq. (2.22) will not lead
to any singular behavior in the variable |k|. The matrix elements in the numerator are also
expected to have a smooth behavior in |k|, dictated by single- and multi-hadron form factors, as
shown by explicit EFT calculations. Based on these considerations, we conclude that a smooth
interpolation between the calculable regimes of |k| . ⇤� and |k| & ⇤ is adequate.

In order to make the integrand in Eqs. (2.17) and (2.22) more explicit, we use the expression
for the scattering states (2.16) in Eq. (2.17) and arrive at

A⌫ =

Z
d3k

(2⇡)3
hf0|

⇣
T̂ (E0)Ĝ(0)

+ (E0) + I
⌘
ÔLL(k)

⇣
I + Ĝ(0)

+ (E) T̂ (E)
⌘
|i0i (2.24)

=

Z
d3k

(2⇡)3

(
hf0| Ô

LL(k) |i0i

+
X

m

hf0|T̂ (E
0)|mi

h
G(0)

+ (E0)
i

m
hm| ÔLL(k) |i0i

+
X

m

hf0| Ô
LL(k) |mi

h
G(0)

+ (E)
i

m
hm|T̂ (E)|i0i

+
X

m,m0

hf0|T̂ (E
0)|m0

i

h
G(0)

+ (E0)
i

m0
hm0

| ÔLL(k) |mi

h
G(0)

+ (E)
i

m
hm| T̂ (E) |i0i

)
,

4For each term in Eq. (2.19), one can close the contour in the upper or lower k0 plane so that the integral is
given by the residue at the k0 pole from the neutrino propagator in Eq. (2.18).

5The summation is over intermediate states |n(k±)i of total three-momentum k±, enforced by the �-functions
in Eq. (2.21). Therefore, for an N -particle intermediate state

P
n
involves phase space integrals over the N � 1

internal momenta (the total momentum being fixed to k±) and carries non-zero mass dimension. For example, for
two-nucleon intermediate states, using non-relativistic normalizations for the states hpn|p0

ni = (2⇡)3�(3)(pn�p0
n)

one has
P

n
!

R
d3pn/(2⇡)

3, where pn is the relative momentum of the two-nucleon pair. In general the
summation

P
n

|n(k±)ihn(k±)| carries mass dimension �3.
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Figure adapted from Primakoff-Rosen 1969

+  VI=2 

Back to EFT

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

 Ultrasoft ν

Loop calculable in terms of En -Ei  and       
<f |Jμ|n><n|Jμ|i>, that also control 2νββ. 
Contributes to the amplitude at N2LO
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Key new insight from EFT
  VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti,  S. Pastore, U. van Kolck  1802.10097

gν  

νM 
‘Usual’ νM exchange ~1/kF2 ~1/Q2 
Coulomb-like long-range potential  

VC,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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• To leading order (LO) in Q/Λχ  (Q~kF~mπ,  Λχ~GeV),  the nn → pp transition operator has two contributions: 

Hadronic 
input: gA

Potential 
neutrino 
exchange

Hard
 neutrino 
exchange

gν  ~ 1/Q2   >>1/Λχ2 ~1/(4πFπ)2  

 (Much larger than estimate from Naive 
Dimensional Analysis)               
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‘New’:  short-range potential with 
coupling gν ~1/Q2 

d u

d u

νM 

• To leading order (LO) in Q/Λχ  (Q~kF~mπ,  Λχ~GeV),  the nn → pp transition operator has two contributions: 
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• LO contact term is required by renormalization of the 1S0 nn→pp amplitude in presence of strong interactions  

UV divergence ∝ (mNC/4π)2 ~1/Q2

+ + +…

C ~ 4π/(mNQ)   LO strong potential π C 

Key new insight from EFT

• To leading order (LO) in Q/Λχ  (Q~kF~mπ,  Λχ~GeV),  the nn → pp transition operator has two contributions: 



  VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti,  S. Pastore, U. van Kolck  1802.10097
VC,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729

• Renormalization group running induced by short-range nuclear interaction in 1S0 channel implies that the 
coupling flows to gν  ~ 1/Q2   >>  1/(4πFπ)2

Key new insight from EFT

• To leading order (LO) in Q/Λχ  (Q~kF~mπ,  Λχ~GeV),  the nn → pp transition operator has two contributions: 

33

• LO contact term is required by renormalization of the 1S0 nn→pp amplitude in presence of strong interactions  3

(A) (B)

(D)(C)

FIG. 2: LO topologies for 0⌫��: the thick solid lines denote
nucleons and the oriented ones leptons (internal neutrino and
external electrons). The squares denote LNV vertices. The
diagrams for the electromagnetic current are obtained by re-
placing the internal neutrinos by photons, omitting the ex-
ternal electrons, and adding an additional topology with the
internal neutrinos replaced by pions. In the full theory, the
EFT vertices, here denoted by gray circles and diamonds, are
supplemented by the appropriate form factors and scattering
amplitudes that capture the momentum dependence of the
elastic NN intermediate-state contributions. Iterations of the
NN strong Yukawa and short-range interactions (diamonds)
are not shown as they are irrelevant for the matching analysis.

has been inserted. In our matching procedure, the low-
energy contribution is instead identified by introducing a
cuto↵ in |k|, which leads to

Z< =
3

16⇡2F 2
⇡

Z
⇤

0

d|k| |k|
(!V � |k|)2(2!V + |k|)

!3

V

, (6)

with !V =
p
M2

V + |k|2. For ⇤ ! 1 this expression
agrees with Eq. (5). For our application, the ⇢-pole ap-
proximation for FV

⇡ is su�cient, but could be extended
by introducing a dispersive representation [67], whose
Cauchy kernel would be treated in analogy to the vector-
meson propagator above, via the residues in the k0 inte-
gration. Second, we find

Z> =
3↵s(µ)g⇡⇡LR(µ)

16⇡

Z 1

⇤

d|k|
1

|k|3
, (7)

with coe�cient g⇡⇡LR = (4⇡F⇡)2ḡ⇡⇡LR, ḡ⇡⇡LR = 8.2 at MS
scale µ = 2GeV [68] (see Refs. [69, 70] for the OPE
contribution in the nucleon case). At scale ⇤ = 2GeV
we find for the sum Z = Z< + Z> = 0.60 + 0.03 = 0.63,
which for ⇤ ! 1 approaches Z = 0.67. The deficit to
Eq. (4) is understood in terms of inelastic contributions
from axial-vector intermediate states [55–59], which
provides another estimate of the error incurred by only
considering elastic contributions.

CONTACT TERM IN 0⌫�� DECAY

The nn ! ppe�e� amplitude in chiral EFT takes the
form

A
EFT

⌫ = AA +AB +AC +AD, (8)

where the four terms correspond to the topologies in
Fig. 2, and renormalization of the divergence in AC

requires the LO contact term AD. For the match-
ing, only these latter two topologies become relevant.
In particular, only the ultraviolet singular part of the
C topology—i.e., the one involving noninteracting two-
nucleon propagators—enters the matching condition,
which can be expressed in terms of dimensionless am-
plitudes as

Ā
<,sing
C + Ā

>
C = Ā

sing

C (µ�) + 2C̃1(µ�). (9)

The left-hand side refers to the full amplitude, separated
into momentum regions in analogy to Z7 above, while
the right-hand side gives the amplitude in chiral EFT
including the contact term C̃1 at MS scale µ� (we use
here the notation of Ref. [43]). The explicit expressions
are

Ā
<,sing
C =

Z
⇤

0

d|k| a<(|k|), Ā
>
C =

Z 1

⇤

d|k| a>(|k|),

Ā
sing

C (µ�) = �
1 + 2g2A

2
+

Z µ�

0

d|k| a�(|k|), (10)

with integrands

a<(|k|) = �
r(|k|)

|k|
✓(|k|� 2|p|)

⇥

⇥
gV (k

2)
⇤2

+ 2
⇥
gA(k

2)
⇤2

+
k2

⇥
gM (k2)

⇤2

2m2

N

�
,

a>(|k|) =
3↵s(µ)

⇡
ḡNN
1

(µ)
F 2
⇡

|k|3
,

a�(|k|) = �(1 + 2g2A)
1

|k|
✓(|k|� 2|p|), (11)

where gV,A,M (k2) refers to the appropriate nucleon form
factors in analogy to FV

⇡ (k2) above, ḡNN
1

(µ) is the two-
nucleon matrix element of the local operator controlling
the short-distance behavior of T{jµ

w
(x)j⌫

w
(0)}, and p de-

notes the momentum of the incoming nn pair. In ad-
dition, compared to the pion mass example, there is a
new source of momentum dependence originating from
the NN scattering amplitude itself, parameterized here
in terms of r(|k|). At LO in chiral EFT rLO(|k|) = 1,
with corrections that, in pionless EFT, can be identi-
fied with the e↵ective range r0, rNLO

/⇡ (|k|) = 1� r0|k|/⇡.

In practice, we have evaluated r(|k|) using NLO chiral
EFT as well as the NN potentials from Refs. [71–73],
see Ref. [74] for more details. For the nucleon form fac-
tors simple dipole parameterizations are su�cient, with

n

n p

pe

e

ν C ~ 4π/(mNQ)  

gν  

+



Connection with data? 

• NN scattering data at low energy  (ann+app-2anp) determine C1+C2, confirming LO scaling!

• Isospin symmetry relates gν to one of two I=2 e.m. couplings (hard γ’s versus hard ν’s)  

34

Quarks, 
gluons

Quarks, 
gluons



Impact on nuclear matrix elements 

35

• Assuming gν~(C1+C2)/2  → O(1) impact on m.e.  and mββ extraction

Jokiniemi-Soriano-Menendez,  2107.13354 

ML

ML+MS

ML-MS

Key question:                   
is the interference 

constructive or 
destructive? 

For 76Ge: 
30-70% effect in QRPA 

and 15-45% in NSM. 
Similar or large in other isotopes 



Impact on nuclear matrix elements 
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• Assuming gν~(C1+C2)/2  → O(1) impact on m.e.  and mββ extraction

• Several approaches to determine gν 

• Dispersive approach inspired by Cottingham formula for δmp,n (EM) 

• Large-NC arguments point to  gν~(C1+C2)/2  

Tuo  et al.  1909.13525;  
  Detmold, Murphy 2004.07404 Davoudi, Kadam,  2012.02083 

Richardson, Shindler, Pastore, Springer, 
2102.02814

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

• Lattice QCD  — gearing up



Estimating the contact term
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The amplitude for the neutrinoless double � (0⌫��) decay of the two-neutron system, nn !
ppe�e�, constitutes a key building block for nuclear-structure calculations of heavy nuclei employed
in large-scale 0⌫�� searches. Assuming that the 0⌫�� process is mediated by a light-Majorana-
neutrino exchange, a systematic analysis in chiral e↵ective field theory shows that already at leading
order a contact operator is required to ensure renormalizability. In this work, we develop a method
to estimate the numerical value of its coe�cient in analogy to the Cottingham formula and validate
the result by reproducing the charge-independence-breaking contribution to the nucleon–nucleon
scattering lengths. Our central result, while derived in the MS scheme, is given in terms of the
renormalized amplitude A⌫(|p|, |p0|), matching to which will allow one to determine the contact-
term contribution in regularization schemes employed in nuclear-structure calculations. Our results
thus greatly reduce a crucial uncertainty in the interpretation of searches for 0⌫�� decay.

INTRODUCTION

Neutrinoless double � decay is by far the most sensi-
tive laboratory probe of lepton number violation (LNV).
Its observation would prove that neutrinos are Majo-
rana fermions, constrain neutrino mass parameters, and
provide experimental validation for leptogenesis scenar-
ios [1–4]. If 0⌫�� decay is caused by the exchange of
light Majorana neutrinos, as we consider here, the am-
plitude is proportional to the “e↵ective” neutrino mass
m�� =

P
i U

2

eimi, where the sum runs over light neutrino
masses mi and Uei are elements of the neutrino-mixing
matrix. 0⌫�� is a complicated process involving parti-
cle, nuclear, and atomic physics and the interpretation of
experimental limits [5–10], and even more so of potential
future discoveries, is hampered by substantial uncertain-
ties in the calculation of hadronic and nuclear matrix
elements [11–19].

Chiral e↵ective field theory (EFT) [20–25] plays a key
role in addressing these uncertainties. Nuclear struc-
ture, ab-initio calculations based on chiral-EFT inter-
actions [26–28] have recently become available for some
phenomenologically relevant nuclei [29–31] and the issue
of gA quenching in single � decays has been resolved as
a combination of two-nucleon weak currents and strong
correlations in the nucleus [32–34]. In addition, the few-
nucleon amplitudes used as input in nuclear structure cal-
culations have been scrutinized in chiral EFT for various
sources of LNV [35–44]. In the context of light-Majorana-
neutrino exchange, using naive dimensional counting, the
leading contribution in the chiral-EFT expansion arises
from a neutrino-exchange diagram, in which the LNV
arises from insertion of the �L = 2 e↵ective neutrino
mass m�� . In analogy to the nucleon–nucleon (NN) po-

FIG. 1: Forward scattering amplitude (left) and self-energy
contraction (right). The solid line refers to the hadronic states
(pion, nucleon, two-nucleon), the gray blob to the nonpertur-
bative amplitude, and the wiggly lines to the massless medi-
ator attached to the currents (photon or neutrino).

tential itself [23–25] and external currents [45], this con-
clusion no longer holds when demanding manifest renor-
malizability of the amplitude, which requires the promo-
tion of an nn ! ppe�e� contact operator to leading order
(LO) [40, 43], encoding the exchange of neutrinos with
energy/momentum greater than the nuclear scale. The
size of this contact operator is currently unknown, lead-
ing to an additional source of uncertainty in the interpre-
tation of 0⌫�� decays besides the nuclear-structure ones.
In this work we present a first estimate of the complete
nn ! ppe�e� amplitude including this contact-term con-
tribution. For related progress towards a calculation of
this amplitude based on lattice gauge theory, we refer to
the recent literature [46–52].

The hadronic part of the light-Majorana-neutrino-
exchange amplitude has the structure

A⌫ /

Z
d4k

(2⇡)4
gµ⌫

k2 + i✏

Z
d4x eik·xhpp|T{jµ

w
(x)j⌫

w
(0)}|nni

(1)
and is ultimately determined by the two-nucleon matrix
element of the time-ordered product T{jµ

w
(x)j⌫

w
(0)} of
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Cottingham (1963) approach to electromagnetic contributions to hadron masses

Forward Compton amplitude Self-energy ~ mass



Estimating the contact term

nn → pp amplitude controlled by a forward “Compton” amplitude

n p

n p

νM

e− e−

W− (k)W+ (k)

36
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Estimating the contact term

nn → pp amplitude controlled by a forward “Compton” amplitude

n p

n p

νM

e− e−

W− (k)W+ (k)

36

High k: QCD OPE
Low k: chiral EFT to NLO

Intermediate k:  resonance contributions 
in     and     , 

πNN intermediate state, … 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371
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Dominant uncertainty from 
inelastic channels (NNπ , …):

k

k

π

Determined gν  with ~30% uncertainty  (validated with ΔI=2  NN electromagnetic coupling C1 + C2)



Impact of the contact term 
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VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

Determined gν  with ~30% uncertainty  (validated with ΔI=2  NN electromagnetic coupling)

We provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν in nuclear calculations 

[2] Wirth, Yao, Hergert,  2105.05415        [3]  Belley et al, 2307.15156      [4]  Belley et al,   2308.15634 

Contact term fit to synthetic data and used in ab-initio calculations for  
48Ca [1], 130Te [2], 136Xe, [2],   76Ge [3]

 Enhances matrix elements by ~40% [Ca, Ge] and >50% [Te, Xe]  — 

good news for phenomenology, while we wait for Lattice QCD results 



Figure adapted from Primakoff-Rosen 1969

+  VI=2 

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

 Ultrasoft ν

Loop calculable in terms of En -Ei  and       
<f |Jμ|n><n|Jμ|i>, that also control 2νββ. 
Contributes to the amplitude at N2LO

LO

 VI=2 

N2LO
39

What about higher orders?



• Known factorizable corrections to 1-body currents (radii, …) 

N2LO 0νββ potential

• Non-factorizable contributions to Vν,2 ~Vν,0 (kF/4πFπ)2   

[π-N loops and new contact terms] 

• 2-body x 1-body current (and  another contact…)

Wang-Engel-Yao 1805.10276

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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• Known factorizable corrections to 1-body currents (radii, …) 

N2LO 0νββ potential

• Non-factorizable contributions to Vν,2 ~Vν,0 (kF/4πFπ)2   

[π-N loops and new contact terms] 

• 2-body x 1-body current (and  another contact…)

Wang-Engel-Yao 1805.10276

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729

Calculations of these effects in light and heavy nuclei show O(10%) corrections 

S. Pastore,  J. Carlson,  V.C.,   W. Dekens,  E. Mereghetti, R. Wiringa  1710.05026             

40



Ultrasoft neutrino contributions
Figure adapted from Primakoff-Rosen 1969

• Ultrasoft ν’s couple to nuclear states: sensitivity to En -Ei  and <f |Jμ|n><n|Jμ|i>  (see also 2νββ amplitude)

• Ultrasoft ν loop suppressed by (En - Ei)/(4πkF) ~ (Q/Λχ)2→ N2LO contribution.                                           
This scaling is consistent with previous studies of the closure approximation 

• μus dependence cancels with Vν,2. : consistency check 

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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Sen’kov-Horoi 1310.3254 ,   
Wang-Zhao-Meng 2105.02649 



Progress in controlling all uncertainties

42

 Belley et al,   2308.15634  and references therein  4

FIG. 2. Comparison of 0⌫��-decay NMEs in Ge76
from nuclear models and ab initio calculations. a, The NMEs from phenomenological

models, including the interacting-boson model (IBM-2) [9, 34], energy-density-functional (EDF) methods [8, 11], quasiparticle random-phase
approximation (QRPA) [12, 35, 36], interacting shell model (ISM) [7, 10], ISM with generalized contact formalism (ISM-GCF) [37], realistic
shell model (RSM) [13] and e↵ective field theory (EFT) [38], are compared to the results of the VS-IMSRG and IM-GCM using di↵erent chiral
interactions. The error bars of phenomenological nuclear models reflect the discrepancy of calculations from di↵erent groups and the bands
shows results with the short range contributions included [37, 39]. b, The posterior distribution function of the 0⌫�� NME using the MM-DGP
emulator of the VS-IMSRG with 8188 non-implausible samples of chiral interactions from which the confidence intervals are extracted. The
final distribution including all errors yields a value of M0⌫�� = 2.60+1.28

�1.36. The samples are weighted by phase-shifts in the 1S 0 partial wave and
nuclear observables for mass A=2-4,16 as described in the supplemental material [40] . The uncertainties ✏i from EFT, many-body, operator
and emulator are then added independently. See text for details.

with dipole form factors is a good approximation, once the
contact term is properly considered. In short, we take a con-
servative value ✏OP = 0.47 which includes 0.26 from the use of
closure approximation, 0.13 from the uncertainty of the LEC
of the SR transition operator, and 0.08 from the truncation on
the chiral expansion of transition operators.

Finally, ✏EM is given by the MM-DGP emulator as it is
based upon Gaussian Processes, which inherently come with
a variance for each prediction. We obtain the final predic-
tive posterior distribution by sampling the PPD 108 times and
adding errors independently sampled from a normal distribu-
tion for each ✏ term. Figure 2 shows the PPDs obtained with
each error term discussed above, added separately. We find
that M0⌫ = 2.60+1.28

�1.36, where the uncertainty represents a 68%
confidence interval. We compare the PPD with results ob-
tained from the VS-IMSRG and IM-GCM methods, using the
EM1.8/2.0 nuclear interaction [33] and VS-IMSRG with four
other state-of-the-art chiral NN+3N interactions [33, 41, 59].

All these fall within our confidence interval. Our predictions
are further compared to NMEs from various phenomenolog-
ical nuclear models, where the contribution of the contact
transition operator is usually not considered due to the chal-
lenge in determining the unknown LEC of the SR transition
operator in such approaches. With the LECs’s value esti-
mated by considering the charge-independence-breaking cou-
pling of nuclear Hamiltonians, the contribution of the SR op-
erator was quantified with the interacting shell-model (ISM)
and quasiparticle random-phase approximation (QRPA) [39].
Taking this into account, the discrepancy among di↵erent phe-
nomenological models can exceed one order of magnitude, as
depicted in Fig.2.

Conclusions. In summary, we have presented the first
comprehensive uncertainty quantification in ab initio calcu-
lations of NMEs for the 0⌫�� decay of Ge76 using nuclear
interactions derived from �EFT and recently developed many-
body emulators based on the standard mechanism of exchang-

Various nuclear models ‘Ab initio’ methods using 
different chiral interactions 

• Several first-principles many-body methods are 
being used for the calculation of matrix elements

• Sources of quantifiable uncertainty: 

• EFT for nuclear force (effective 
couplings, convergence, … )

• Transition operator (contact term, 
closure approximation,  …)

• Truncations in many-body methods

• Overall uncertainty still sizable but improvable

• Smaller results compared to nuclear models.         

• This input + LEGEND-200 result: 
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in ab initio nuclear theory have followed the parallel de-
velopment of nuclear forces from chiral e↵ective field the-
ory (�EFT) [18, 19], a systematically improvable low-energy
expansion of QCD, where undetermined low-energy con-
stants (LECs) are optimized to data in few-nucleon systems,
and similarity-renormalization-group (SRG) methods [20] for
evolving such forces to the low-energy scale typical for atomic
nuclei. With the resulting interactions and operators, the A-
body Schrödinger equation can now be solved fairly accu-
rately for most atomic nuclei in the medium-mass region [21],
and even in the Pb208 region [22], by employing nonperturba-
tive and systematically improvable many-body methods. The
application of ab initio methods to 0⌫�� decay is important be-
cause theoretical uncertainties related to the many-body wave
functions and transition operators become controllable.

So far, three ab initio methods, the in-medium generator co-
ordinate method (IM-GCM) [23], the valence-space formula-
tion of the in-medium SRG (VS-IMSRG) [24], and coupled-
cluster theory [25], have been used to calculate the NME of
48Ca, the lightest nucleus that could be used in an experiment.
When starting from the same chiral two-nucleon-plus-three-
nucleon (NN+3N) interaction and 0⌫��-decay operators, the
approaches obtain results that agree within roughly estimated
uncertainties. These methods were also successfully bench-
marked against one another, as well as against quasi-exact di-
agonalization in light nuclei [25–27]. The di↵erence between
NMEs for 0⌫�� decay calculated with di↵erent ab initio meth-
ods but the same input has been found to give a useful approxi-
mation to the inaccuracies caused by truncation in many-body
methods. These studies make it feasible to carry out uncer-
tainty quantification in the ab initio prediction of the NMEs
of experimentally relevant nuclei.

The second-lightest such nucleus, Ge76 , is, along with
136Xe, one of the two most important isotopes for exper-
imental searches, and is now within the reach of multiple
ab initio methods. The VS-IMSRG was the first ab initio
approach to calculate the NME for 76Ge, using the long-
range (LR) transition operator associated with standard light-
neutrino exchange [24]. The resulting NME, 2.14(9), was
25-45% smaller than those obtained from phenomenologi-
cal shell-model calculations. However, the contributions of
the recently discovered leading-order short-range (SR) con-
tact transition operator [28] and higher-order terms were not
evaluated. In this work, we now include these contributions.
In particular, we report the results from the IM-GCM calcula-
tion and present the first comprehensive uncertainty quantifi-
cation for the NME in 76Ge using strong and weak interactions
consistently derived within �EFT.

Quantifying the uncertainty in the 0⌫��-decay NME.
For the 0⌫�� decay 76Ge(0+1 ) ! 76Se(0+1 ) + 2e�, the NME,
called M0⌫, can be written as:

M0⌫ = h76Se(0+1 )| Ô0⌫ |76Ge(0+1 )i , (1)

where the decay operator Ô0⌫ is derived in the standard
mechanism of exchange light Majorana neutrinos, depicted
in Fig. 1(a). The wave functions are obtained with the two

TABLE I. The recommended value for the total NME of 0⌫��
decay in Ge76

, together with the uncertainties from di↵erent

sources.
M0⌫ ✏LEC ✏�EFT ✏MBT ✏OP ✏EM

2.60+1.28
�1.36 0.75 0.3 0.88 0.47 <0.06

ab initio methods, i.e., IM-GCM and VS-IMSRG. The main
challenge in the assessment of theoretical error is the propa-
gation of the uncertainties in the LECs from the chiral inter-
action through the complicated many-body calculations that
ultimately produce the NME. To this end, we use the Sam-
pling/Importance Resampling [29] formulation of Bayes’ the-
orem for discrete samples, as was done in Ref. [22] to obtain
a theoretical uncertainty on the neutron skin of 208Pb.

Following this procedure, a posterior predictive distribution
(PPD) of the NMEs depending on the LECs (c) is given by

PPD =
�
M0⌫

k (c) : c ⇠ P(c|calibration)
 
, (2)

where M0⌫
k represents the NME from a specific theoretical cal-

culation (i.e. using a particular many-body method and oper-
ators truncated at order k) and P(c|calibration) represents the
probability of an LEC sample to yield results for a set of cal-
ibration observables that match experimental data. We label
the standard deviation coming from this (non-Gaussian) dis-
tribution ✏LEC to make comparison with other sources of error
easier. As calibration observables, we use properties of nuclei
of mass A = 2�4 and A = 16 as done in Ref. [30] to which we
add the neutron-proton scattering phase shift in the 1S 0 partial
wave at lab energy of 50 MeV, since it has recently been dis-
covered to correlate strongly with the NMEs [31]. The NMEs
for the LEC samples are then evaluated using the recently
developed Multi-output Multi-fidelity Deep Gaussian Process
(MM-DGP) emulator [32] for the VS-IMSRG, which allows
us to, within minutes, predict the results of billions of many-
body calculations that would otherwise take years to perform
in full.

We further assume that our errors are normally distributed
and mutually independent, such that the true value of the NME
in Eq. (1) can be written as:

M0⌫ = M0⌫
k + ✏�EFT + ✏MBT + ✏OP + ✏EM, (3)

where ✏�EFT represents the error coming from truncation of the
nuclear forces, ✏MBT the error from the many-body method,
✏OP the error due to the truncation of the decay operator and
finally, ✏EM the error on the emulated results. The values of the
NME, together with the errors ✏i from di↵erent sources, are
presented in Table I. We detail below how each uncertainty is
assessed.

We employ nuclear interactions derived in a formulation
of �EFT where the �-isobars are considered explicitly [41].
In particular, these interactions are given at next-to-next-to-
leading order (N2LO) in the chiral expansion, where 17 LECs
arise. These interactions are particularly useful for the present
study since more diagrammatic contributions are considered
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date. The Bayesian analysis yields an identical 90% C.I. lower
limit under uniform signal and background priors. Adopting a
prior on the signal rate that assumes equiprobable Majorana
neutrino masses yields a limit of 2.8 ⇥ 1026 yr, stronger than
with a uniform prior as expected in the absence of a signal.

The overall effect of uncertainties in the 0nbb decay signal
model on the limit is at the percent level. Systematic uncer-
tainties in the fit model have a marginal impact; for example,
assuming a linear background shifts the limit by a few percent.

We calculate constraints on the effective Majorana mass <bb
using a range of nuclear matrix elements (NMEs) from phe-
nomenological calculations [58–72], i.e. 2.35–6.34, yielding a
range of upper limits of <bb < 75–200 meV in the frequentist
framework. In addition, we provide a second estimate based
on a recent ab-initio calculation that includes for the first time
a comprehensive Bayesian treatment of theoretical uncertain-
ties [73]. Using this approach, we derive an upper limit of
<bb < 320 meV in the Bayesian framework, with its strength
significantly limited by the large uncertainty in the NME value.
The posterior distributions are available in [30].

We have presented first results from the initial data-taking
phase of LEGEND-200. With the deployment of additional
large mass IC detectors and background reduction through re-
fined surface treatment of nearby components, data acquisition
will resume with an improved detector array. This paper marks
the beginning of the phased LEGEND program, which ulti-
mately aims to operate up to one ton of HPGe detectors enriched
in 76Ge in the future LEGEND-1000 infrastructure [19]. The
program is designed to achieve discovery sensitivities for 0nbb
decay half-lives beyond 1028 years that explore the inverted
and a significant fraction of the normal neutrino mass ordering
regime, as predicted by neutrino oscillation experiments [4, 74].

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of Nu-
clear Physics under Federal Prime Agreements DE-AC02-
05CH11231, DE-AC05-00OR22725, LANLEM78, and un-
der award numbers DE-SC0017594, DE-FG02-97ER41020,
DE-FG02-97ER41033, DE-FG02-97ER41041, DE-FG02-
97ER41042, DE-SC0017594, DOE DE-SC0022339, DE-
SC0012612, DE-SC0018060, and DE-SC0014445. We ac-
knowledge support from the Nuclear Precision Measurements
program of the Division of Physics of the National Science
Foundation through grant numbers NSF PHY-1812374, NSF
PHY-1812356, NSF-PHY-2111140 NSF PHY-1812409, NSF
PHY-2209530, NSF PHY-2312278, and from the Office of
International Science and Engineering of the National Science
Foundation through grant number NSF OISE 1743790. We
gratefully acknowledge the support of the U.S. Department
of Energy through the LANL, ORNL and LBNL Laboratory
Directed Research and Development (LDRD) Programs for
this work. This research is funded in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Excellence Cluster ORIGINS EXC 2094-39078331; SFB1258-
283604770. We acknowledge the support of the German Fed-
eral Ministry for Education and Research (BMBF) through grant
number 05A2023. and the Max Planck Society (MPG). This

work is supported in part by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 786430 – GemX).
We gratefully acknowledge the financial support of the Italian
Istituto Nazionale di Fisica (INFN), the Polish National Science
Centre (NCN, grant number UMO-2020/37/B/ST2/03905), the
Polish Ministry of Science and Higher Education (MNiSW,
grant number DIR/WK/2018/08 and 2022/WK/10), the Czech
Republic Ministry of Education, Youth and Sports LM2023063,
the Slovak Research and Development Agency, grant APVV-
21-0377, and the Swiss National Science Foundation (SNF),
SNF FLARE 20FL20_216572, and FLARE 20FL20_232670,
and SNF 200020_219290. This project has received funding
/support from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie
grant agreement No 860881-HIDDeN. This work has been
supported by the Science and Technology Facilities Council
(STFC), part of U.K. Research and Innovation (grant numbers
ST/W00058X/1 and ST/T004169/1). We acknowledge the
support of the Natural Sciences and Engineering Research
Council of Canada, funding reference number SAPIN-2017-
00023. This research used resources provided by National
Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility at
LBNL, and the Oak Ridge Leadership Computing Facility at
Oak Ridge National Laboratory. We thank the directors and
the staff of the Laboratori Nazionali del Gran Sasso and our
colleagues at the Sanford Underground Research Facility for
their continuous strong support of the LEGEND experiment.
We would like to thank the authors of [73] for providing the
posterior distribution of the NME for the 0nbb decay of 76Ge
considered in this work.

⇤ Present address: Department of Physics, National Taiwan Uni-
versity, Taipei, 10617, Taiwan

† Present address: Air Force Institute of Technology, Dayton, Ohio
45433, USA

‡ Present Address: 111 Huntington Ave 14th floor, Boston, MA
02199

§ Present address: The Henryk Niewodniczański Institute of Nu-
clear Physics Polish Academy of Sciences, Kraków, Poland

¶ Present address: Pacific Northwest National Laboratory, Rich-
land, WA 99354, USA

⇤⇤ Correspondence: editorial-board@legend-exp.org; Web home-
page: https://legend-exp.org

†† Institutional Board membership suspended since April 26, 2022.
[1] M. Fukugita and T. Yanagida, Baryogenesis without grand unifi-

cation, Phys. Lett. B 174, 45 (1986).
[2] E. Majorana, Teoria simmetrica dell’elettrone e del positrone,

Nuovo Cim. 14, 171 (1937).
[3] J. Schechter and J. W. F. Valle, Neutrinoless double-V decay in

SU(2) ⇥ U(1) theories, Phys. Rev. D 25, 2951 (1982).
[4] M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vis-

sani, Toward the discovery of matter creation with neutrinoless
VV decay, Rev. Mod. Phys. 95, 025002 (2023).

[5] J. J. Gómez-Cadenas, J. Martín-Albo, J. Menéndez, M. Mezzetto,

LEGEND-200: 2505.10440



43

Backup



Contact term: results & validation
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• LECs in dim. reg.  with modified minimal subtraction 

Uncertainty in matrix 
element of local operator 
controlling the high-k tail 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



Contact term: results & validation

44

• LECs in dim. reg.  with modified minimal subtraction 

• Validation:  use C1+C2 to predict CIB scattering lengths to LO in χEFT

Uncertainty estimate is realistic

vs                        from data       

Fairly good agreement.  

Note:  (C1+C2)(Mπ)=0   →  aCIB ~ 30 fm:  contact term pushes result in the right direction. 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



Connecting to nuclear structure
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Uncertainty dominated by topology C (fractional error of ~30-40%), 
but A and B give large contribution to the amplitude at this kinematic point 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

• Provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν with regulators suitable for 
many-body nuclear calculations 



Λ= 2 fm-1

Λ= 20 fm-1

Contact term

Long-range

Total (synthetic data)  

• Provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν with regulators suitable for 
many-body nuclear calculations 

Connecting to nuclear structure

• Constructive or destructive?  The sign 
of the interference is regulator 
dependent!

46

• Illustrated fitting procedure with 
various cutoffs  

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



• ‘Ab-initio’ results (VS-IMSRG) tend to be systematically lower than phenomenological nuclear models, 
with signifiant impact on the interpretation of current and future experiments in terms of mββ

Matrix elements for 130Te and 136Xe
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FIG. 2. Range of ab initio VS-IMSRG results compared
to nuclear models calculations of the NME, excluding (lines)
and including (bands) the short-range contact term, denoted
ML and ML+MS respectively. For nuclear models the sign
of the short-range term is unknown, giving rise two possible
bands. The box labelled “Phen.” represents the spread of phe-
nomenological values typically used to interpret experimental
results.

in nuclear structure calculations and include the contact
term to provide ab initio results for the heaviest of the
most prominent experimental isotopes, 130Te and 136Xe.
We explore implications on existing and future searches
as well as refined limits on the effective neutrino mass.

In Fig. 1 we show the convergence of each operator
contributing to the final NME, starting from three state-
of-the-art parameterizations of chiral NN and 3N forces.
Convergence must be reached for both the size of the
single-particle space, denoted emax, as well as the addi-
tional energy cut on included 3N forces, denoted E3max

(see Methods for details). As we show in the Extended
Data and by the color gradients on Fig. 1, our results are
converged to better than 2% at emax = 14, i.e., 15 major
harmonic-oscillator shells, so we focus the discussion here
on E3max. We illustrate this in Fig. 1, where all operators
are well converged at E3max = 28, while noting that for
the previous limit of E3max = 18, this is not the case for
any NME component with any interaction. In order to
include all contributions from 3N forces, we would require
E3max = 3 · emax, but since this has not been achievable
until recently for large emax values [28], we instead use
extrapolation techniques [24] to obtain values for full 3N
forces at emax = 10 � 14. We then finally extrapolate
the results including all 3N forces to an infinite model
space size using an exponential fit. Due to truncation

of many-body operators in the IMSRG procedure (see
Methods), our calculation depends on the choice of ref-
erence state (e.g., parent or daughter nucleus), which we
also illustrate as bands in Fig. 1.

Taking the final results for all components together,
we find the following NME values:

130Te : M0⌫�� 2 [1.52, 2.40]
136Xe : M0⌫�� 2 [1.08, 1.90].

While the spread arises primarily from choice of nuclear
interaction, we note it also includes reference-state de-
pendence, basis extrapolation, the uncertainty coming
from the closure approximation (see Methods), and the
coefficient gNN

⌫
. While a rigorous statistical analysis is

currently in progress using IMSRG-based emulators, we
have recently observed that the NMEs are strongly cor-
related with the scattering phase shift in the 1S0 (spin-
singlet) partial wave. Since this quantity is very well
reproduced by all interactions used in this work, we ex-
pect the spread given here to likely be representative of
the final value of the NME.

In Fig. 2, we compare our ab initio results to three
other classes of calculations: i) phenomenological nuclear
models that do not include the short-range contributions;
ii) phenomenological nuclear models that attempt to es-
timate the possible contributions of the short-range con-
tact; and iii) an EFT approach that uses a possible cor-
relation between 0⌫�� decay and the double Gamow-
Teller charge exchange transition NMEs [29]. These phe-
nomenological models have traditionally been used by
experimental searches to interpret lower lifetime limits
in terms of limits on neutrino masses. Here we include
results from the quasi-particle random-phase approxima-
tion (QRPA) [30–35], the nuclear shell-model (NSM) [35–
38], the interacting-boson model (IBM) [39, 40], both
relativistic and non-relativistic energy density functional
theory (EDF) [41–44], and a hybrid approach combining
the NSM using the generalized contact formalism (GCF)
with variational Monte-Carlo results in light nuclei to fix
short-range correlations [45].

Several attempts have been made to estimate the
short-range contributions within these models by tak-
ing the charge-independence-breaking coupling constant
of the nuclear Hamiltonian as the coupling constant for
the contact operator. Since the sign of this coupling is
unknown, there are two possible bands for these NMEs.
Nevertheless, first results have been obtained with QRPA
and NSM [35] as well as the GCF formalism [45]. As seen
in Fig. 2, ab initio results increase on the order of 60-90%
when including the contact term, still lie at the lower end
of NME values with a significantly smaller spread from
starting NN+3N forces. While work remains to more ro-
bustly assess EFT truncation uncertainties, our results
appear to strongly disfavour the larger NMEs obtained
with particular phenomenological models.
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FIG. 3. Effective neutrino mass, m�� , extracted from current
experimental limits in 130Te and 136Xe using phenomenolog-
ical or ab initio NMEs from Fig. 2, compared to the allowed
phase-space for both the normal and inverted hierarchies.
Lighter shades of the allowed phase-space indicate the 3� er-
ror on the neutrino oscillation parameters taken from [46].

To interpret the implications for neutrino masses, the
NME connects a given 0⌫�� decay lifetime limit to the
effective neutrino mass through the following relation:

[T 0⌫��
1/2 ]�1 = G0⌫ |M0⌫�� |2

✓
hm��i
me

◆2

,

where T 0⌫��
1/2 is the half-life of the decay, G0⌫ a well-

established phase-space factor [47], M0⌫�� the NME, and
m�� is the effective Majorana mass of the neutrino. We
relate m�� to the neutrino mass eigenstates, mk, via
hm��i =

P
k
U2
ek
mk, where Uek are the elements of the

Pontecorvo–Maki–Nakagawa–Sakata matrix, connecting
neutrino mass and flavour eigenstates. While the abso-
lute scale of the mass eigenstates is unknown, we know
m1 and m2 have a similar squared masses in addition
to the squared mass difference between these two and
m3 [48]. This creates two different scenarios: the nor-
mal hierarchy (NH), where m3 is the heaviest; and the
inverted hierarchy (IH), where m3 is the lightest. Using
the values of the oscillation parameters [46], we can con-
strain the allowed effective mass of the neutrino, m�� ,
as a function of the lightest neutrino state, mlightest, for
both hierarchies.

In Fig. 3, we compare limits on the effective neutrino
mass to allowed values for both hierarchies, extracted
with either conventional phenomenological NMEs or our
ab initio results (using accepted G0⌫ values [47]). Here we
take the half-life limits from CUORE [46] (T 0⌫��

1/2 > 2.2⇥
1025yr) and KamLAND-Zen [3] (T 0⌫��

1/2 > 2.3 ⇥ 1026yr),

the current best experimental limits for 130Te and 136Xe,
respectively. We see that with ab initio NMEs, not only
is the uncertainty significantly smaller, but the exper-
imental reach is reduced by nearly an order of magni-
tude. Our results suggest that, except for the quasi-
degenerate region where neutrino masses are nearly the
same for both hierarchies, most of the allowed effective
neutrino mass phase space has not yet been probed by
any current experiment. This is in contrast to claims
that, with particular phenomenological NMEs, the in-
verted mass hierarchy has already been partially probed
by recent KamLAND-Zen observations [3]. Finally, these
new results are vital for the strategic planning of next-
generation ton-scale searches, which endeavour to com-
pletely probe the inverted hierarchy. With anticipated
half-life sensitivities [49] on the order of 1028yr, given the
range of ab initio NMEs presented here, this is unlikely to
be achieved with current time and material allocations.

Ab initio nuclear theory provides the most complete
account for physics expected to be relevant for NMEs in
all 0⌫�� decay nuclei, at once offering a consistent treat-
ment of the new short-range contact contribution, as well
as a viable path towards rigorous quantification of theo-
retical uncertainties. We stress, however, that while these
results are promising first steps in heavy systems, they do
not yet represent final values for the NMEs. Further anal-
ysis of theoretical uncertainties (similar to recent 208Pb
studies [25]) is needed to rigorously assess errors arising
from i) the choice of parameters as well as truncations in
the expansion of chiral nuclear forces, ii) neglected many-
body physics in the IMSRG(2) approximation, and iii)
neglected higher-order contribution to the 0⌫�� decay
operator. With the development of IMSRG-based emu-
lators, this level of EFT uncertainty quantification is al-
ready within reach and currently underway. Calculations
explicitly including higher-order contributions to the ma-
trix elements, while not relying on the closure approxi-
mation, could potentially reduce the ab initio uncertainty
to the level where discrimination between different pro-
posed 0⌫�� decay mechanisms is possible, in the event
of an eventual observation [7]. Nevertheless the values
presented here, which lie at the lower end of previous
calculations and reduced spread, already have the po-
tential to refine a major obstacle to interpreting current
experimental limits on neutrino masses and planning of
next-generation searches.
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