MAYORANA International School Modica June 19-25 2025

Neutrinoless double beta decay and Lepton Number Violation - III

Vincenzo Cirigliano

INSTITUTE for NUCLEAR THEORY

W UNIVERSITY of WASHINGTON

- Significance of neutrinoless double beta decay & connection to big questions
 - Origin and nature of neutrino mass
 - The baryon asymmetry of the universe
 - Discovery potential of $0\nu\beta\beta$ overview
- End-to-end Effective Field Theory for Lepton Number Violation (LNV) and $0\nu\beta\beta$ \bullet
 - 0vββ from high-scale see-saw (LNV @ dim 5) [the 3-Majorana v's paradigm]
 - $0\nu\beta\beta$ from (multi)TeV-scale dynamics (LNV @ dim 7, 9, ...)
 - $0\nu\beta\beta$ from sterile neutrinos
- Conclusions and outlook

Special thanks to collaborators on these topics: W. Dekens, J. de Vries, M. Graesser, M. Hoferichter, E. Mereghetti, S. Pastore, M. Piarulli, S. Urrutia-Quiroga, U. van Kolck, A. Walker-Loud, R. Wiringa

Plan for the lectures

- Significance of neutrinoless double beta decay & connection to big questions
 - Origin and nature of neutrino mass
 - The baryon asymmetry of the universe
 - Discovery potential of $0\nu\beta\beta$ overview
- End-to-end Effective Field Theory for Lepton Number Violation (LNV) and $0\nu\beta\beta$ \bullet
 - 0vββ from high-scale see-saw (LNV @ dim 5) [the 3-Majorana v's paradigm]
 - $0v\beta\beta$ from (multi)TeV-scale dynamics (LNV @ dim 7, 9, ...)
 - $0\nu\beta\beta$ from sterile neutrinos
- Conclusions and outlook

Special thanks to collaborators on these topics: W. Dekens, J. de Vries, M. Graesser, M. Hoferichter, E. Mereghetti, S. Pastore, M. Piarulli, S. Urrutia-Quiroga, U. van Kolck, A. Walker-Loud, R. Wiringa

Plan for the lectures

$0\nu\beta\beta$ from high-scale LNV (dim-5 operator)

I/Coupling

Hadronic $\Delta L=2$ amplitudes in EFT

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}} - \frac{4G_F}{\sqrt{2}} V_{ud} \,\bar{u}_L \gamma^\mu d_L \,\bar{e}_L \gamma_\mu \nu_{eL} - \frac{m_{\beta\beta}}{2} \,\nu_{eL}^T C \nu_{eL} + \text{H.c.}$$

Hadronic $\Delta L=2$ amplitudes in EFT

V. C., W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

LNV hadronic amplitudes such as $nn \rightarrow ppee$ in principle receive contributions from neutrinos of all virtualities (k)

Chiral EFT captures contributions from all relevant momentum regions $k^{\mu} = (k^0, \mathbf{k})$

"Hard neutrinos": k^0 , $|\mathbf{k}| > \Lambda_{\chi} \sim m_N \sim GeV$

Short-range $\Delta L=2$ operators at the hadronic level, still proportional to $m_{\beta\beta}$

"Hard neutrinos": k^0 , $|\mathbf{k}| > \Lambda_{\chi} \sim m_N \sim GeV$

Chiral realization

Pion-range effects

Short-range $\Delta L=2$ operators at the hadronic level, still proportional to $m_{\beta\beta}$

Short- and pion-range contributions to "Neutrino potential" mediating $nn \rightarrow pp$

"Soft" & "Potential" neutrinos: (k⁰, **|k**|)~ **Q** ~ k_F ~ m_π Soft: Potential: $(k^0, |\mathbf{k}|) \sim (Q^2/m_N, Q)$

Calculable long- and pion-range contributions to the "Neutrino potential" mediating $nn \rightarrow pp$

At the nuclear level, these operators mediate the transition between the initial (0⁺) and final (0⁺) nuclear states

"UltraSoft" neutrinos: (k⁰, |**k**|) ~ $Q^2/m_N << k_F$

Sum over intermediate nuclear states

Double insertions of the weak current at the hadronic / nuclear level

Nuclear scale effective Hamiltonian

Kinetic energy and strong NN potential

$$H_{\text{Nucl}} = H_0 + \sqrt{2}G_F V_{ud} \,\bar{N} \left(g_V \delta^{\mu 0} - g_A \right)$$

 $_A \delta^{\mu i} \sigma^i) \tau^+ N \,\bar{e}_L \gamma_\mu \nu_L + 2G_F^2 V_{ud}^2 m_{\beta\beta} \,\bar{e}_L e_L^c \, V_{I=2}$ "Isotensor" $0\nu\beta\beta$ potential mediates nn \rightarrow pp. "Ultra-soft" (e, v) with $(E,|\mathbf{p}|) \leq k_F$ It can be identified to a given order in Q/Λ_X by cannot be integrated out computing 2-nucleon amplitudes

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$\mathbf{V}_{l=2} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$,...
 \uparrow \uparrow \uparrow
LO N²LO

Anatomy of $0v\beta\beta$ amplitude in EFT

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$\mathbf{V}_{l=2} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$,...
 \uparrow \uparrow \uparrow
LO N²LO

Anatomy of $0V\beta\beta$ amplitude in EFT

Ultrasoft V

Loop calculable in terms of $E_n - E_i$ and $< f ||_{\mu} ||_{n} > < n ||_{\mu} ||_{i} >$, that also control $2v\beta\beta$. Contributes to the amplitude at N²LO

Connection with non-EFT approach

Figure adapted from Primakoff-Rosen 1969

EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): \bullet

$$\mathcal{A}_{\nu} \propto \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f|J_{\mu}^{L}(\mathbf{k})|n\rangle\langle n|J^{L\mu}(-\mathbf{k})|i\rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e2})} + \frac{\langle f|J_{\mu}^{L}(\mathbf{k})|n\rangle\langle n|J^{L\mu}(-\mathbf{k})|i\rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e1})} \right]$$

Connection with non-EFT approach

Figure adapted from Primakoff-Rosen 1969

EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): \bullet

$$\mathcal{A}_{\nu} \propto \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | \mathbf{J}_{\mu}^{L}(\mathbf{k}) | \mathbf{n} \rangle \langle \mathbf{n} | \mathbf{J}_{\mu}^{L\mu}(-\mathbf{k}) | i \rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e2})} + \frac{\langle f | \mathbf{J}_{\mu}^{L}(\mathbf{k}) | \mathbf{n} \rangle \langle \mathbf{n} | \mathbf{J}_{\mu}^{L\mu}(-\mathbf{k}) | i \rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e2})} \right]$$

Complete set of QCD states

Quark-level weak currents

Connection with non-EFT approach

Figure adapted from Primakoff-Rosen 1969

Traditional approach uses this form at the nucleon level \bullet

$$\mathcal{A}_{\nu} \propto \sum_{n} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{1}{|\mathbf{k}|} \left[\frac{\langle f | \mathbf{J}_{\mu}^{L}(\mathbf{k}) | n \rangle \langle n | \mathbf{J}^{L\mu}(-\mathbf{k}) | i \rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e2})} + \frac{\langle f | \mathbf{J}_{\mu}^{L}(\mathbf{k}) | n \rangle \langle n | \mathbf{J}^{L\mu}(-\mathbf{k}) | i \rangle}{|\mathbf{k}| + (E_{n} - E_{i} + E_{e1})} \right]$$

Complete set of nuclear states (built as bound states of nucleons)

The sum over nuclear states cannot reproduce effect of hard modes, that probe different degrees of freedom!

Nucleon-level weak currents

Back to EFT

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$V_{I=2} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_{\nu} \sim 1/O^2 \cdot 1/(\Lambda_{\nu})^2$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_X)^2$, ...

LO N²LO

Ultrasoft V

Loop calculable in terms of $E_n - E_i$ and $\langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle$, that also control $2v\beta\beta$. Contributes to the amplitude at N²LO

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

'Usual' V_M exchange $\sim 1/k_F^2 \sim 1/Q^2$ Coulomb-like long-range potential

Potential neutrino exchange

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+}\tau^{(b)+} \left\{ \frac{1}{\mathbf{q}^2} \left\{ 1 - g_A^2 \left[\boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} - \boldsymbol{\sigma}^{(a)} \cdot \mathbf{q} \, \boldsymbol{\sigma}^{(b)} \cdot \mathbf{q} \, \frac{2m_\pi^2 + \mathbf{q}^2}{(\mathbf{q}^2 + m_\pi^2)^2} \right] \right\}$$

• To leading order (LO) in Q/Λ_{χ} ($Q \sim k_F \sim m_{\pi}$, $\Lambda_{\chi} \sim GeV$), the nn \rightarrow pp transition operator has two contributions:

Hadronic input: g_A

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

'Usual' V_M exchange $\sim 1/k_F^2 \sim 1/Q^2$ Coulomb-like long-range potential

Potential neutrino exchange

$$V_{\nu,0}^{(a,b)} = \tau^{(a)+} \tau^{(b)+} \frac{1}{\mathbf{q}^2} \left\{ 1 - g_A^2 \right\}$$

Hard neutrino exchange

$$V_{\nu,CT}^{(a,b)} =$$

$$-2 g_{\nu} \tau^{(a)+} \tau^{(b)+}$$

 $g_v \sim 1/Q^2 >> 1/\Lambda_{\chi^2} \sim 1/(4\pi F_{\pi})^2$ (Much larger than estimate from Naive Dimensional Analysis)

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

• To leading order (LO) in Q/Λ_{χ} ($Q \sim k_F \sim m_{\pi}$, $\Lambda_{\chi} \sim GeV$), the nn \rightarrow pp transition operator has two contributions:

LO contact term is required by renormalization of the $|S_0 nn \rightarrow pp$ amplitude in presence of strong interactions

UV divergence $\propto (m_N C/4\pi)^2 \sim I/Q^2$

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729 VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097

To leading order (LO) in Q/Λ_{χ} ($Q \sim k_F \sim m_{\pi}$, $\Lambda_{\chi} \sim GeV$), the nn \rightarrow pp transition operator has two contributions:

LO contact term is required by renormalization of the $|S_0 nn \rightarrow pp$ amplitude in presence of strong interactions

Can we extract g_v from data?

Isospin symmetry relates g_v to one of two I=2 e.m. couplings (hard γ 's versus hard ν 's) \bullet

• NN scattering data at low energy $(a_{nn}+a_{pp}-2a_{np})$ determine C_1+C_2 , confirming LO scaling!

Impact on nuclear matrix elements

• Assuming $g_v \sim (C_1 + C_2)/2 \rightarrow O(1)$ impact on m.e. and $m_{\beta\beta}$ extraction

For ⁷⁶Ge: 30-70% effect in QRPA and 15-45% in NSM. Similar or large in other isotopes

Jokiniemi-Soriano-Menendez, 2107.13354

Key question: is the interference constructive or destructive?

Impact on nuclear matrix elements

• Assuming $g_v \sim (C_1 + C_2)/2 \rightarrow O(1)$ impact on m.e. and $m_{\beta\beta}$ extraction

- Several approaches to determine g_v
 - Large-N_C arguments point to $g_v \sim (C_1 + C_2)/2$
 - Lattice QCD gearing up

Dispersive approach inspired by Cottingham formula for $\delta m_{p,n}$ (EM)

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

Richardson, Shindler, Pastore, Springer, 2102.02814

Tuo et al. 1909.13525; **Detmold, Murphy 2004.07404**

Davoudi, Kadam, 2012.02083

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

Cottingham (1963) approach to electromagnetic contributions to hadron masses

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

 $nn \rightarrow pp$ amplitude controlled by a forward "Compton" amplitude

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

W+ (k)

n

 $nn \rightarrow pp$ amplitude controlled by a forward "Compton" amplitude

High k: QCD OPE

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

Determined g_v with ~30% uncertainty (validated with $\Delta I=2$ NN electromagnetic coupling $C_1 + C_2$)

Impact of the contact term

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

Determined g_v with ~30% uncertainty (validated with $\Delta I=2$ NN electromagnetic coupling $C_1 + C_2$)

We provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_v in nuclear calculations

Contact term fit to synthetic data and used in ab-initio calculations for ⁴⁸Ca [1], ¹³⁰Te [2], ¹³⁶Xe, [2], ⁷⁶Ge [3]

[2] Wirth, Yao, Hergert, 2105.05415 [3] Belley et al, 2307.15156 [4] Belley et al, 2308.15634

Enhances matrix elements by ~40% [Ca, Ge] and >50% [Te, Xe] good news for phenomenology, while we wait for Lattice QCD results

What about higher orders?

Figure adapted from Primakoff-Rosen 1969

Hard, soft, and potential V

$$\mathbf{V}_{l=2} = \sum_{a \neq b} \left(V_{\nu,0}^{(a,b)} + V_{\nu,2}^{(a,b)} + \dots \right)$$

$$V_v \sim 1/Q^2$$
, $1/(\Lambda_x)^2$, ...
 \uparrow
LO
N²LO

Ultrasoft V

Loop calculable in terms of $E_n - E_i$ and <f $|J_{\mu}|n > <n|J^{\mu}|i>$, that also control $2\nu\beta\beta$. Contributes to the amplitude at N²LO

$N^{2}LO 0V\beta\beta$ potential

Known factorizable corrections to 1-body currents (radii, ...)

Non-factorizable contributions to $V_{v,2} \sim V_{v,0} (k_F/4\pi F_{\pi})^2$ [π-N loops and <u>new contact terms</u>]

2-body x 1-body current (and <u>another contact</u>...)

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

Wang-Engel-Yao 1805.10276

Known fac

Calculations of these effects in light and heavy nuclei show O(10%) corrections S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026 Castillo, Jokiniemi, Menendez, Soriano 2408.03373, Belley et al, 2308.15634

Non-factorizable contributions to $V_{v,2} \sim V_{v,0} (k_F/4\pi F_{\pi})^2$ [π-N loops and <u>new contact terms]</u>

2-body x 1-body current (and <u>another contact...</u>)

$N^{2}LO 0V\beta\beta$ potential

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

Wang-Engel-Yao 1805.10276

Ultrasoft neutrino contributions

Figure adapted from Primakoff-Rosen 1969

$$T_{\text{usoft}}(\mu_{\text{us}}) = \frac{T_{\text{lept}}}{8\pi^2} \sum_{n} \langle f|J_{\mu}|n\rangle \langle n|J^{\mu}|i\rangle \left\{ (E_2 + E_n - E_i) \left(\log \frac{\mu_{\text{us}}}{2(E_2 + E_n - E_i)} + 1 \right) + 1 \leftrightarrow 2 \right\}$$

- Ultrasoft v loop suppressed by $(E_n E_i)/(4\pi k_F) \sim (Q/\Lambda_\chi)^{2} \rightarrow N2LO$ contribution.

Sen'kov-Horoi 1310.3254, Wang-Zhao-Meng 2105.02649

V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

Ultrasoft V's couple to nuclear states: sensitivity to $E_n - E_i$ and $\langle f | J_\mu | n \rangle \langle n | J^\mu | i \rangle$ (see also $2v\beta\beta$ amplitude)

This scaling is consistent with previous studies of the closure approximation and recent calculations

Castillo, Jokiniemi, Menendez, Soriano 2408.03373

Progress in controlling all uncertainties

Belley et al, 2308.

- Several first-principles many-body methods are used for the calculation of matrix elements
- Estimated uncertainty from:
 - EFT for nuclear force (effective couplings, convergence, ...)
 - Truncations in many-body methods
 - Transition operator (contact term, closure approximation, ...)

$M^{0 u}$	$\epsilon_{\rm LEC}$	$\epsilon_{\chi \mathrm{EFT}}$	ϵ_{MBT}	ϵ_{OP}
$2.60^{+1.28}_{-1.36}$	0.75	0.3	0.88	0.47

- Overall uncertainty still sizable but improvable
- Smaller results compared to nuclear models.
- This input + LEGEND-200 result: $m_{\beta\beta} < 320 \text{ meV}$ LEGEND-200: 2505.10440

2308.15634 and references therein

$0V\beta\beta$ from multi-TeV scale dynamics (dim-7, 9, ... operators)

I/Coupling

LNV @ multi-TeV-scale: key features

• Observable contributions to $0\nu\beta\beta$ not directly related to the exchange of light neutrinos:

 $m_{\beta\beta}G_{F}^{2}/Q^{2} \sim 1/\Lambda^{5}$

if $m_{\beta\beta} \sim 0.1 \text{ eV}$ and $\Lambda \sim \text{TeV}$ (For example $\Lambda \sim M_{VR} \sim M_{WR}$)

LNV @ multi-TeV-scale: key features

Observable contributions to $0V\beta\beta$ not directly \bullet related to the exchange of light neutrinos:

 $m_{\beta\beta}G_{F}^{2}/Q^{2} \sim 1/\Lambda^{5}$

if $m_{\beta\beta} \sim 0.1 \text{ eV}$ and $\Lambda \sim \text{TeV}$ (For example $\Lambda \sim M_{VR} \sim M_{WR}$)

Possible correlated signal at LHC: $pp \rightarrow ee jj$

 $\bullet \bullet \bullet$

LNV @ multi-TeV-scale: key features

Observable contributions to $0V\beta\beta$ not directly related to the exchange of light neutrinos:

> $m_{\beta\beta}G_{F}^{2}/Q^{2} \sim 1/\Lambda^{5}$ if $m_{\beta\beta} \sim 0.1 \text{ eV}$ and $\Lambda \sim \text{TeV}$ (For example $\Lambda \sim M_{VR} \sim M_{WR}$)

• Possible correlated signal at LHC: $pp \rightarrow ee jj$

Hadronic scale: new pion-range and short-range transition operators.

LNV @ multi-TeV-scale: EFT

• Higher dim operators arise in well motivated models of neutrino mass. Can compete with Dim=5 operator if $\Lambda \sim O(1-10 \text{ TeV})$

- 31 operators up to dimension 9
- New mechanisms at the hadronic scale: need appropriate chiral EFT treatment. Not including pion-range effects leads to factor ~ $(Q/\Lambda_X)^2$ ~1/100 reduction in sensitivity to short-distance couplings!

LNV @ multi-TeV-scale: EFT

• Higher dim operators arise in well motivated models of neutrino mass. Can compete with Dim=5 operator if $\Lambda \sim O(1-10 \text{ TeV})$

• 31 operators up to dimension 9

Vast literature, with varying degree of enthusiasm for EFT tools (SM-EFT, chiral EFT)

C-Dekens-deVries-Graesser-Mereghetti,1806.02780 Neacsu-Horoi 1801.04496. Graf-Deppisch-lachello-Kotila, 1806.06058 Graf, Lindner, Scholer 2204.10845

....

C

Dimension 6 and 7 operators

(In the LEFT, between EW and GeV scale)

 $+ C_{\mathrm{SR},ij}^{(6)} \bar{u}_L d_R \bar{e}_{L,i} C \bar{\nu}_{L,j}^T + C_{\mathrm{SL},ij}^{(6)} \bar{u}_R d_L \bar{e}_{L,i} C \bar{\nu}_{L,j}^T + C_{\mathrm{T},ij}^{(6)} \bar{u}_L \sigma^{\mu\nu} d_R \bar{e}_{L,i} \sigma_{\mu\nu} C \bar{\nu}_{L,j}^T + \mathrm{h.c.}$

 $\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left(C_{\mathrm{VL},ij}^{(7)} \bar{u}_L \gamma^{\mu} d_L \bar{e}_{L,i} C i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T + C_{\mathrm{VR},ij}^{(7)} \bar{u}_R \gamma^{\mu} d_R \bar{e}_{L,i} C i \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T \right) + \text{h.c.}$

Dimension 9 operators

(In the LEFT, between EW and GeV scale)

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{i\,\mathrm{R}}^{(9)} \bar{e}_R C \bar{e}_R^T + C_{i\,\mathrm{L}}^{(9)} \bar{e}_L C \bar{e}_L^T \right) O_i + C_i^{(9)} \bar{e}_{\gamma_\mu} \gamma_5 C \bar{e}^T O_i^\mu \right]$$

Dim 9 in SM-EFT

 $C \sim (v_{ew}/\Lambda)^5$

28

- Long range neutrino exchange without mass insertion
- Hadronic input in good shape: isovector nucleon charges V, A, S, P, T
- Nuclear m.e.: same as the ones needed for light V_M exchange

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

Doi, Kotani, Takasugi 1985

Pas, Hirsch, Klapdor-Kleingrothaus, Kovalenko 1999

Horoi and Neacsu, 1706.05391 and refs therein

VC, W. Dekens, M. Graesser, E. Mereghetti, J. de Vries 1806.02780

• Example: scalar operators (arising in most models)

$$\mathcal{O}_{1} = \bar{u}_{L}\gamma^{\mu}d_{L}\,\bar{u}_{L}\,\gamma_{\mu}d_{L}$$
$$\mathcal{O}_{2} = \bar{u}_{L}d_{R}\,\bar{u}_{L}\,d_{R}, \qquad \mathcal{O}_{3} = \bar{u}_{L}^{\alpha}d_{R}^{\beta}\,\bar{u}_{L}^{\beta}\,d_{R}^{\alpha}$$
$$\mathcal{O}_{4} = \bar{u}_{L}\gamma^{\mu}d_{L}\,\bar{u}_{R}\,\gamma_{\mu}d_{R}, \qquad \mathcal{O}_{5} = \bar{u}_{L}^{\alpha}\gamma^{\mu}d_{L}^{\beta}\,\bar{u}_{R}^{\beta}\,\gamma_{\mu}d_{R}^{\alpha}$$

Hadronic realization depends on O_i's chiral properties \bullet

$$\mathcal{L}_{NN}^{\text{scalar}} = \left(g_{1}^{NN} C_{1L}^{(9)} + g_{2}^{NN} C_{2L}^{(9)} + g_{3}^{NN} C_{3L}^{(9)} + g_{4}^{NN} C_{4L}^{(9)} + g_{5}^{NN} C_{5L}^{(9)} \right) (\bar{p}n) (\bar{p}n) \frac{\bar{e}_L C \bar{e}_L^T}{v^5} \\ \mathcal{L}_{\pi N}^{\text{scalar}} = \sqrt{2} g_A g_1^{\pi N} C_{1L}^{(9)} F_0 \left[\bar{p} \, S \cdot (\partial \pi^-) n \right] \frac{\bar{e}_L C \bar{e}_L^T}{v^5} + (L \leftrightarrow R) + \dots \\ \mathcal{L}_{\pi}^{\text{scalar}} = \frac{F_0^2}{2} \left[\frac{5}{3} g_1^{\pi \pi} C_{1L}^{(9)} \partial_\mu \pi^- \partial^\mu \pi^- + \left(g_4^{\pi \pi} C_{4L}^{(9)} + g_5^{\pi \pi} C_{5L}^{(9)} - g_2^{\pi \pi} C_{2L}^{(9)} - g_3^{\pi \pi} C_{3L}^{(9)} \right) \pi^- \pi^- \right] \frac{\bar{e}_L C \bar{e}_L^T}{v^5} + (L \leftrightarrow R) + \dots$$

30

 $g_1^{\pi\pi} \sim \mathcal{O}(1), \qquad g_{2,3,4,5}^{\pi\pi} \sim \mathcal{O}(\Lambda_{\chi}^2)$

Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205 **M. Graesser 1606.04549**

Naive dimensional analysis $\rightarrow V_{\pi\pi}$ dominates (except for O_{I})

Vergados 1982, Faessler, Kovalenko, Simkovic, Schweiger 1996 Prezeau, Ramsey-Musolf, Vogel hep-ph/0303205

- Developments:
 - ΠΠ matrix elements now precisely calculated in lattice QCD

Nicholson et al (CalLat), 1805.02634 Detmold et al, 2208.05322

- Developments:
 - 2. Renormalization $\rightarrow V_{\pi\pi}$ and V_{NN} are both leading order

(Similar to light neutrino exchange!)

Several unknown LO NN contact couplings! Opportunity for LQCD

V.C, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti [1806.02780]

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, JHEP 1812 (2018) 097 [1806.02780]

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, JHEP 1812 (2018) 097 [1806.02780]

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{1}{8\ln 2} \frac{1}{(2\pi)^5} \int \frac{d^3k_1}{2E_1} \frac{d^3k_2}{2E_2}$$

$$\mathcal{A} = \frac{g_A^2 G_F^2 m_e}{\pi R_A} \bigg[\mathcal{A}_{\nu} \bar{u}(k_1) P_R C \bar{u}^T(k_2) + \mathcal{A}_R \bar{u}(k_1) P_L C \bar{u}^T(k_2) + \mathcal{A}_E \bar{u}(k_1) \gamma_0 C \bar{u}^T(k_2) \frac{E_1 - E_2}{m_e} + \mathcal{A}_{m_e} \bar{u}(k_1) C \bar{u}^T(k_2) + \mathcal{A}_M \bar{u}(k_1) \gamma_0 \gamma_5 C \bar{u}^T(k_2) \bigg]$$

Nuclear amplitudes depend on 32 effective LNV couplings and corresponding nuclear matrix elements

$|\mathcal{A}|^2 F(Z, E_1) F(Z, E_2) \delta(E_1 + E_2 + E_f - M_i)$

$$\begin{aligned} \mathcal{A}_{\nu} &= \frac{m_{\beta\beta}}{m_{e}} \mathcal{M}_{\nu}^{(3)} + \frac{m_{N}}{m_{e}} \mathcal{M}_{\nu}^{(6)} \left(C_{\mathrm{SL}}^{(6)}, C_{\mathrm{SR}}^{(6)}, C_{\mathrm{T}}^{(7)}, C_{\mathrm{VL}}^{(7)}, C_{\mathrm{VR}}^{(7)} \right) \\ &+ \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{\nu}^{(9)} \left(C_{1\mathrm{L}}^{(9)}, C_{1\mathrm{L}}^{(9)\prime}, C_{2\mathrm{L}}^{(9)}, C_{2\mathrm{L}}^{(9)\prime}, C_{3\mathrm{L}}^{(9)}, C_{3\mathrm{L}}^{(9)\prime}, C_{4\mathrm{L}}^{(9)}, C_{5\mathrm{L}}^{(9)} \right) , \\ \mathcal{A}_{R} &= \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{R}^{(9)} \left(C_{1\mathrm{R}}^{(9)}, C_{1\mathrm{R}}^{(9)\prime}, C_{2\mathrm{R}}^{(9)}, C_{2\mathrm{R}}^{(9)\prime}, C_{3\mathrm{R}}^{(9)}, C_{3\mathrm{R}}^{(9)\prime}, C_{4\mathrm{R}}^{(9)}, C_{5\mathrm{R}}^{(9)} \right) , \\ \mathcal{A}_{E} &= \mathcal{M}_{E,L}^{(6)} \left(C_{\mathrm{VL}}^{(6)} \right) + \mathcal{M}_{E,R}^{(6)} \left(C_{\mathrm{VR}}^{(6)} \right) , \\ \mathcal{A}_{m_{e}} &= \mathcal{M}_{m_{e},L}^{(6)} \left(C_{\mathrm{VL}}^{(6)} \right) + \mathcal{M}_{m_{e},R}^{(6)} \left(C_{\mathrm{VR}}^{(6)} \right) , \\ \mathcal{A}_{M} &= \frac{m_{N}}{m_{e}} \mathcal{M}_{M}^{(6)} \left(C_{\mathrm{VL}}^{(6)} \right) + \frac{m_{N}^{2}}{m_{e}v} \mathcal{M}_{M}^{(9)} \left(C_{6}^{(9)}, C_{6}^{(9)\prime}, C_{7}^{(9)}, C_{7}^{(9)\prime}, C_{8}^{(9)}, C_{8}^{(9)\prime}, C_{9}^{(9)\prime}, C_{9}^{(9)\prime} \right) \end{aligned}$$

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, JHEP 1812 (2018) 097 [1806.02780]

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{1}{8\ln 2} \frac{1}{(2\pi)^5} \int \frac{d^3k_1}{2E_1} \frac{d^3k_2}{2E_2}$$

$$\mathcal{A} = \frac{g_A^2 G_F^2 m_e}{\pi R_A} \bigg[\mathcal{A}_{\nu} \,\bar{u}(k_1) P_R C \bar{u}^T(k_2) + \mathcal{A}_R \,\bar{u}(k_1) P_L C \bar{u}^T(k_2) + \mathcal{A}_E \,\bar{u}(k_1) \gamma_0 C \bar{u}^T(k_2) \,\frac{E_1 - E_2}{m_e} + \mathcal{A}_{m_e} \,\bar{u}(k_1) C \bar{u}^T(k_2) + \mathcal{A}_M \,\bar{u}(k_1) \gamma_0 \gamma_5 C \bar{u}^T(k_2) \bigg]$$

$$G_{0k} = \frac{1}{\ln 2} \frac{G_F^4 m_e^2}{64\pi^5 R_A^2} \int dE_1 dE_2 |\mathbf{k}_1| |\mathbf{k}_2| dC_2 |\mathbf{k}_1| |\mathbf{k}_2| |\mathbf{k}_2| dC_2 |\mathbf{k}_1| |\mathbf{k}_2| dC_2 |\mathbf{k}_1| |\mathbf{k}_2| |\mathbf{k}_2|$$

$$b_{01} = E_1 E_2 - \mathbf{k}_1 \cdot \mathbf{k}_2, \quad b_{02} = \left(\frac{E_1 - E_2}{m_e}\right)^2 \frac{E_1 E_2 + \mathbf{k}_1 \cdot \mathbf{k}_2 - m_e^2}{2}, \quad b_{03} = (E_1 - E_2)^2,$$

$$b_{04} = \left(E_1 E_2 - \mathbf{k}_1 \cdot \mathbf{k}_2 - m_e^2\right), \quad b_{06} = 2m_e \left(E_1 + E_2\right), \quad b_{09} = 2 \left(E_1 E_2 + \mathbf{k}_1 \cdot \mathbf{k}_2 + m_e^2\right)$$

$$36$$

 $|\mathcal{A}|^2 F(Z, E_1) F(Z, E_2) \delta(E_1 + E_2 + E_f - M_i)$

Different leptonic structure lead to different phase space weights

 $\cos \theta \, b_{0k} \, F(Z, E_1) F(Z, E_2) \, \delta(E_1 + E_2 + E_f - M_i)$

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, JHEP 1812 (2018) 097 [1806.02780]

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{1}{8\ln 2} \frac{1}{(2\pi)^5} \int \frac{d^3k_1}{2E_1} \frac{d^3k_2}{2E_2}$$

$$\mathcal{A} = \frac{g_A^2 G_F^2 m_e}{\pi R_A} \bigg[\mathcal{A}_{\nu} \, \bar{u}(k_1) P_R C \bar{u}^T(k_2) + \mathcal{A}_R \, \bar{u}(k_1) P_L C \bar{u}^T(k_2) \\ + \mathcal{A}_E \, \bar{u}(k_1) \gamma_0 C \bar{u}^T(k_2) \, \frac{E_1 - E_2}{m_e} + \mathcal{A}_{m_e} \, \bar{u}(k_1) C \bar{u}^T(k_2) + \mathcal{A}_M \, \bar{u}(k_1) \gamma_0 \gamma_5 C \bar{u}^T(k_2) \bigg]$$

$$\left(T_{1/2}^{0\nu}\right)^{-1} = g_A^4 \left\{ G_{01} \left(|\mathcal{A}_{\nu}|^2 + |\mathcal{A}_R|^2 \right) - 2(G_{01} - G_{04}) \operatorname{Re} \mathcal{A}_{\nu}^* \mathcal{A}_R + 4G_{02} |\mathcal{A}_E|^2 \right. \\ \left. + 2G_{04} \left[|\mathcal{A}_{m_e}|^2 + \operatorname{Re} \left(\mathcal{A}_{m_e}^* (\mathcal{A}_{\nu} + \mathcal{A}_R) \right) \right] - 2G_{03} \operatorname{Re} \left[(\mathcal{A}_{\nu} + \mathcal{A}_R) \mathcal{A}_E^* + 2\mathcal{A}_{m_e} \mathcal{A}_E^* \right] \right. \\ \left. + G_{09} \left| \mathcal{A}_M \right|^2 + G_{06} \operatorname{Re} \left[(\mathcal{A}_{\nu} - \mathcal{A}_R) \mathcal{A}_M^* \right] \right\}$$

 $|\mathcal{A}|^2 F(Z, E_1) F(Z, E_2) \delta(E_1 + E_2 + E_f - M_i)$

$0\nu\beta\beta$ from multiple operators

New contributions can add incoherently or interfere with $m_{\beta\beta}$, significantly affecting the interpretation of experimental results

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

$0\nu\beta\beta$ from multiple operators

New contributions can add incoherently or interfere with $m_{\beta\beta}$, significantly affecting the interpretation of experimental results

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1708.09390

d

What scales are we probing?

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1806.02780

Sensitivities reflect dependence on Λ_{χ} / Λ and Q/ Λ_{χ}

d

What scales are we probing?

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, 1806.02780

For some mechanisms, there is a possibility of simultaneous detection in $0\nu\beta\beta$ and at the LHC

Sensitivities reflect dependence on Λ_{χ} / Λ and Q/ Λ_{χ}

Connection to collider physics

• May lead to correlated (or precursor!) signal at LHC: $pp \rightarrow ee jj$

LHC searches important to unravel origin of LNV and implications for letpogenesis ullet

> Deppisch-Harz-Hirsch 1312.4447, Deppisch-Graf-Harz-Huang 1711.10432,

Harz, Ramsey-Musolf, Shen, Urrutia-Quiroga 2106.10838, ...

Unraveling 0vββ mechanisms?

- 32 operators below weak scale @ dim=3, 6, 7, 9 \bullet contribute to $0V\beta\beta$
- Can they be distinguished by
 - I. Isotope-dependence of the decay rates?
 - 3. Phase space observables? (single electron spectra, relative angle of outgoing electrons)

Useful diagnosing tools 'within' $0v\beta\beta$ — can falsify specific models

Phase space observables

Graf, Lindner, Scholer 2204.10845

• Six phase space structures G_{0k} , after including interference terms

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta\mathrm{d}\tilde{\epsilon}_{1}} &= a_{0}\left(1 + \frac{a_{1}}{a_{0}}\cos\theta\right) \\ \tilde{\epsilon}_{i} &= \frac{\epsilon_{i} - m_{e}}{Q_{\beta\beta}} \in [0, 1] \end{aligned}$$

Phase space observables

• Six phase space structures G_{0k}, after including interference terms

Graf, Lindner, Scholer 2204.10845

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta\mathrm{d}\tilde{\epsilon}_1} &= a_0 \left(1 + \frac{a_1}{a_0}\cos\theta\right) \\ \tilde{\epsilon}_i &= \frac{\epsilon_i - m_e}{Q_{\beta\beta}} \in [0, 1] \end{aligned}$$

$$- \propto a_1(\widetilde{\epsilon}_1)$$

In practice, only 4 groups of operators can be distinguished

- 12 groups of operators can be distinguished by taking ratios of decay rates
- Quite sensitive to LECs (varied around reference values denoted by larger markers)
- Distinguishing classes of operators will require combined theoretical uncertainty of ~10%, due to LEC + NME (here only IBM used)

Isotope dependence

- 12 groups of operators can be distinguished by taking ratios of decay rates
- Quite sensitive to LECs (varied around reference values denoted by larger markers)
- Distinguishing classes of operators will require combined theoretical uncertainty of ~10%, due to LEC + NME (here only IBM used)

Isotope dependence

- 12 groups of operators can be distinguished by taking ratios of decay rates
- Quite sensitive to LECs (varied around reference values denoted by larger markers)
- Distinguishing classes of operators will require combined theoretical uncertainty of ~10%, due to LEC + NME (here only IBM used)
- Despite degeneracies, useful diagnosing tools 'within' $0\nu\beta\beta$
- This analysis reiterates two important points:
 - Need improved hadronic and nuclear input, with O(10%) uncertainty. With these in hand, specific mechanisms can be falsified by isotope dependence
 - Unraveling the mechanism of LNV will also require other probes (collider, cosmology, ...)

Isotope dependence

$0\nu\beta\beta$ and sterile neutrinos

I/Coupling

Thanks to Wouter Dekens and Sebastian Urrutia-Quiroga for material presented in the following slides

Minimal and non-minimal scenarios

• Add n V_R singlets and include operators of dimension 4 and higher: vSMEFT

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!\!/ \nu_R - \frac{1}{2} \bar{\nu}_R^c M_R \nu_R$$

 $-\bar{L}\tilde{H}Y_D\nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)} + \dots$

Minimal and non-minimal scenarios

• Add n V_R singlets and include operators of dimension 4 and higher: vSMEFT

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R$$

$$\mathscr{L}_{\text{mass}} = \frac{1}{2} \bar{N}^c M_{\nu} N \qquad \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$$

- 3+n seesaw by itself an attractive class of "minimal" models
 - V_R can give rise to light neutrino masses
 - V_R can provide a dark matter candidate
 - V_R can generate the baryon asymmetry through leptogenesis

Akhmedov. Rubakov, Smirnov hep-ph/9803255 Canetti, Drewes, Shaposhnikov 1204.3902

...

46

Minimal and non-minimal scenarios

• Add n V_R singlets and include operators of dimension 4 and higher: vSMEFT

3+n model phenomenology

• Can be probed at colliders, beam dump, semileptonic decays, EWPO, ...

> Mitra-Senjanovic-Vissani 1108.0004 Abada et al. 1712.03984 Bolton, Deppisch, Dev 1912.03058

> > ...

 $0\nu\beta\beta$ provides strong constraints on sterile V_R 's in various mass ranges

Flip side: plenty of "discovery potential" for $0V\beta\beta$ within this class of models

BR $(\pi^-\mu^+\mu^+) < \#10^{-9}$

$$\ell = e, \mu \qquad h_{1,2} = \pi,$$

$$\mathrm{BRs} < \#10^{-8}$$

 $(\mu^{-} \rightarrow e^{+} \text{ conversion BR} \text{ at } 10^{-12} \text{ level})$

Theory developments and challenges

Dekens et al. 2002.07182, 2402.07993

vSMEFT + chiral EFT analysis

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \not\partial\!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)} + \dots$$

$$\mathcal{L}_{\nu_R}^{(6)} = \mathcal{L}_{\nu_R}^{(7)} + \dots$$

$$\mathcal{L}_{\nu_R}^{(7)} = \frac{1}{2}\bar{N}^c M_\nu N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_\nu = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}}Y_D \\ \frac{\nu}{\sqrt{2}}Y_D & M_R^\dagger \end{pmatrix} \qquad \nu_{\text{mass}} = UN_{\text{flavor}}$$

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2} \bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)} + \dots$$

$$\mathcal{L}_{\mu_R} = \frac{1}{2} \bar{N}^c M_\nu N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_\nu = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}}Y_D \\ \frac{\nu}{\sqrt{2}}Y_D & M_R^\dagger \end{pmatrix} \qquad \nu_{\text{mass}} = UN_{\text{flavor}}$$

- If new states are heavier than GeV: integrate them out, induce dim-9 operators \bullet
- lacksquare
 - The 'potential' and contact terms depend on m_i
 - For $m_i < k_F$, the leading term cancels and the ultra-soft contributions become leading

If new states are lighter than GeV: contributions similar to the ones of active neutrinos, except that

Theory developments and challenges

vSMEFT + chiral EFT analysis

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R$$

$$\mathscr{L}_{\text{mass}} = \frac{1}{2} \bar{N}^c M_{\nu} N \qquad \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$$

- If new states are heavier than GeV: integrate them out, induce dim-9 operators \bullet
- lacksquare
 - The 'potential' and contact terms depend on m_i
 - For $m_i < k_F$, the leading term cancels and the ultra-soft contributions become leading

Dekens et al. 2002.07182, 2402.07993

If new states are lighter than GeV: contributions similar to the ones of active neutrinos, except that

Theory developments and challenges

Dekens et al. 2002.07182, 2402.07993

• vSMEFT + chiral EFT analysis

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \not\partial\!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)} + \dots$$

$$\mathcal{L}_{mass} = \frac{1}{2}\bar{N}^c M_\nu N \qquad N = \begin{pmatrix}\nu_L \\ \nu_R^c\end{pmatrix} \qquad M_\nu = \begin{pmatrix}0 & \frac{\nu}{\sqrt{2}}Y_D \\ \frac{\nu}{\sqrt{2}}Y_D & M_R^\dagger\end{pmatrix} \qquad \nu_{mass} = UN_{\text{flavor}}$$

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2} \bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)} + \dots$$

$$\mathcal{L}_{\mu_R} = \frac{1}{2} \bar{N}^c M_\nu N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_\nu = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}}Y_D \\ \frac{\nu}{\sqrt{2}}Y_D & M_R^\dagger \end{pmatrix} \qquad \nu_{\text{mass}} = UN_{\text{flavor}}$$

- If new states are heavier than GeV: integrate them out, induce dim-9 operators \bullet

$$A_{\nu}^{\text{usoft}} \sim \sum_{n} \langle f | J_{\mu} | n \rangle \langle n | J^{\mu} | i \rangle \times \begin{cases} \frac{m_{i}}{k_{F}}, & \Delta E \leq m_{i} \leq k_{F} \\ \frac{m_{i}^{2}}{4\pi k_{F} \Delta E} \ln \frac{m_{i}}{\Delta E}, & m_{i} \leq \Delta E \end{cases} \qquad \Delta E \equiv E_{n} + E_{e} - E_{i} \\ \text{This effect was missed in the previous literature} \end{cases}$$

If new states are lighter than GeV: contributions similar to the ones of active neutrinos, except that

49

Simple illustration: 3+1toy model

Dekens et al. 2002.07182, 2402.07993

• Unrealistic neutrino mass spectrum but illustrates the main features

- Largest differences:
- Ultrasoft neutrinos for $m_4 \ll m_{\pi}$

Simple illustration: 3+1toy model

Dekens et al. 2002.07182, 2402.07993

Unrealistic neutrino mass spectrum but illustrates the main features lacksquare

- Largest differences:
- Ultrasoft neutrinos for $m_4 \ll m_{\pi}$

VC, W. Dekens, S. Urrutia-Quiroga, 2412.10497

- 'Cottingham' estimate of m_{ν} dependence of g_{ν}^{NN}
- Significant impact for $m_4 \gtrsim m_{\pi}$

_	۲ –
	ī
	T
	Ĺ.

....

.... _ _ _ _ _ _ _

_	۲ –
	ī
	T
	Ĺ.

....

.... _ _ _ _ _ _ _

Conclusions & Outlook

- Ton-scale $0\nu\beta\beta$ searches have significant discovery potential we simply don't know the origin of m_v and the scale Λ associated with LNV
- Exciting prospects with multiple ton-scale experiments ready to start construction
- Theory is essential to get at the underlying physics. EFT approach provides a general framework to
 - I. Relate $0V\beta\beta$ to underlying LNV dynamics
 - 2. Organize contributions to hadronic and nuclear matrix elements

Improving the theory uncertainty is challenging, but there are exciting prospects thanks to advances in EFT, lattice QCD, and nuclear structure

Decreasing Coupling Strength

Backup

Contact term: results & validation

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

LECs in dim. reg. with modified minimal subtraction

$$ilde{\mathcal{C}}_1(\mu_\chi =$$

 $(ilde{\mathcal{C}}_1 + ilde{\mathcal{C}}_2)(\mu_\chi)$

 $M_{\pi} = M_{\pi} = 1.3(6)$ $M_{\chi} = M_{\pi} = 2.9(1.2).$

$$C_{1,2} = \left(\frac{m_N C_{1S_0}}{4\pi}\right)^2 \tilde{\mathcal{C}}_{1,2}$$
$$g_{\nu} = C_1$$

Contact term: results & validation

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

LECs in dim. reg. with modified minimal subtraction

$$ilde{\mathcal{C}}_1(\mu_\chi =$$

 $(ilde{\mathcal{C}}_1 + ilde{\mathcal{C}}_2)(\mu_\chi)$

Validation: use C_1+C_2 to predict CIB scattering lengths to LO in χEFT

$$a_{\text{CIB}} = \frac{a_{nn} + a_{pp}^C}{2} - a_{np} = 15.5^+_{-2}$$
Fairly g

Uncertainty estimate is realistic

 $M_{\pi} = M_{\pi} = 1.3(6)$ $M_{\chi} = M_{\pi} = 2.9(1.2).$

$$C_{1,2} = \left(\frac{m_N C_{1S_0}}{4\pi}\right)^2 \tilde{\mathcal{C}}_{1,2}$$
$$g_{\nu} = C_1$$

good agreement.

Note: $(C_1+C_2)(M_{\pi})=0 \rightarrow a_{CIB} \sim 30$ fm: contact term pushes result in the right direction.

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

many-body nuclear calculations

> $|\mathbf{p}| = 25 \,\mathrm{MeV}$ $|\mathbf{p'}| = 30 \,\mathrm{MeV}$

 $\mathcal{A}_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)e^{-i(\delta_{1_{S_0}}(|\mathbf{p}|) + \delta_{1_{S_0}}(|\mathbf{p}'|))} = -0.0195(5) \,\mathrm{MeV}^{-2}$

Uncertainty dominated by topology C (fractional error of ~30-40%), but A and B give large contribution to the amplitude at this kinematic point

Connecting to nuclear structure

Provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_v with regulators suitable for

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602, 2102.03371

many-body nuclear calculations

> $= 25 \,\mathrm{MeV}$ $|\mathbf{p}|$ $|{\bf p'}| = 30 \,{\rm MeV}$

 $\mathcal{A}_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)e^{-i(\delta_{1_{S_0}}(|\mathbf{p}|)+\delta_{1_{S_0}}(|\mathbf{p}'|))} = -0.0195(5)\,\mathrm{MeV}^{-2}$

- Illustrated fitting procedure with \bullet various cutoffs
- Constructive or destructive? The sign of the interference is regulator dependent!

Connecting to nuclear structure

Provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_v with regulators suitable for

Matrix elements for ¹³⁰Te and ¹³⁶Xe

with signifiant impact on the interpretation of current and future experiments in terms of $m_{\beta\beta}$

Belley, Miyagi, Stroberg, Holt., 2307.15156

'Ab-initio' results (VS-IMSRG) tend to be systematically lower than phenomenological nuclear models,

Differential decay rate

$$\frac{d\Gamma}{dy \, d\cos\theta} = g_A^4 \Big\{ g_{01} \left(|\mathcal{A}_{\nu}|^2 + |\mathcal{A}_R|^2 \right) - 2(g_{01} - g_{04}) \operatorname{Re} \mathcal{A}_{\nu}^* \mathcal{A}_R + 4g_{02} |\mathcal{A}_E|^2
+ 2g_{04} \left[|\mathcal{A}_{m_e}|^2 + \operatorname{Re} \left(\mathcal{A}_{m_e}^* (\mathcal{A}_{\nu} + \mathcal{A}_R) \right) \right] - 2g_{03} \operatorname{Re} \left((\mathcal{A}_{\nu} + \mathcal{A}_R) \mathcal{A}_E^* + 2\mathcal{A}_{m_e} \mathcal{A}_E^* \right)
+ g_{09} |\mathcal{A}_M|^2 + g_{06} \operatorname{Re} \left((\mathcal{A}_{\nu} - \mathcal{A}_R) \mathcal{A}_M^* \right) \Big\},$$

$$g_{0k} = \frac{1}{\ln 2} \frac{G_F^4 m_e^2}{64\pi^5 R_A^2} \left(\frac{Q}{2}\right)^5 \sqrt{1 - y^2} \sqrt{\left(1 + y + \frac{4m_e}{Q}\right) \left(1 - y + \frac{4m_e}{Q}\right)} \\ \tilde{b}_{0k}(y, \cos \theta) F(Z, E_1) F(Z, E_2) .$$

 $y = (E_1 - E_2)/Q \in [-1, 1]$