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0νββ from high-scale LNV
(dim-5 operator)

1/Coupling 

Λ

vEW

High-scale see-saw
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Hadronic ΔL=2 amplitudes in EFT
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LNV hadronic amplitudes such 
as nn → ppee in principle 
receive contributions from 

neutrinos of all virtualities (k)

Chiral EFT captures contributions 
from all relevant momentum regions 

kμ = (k0, k)

E < MW



Classifying contributions
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“Hard neutrinos”:                                                
k0, |k| > Λχ ~ mN ~ GeV  

Short-range ΔL=2 operators at the hadronic level, 
still proportional to mββ
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Short- and pion-range contributions to  
“Neutrino potential” mediating nn→pp            

Chiral realization of dim-9 operators

Pion-range 
effects

Short-range 
effects

Vergados 1982,  Faessler, Kovalenko, Simkovic, Schweiger 1996 
Prezeau, Ramsey-Musolf, Vogel  hep-ph/0303205 

Oi
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“Soft” & “Potential” neutrinos:                                            
Soft:         (k0, |k|)~ Q ~ kF ~ mπ                     

Potential:  (k0,|k|) ~ (Q2/mN,  Q)   

At the nuclear level, these operators 
mediate the transition between the 

initial (0+) and final (0+)  nuclear states

Calculable  long- and pion-range contributions 
to the  “Neutrino potential” mediating nn→pp            



“UltraSoft” neutrinos:     

(k0, |k|) ~ Q2/mN <<  kF

Double insertions of the weak current 
at the hadronic / nuclear level

Sum over intermediate  nuclear states
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e− e−

 i(0+) f (0+)n 

Classifying contributions
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Nuclear scale effective Hamiltonian
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“Isotensor” 0νββ potential mediates nn→pp.                   
It can be identified to a given order in Q/Λχ by 

computing 2-nucleon amplitudes

“Ultra-soft” (e, ν) with (E,|p|) <<  kF     
cannot be integrated out

Kinetic energy and strong NN potential 



Figure adapted from Primakoff-Rosen 1969

+  VI=2 

Anatomy of 0νββ amplitude in EFT

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

LO

 VI=2 

N2LO
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Connection with non-EFT approach
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Ĝ+(k0±). Performing the integration over k0 in Eq. (2.18) with Cauchy’s theorem,4 one arrives
at

ÔLL(k) =
1

|k|
JL
µ (0) Ĝ+(Ẽ � |k|) (2⇡)3

h
�(3)(P̂� k+) + �(3)(P̂� k�)

i
JLµ(0) . (2.21)

Further inserting a complete set of states between the current operators in Eq. (2.21) leads to
the spectral representation for the amplitude5

A⌫ = �

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf�|JL

µ |n(k+)ihn(k+)|JLµ
|i+i

|k|+ (En(k+)� Ẽ)� i✏
+

hf�|JL
µ |n(k�)ihn(k�)|JLµ

|i+i

|k|+ (En(k�)� Ẽ)� i✏

#
.

(2.22)
[Equation for talk]

A⌫ /

X

n

Z
d3k

(2⇡)3
1

|k|

"
hf |JL

µ (k)|nihn|J
Lµ(�k)|ii

|k|+ (En � Ei + Ee2)
+

hf |JL
µ (k)|nihn|J

Lµ(�k)|ii

|k|+ (En � Ei + Ee1)

#
(2.23)

The representations (2.17) and (2.22) are quite general. The asymptotic behavior of the
integrand in Eq. (2.22) at large |k| is dictated by the OPE for ⇧̂LL

µ⌫ (k) or, equivalently, Ô
LL(k).

An explicit calculation to be described below shows the behavior d3k/|k|5, so the amplitude in
the full theory is finite. Moreover, Eq. (2.22) shows that once |k| > kF , so that k2/mN is above
the typical nuclear binding energies, one expects (En(k±)� Ẽ) > 0 even for bound intermediate
states (such as the deuteron), and therefore the energy denominators in Eq. (2.22) will not lead
to any singular behavior in the variable |k|. The matrix elements in the numerator are also
expected to have a smooth behavior in |k|, dictated by single- and multi-hadron form factors, as
shown by explicit EFT calculations. Based on these considerations, we conclude that a smooth
interpolation between the calculable regimes of |k| . ⇤� and |k| & ⇤ is adequate.

In order to make the integrand in Eqs. (2.17) and (2.22) more explicit, we use the expression
for the scattering states (2.16) in Eq. (2.17) and arrive at

A⌫ =

Z
d3k

(2⇡)3
hf0|

⇣
T̂ (E0)Ĝ(0)

+ (E0) + I
⌘
ÔLL(k)
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+ (E) T̂ (E)
⌘
|i0i (2.24)

=

Z
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(
hf0| Ô

LL(k) |i0i

+
X

m

hf0|T̂ (E
0)|mi

h
G(0)

+ (E0)
i

m
hm| ÔLL(k) |i0i

+
X

m

hf0| Ô
LL(k) |mi

h
G(0)

+ (E)
i

m
hm|T̂ (E)|i0i

+
X

m,m0

hf0|T̂ (E
0)|m0

i

h
G(0)

+ (E0)
i

m0
hm0

| ÔLL(k) |mi

h
G(0)

+ (E)
i

m
hm| T̂ (E) |i0i

)
,

4For each term in Eq. (2.19), one can close the contour in the upper or lower k0 plane so that the integral is
given by the residue at the k0 pole from the neutrino propagator in Eq. (2.18).

5The summation is over intermediate states |n(k±)i of total three-momentum k±, enforced by the �-functions
in Eq. (2.21). Therefore, for an N -particle intermediate state

P
n
involves phase space integrals over the N � 1

internal momenta (the total momentum being fixed to k±) and carries non-zero mass dimension. For example, for
two-nucleon intermediate states, using non-relativistic normalizations for the states hpn|p0

ni = (2⇡)3�(3)(pn�p0
n)

one has
P

n
!

R
d3pn/(2⇡)

3, where pn is the relative momentum of the two-nucleon pair. In general the
summation

P
n

|n(k±)ihn(k±)| carries mass dimension �3.

9

• EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): 
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+ (E0) + I
⌘
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• EFT result corresponds to the full amplitude expanded according to chiral power counting (by design): 

Quark-level weak currents Complete set of QCD states
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• Traditional approach uses this form at the nucleon level   

Nucleon-level weak currentsComplete set of nuclear states 
(built as bound states of nucleons) 

The sum over nuclear states cannot reproduce effect of hard modes, that probe different degrees of freedom! 
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Key new insight from EFT
  VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti,  S. Pastore, U. van Kolck  1802.10097
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• To leading order (LO) in Q/Λχ  (Q~kF~mπ,  Λχ~GeV),  the nn → pp transition operator has two contributions: 

Hadronic 
input: gA

Potential 
neutrino 
exchange

Hard
 neutrino 
exchange

gν  ~ 1/Q2   >>1/Λχ2 ~1/(4πFπ)2  

 (Much larger than estimate from Naive 
Dimensional Analysis)               



Key new insight from EFT
  VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti,  S. Pastore, U. van Kolck  1802.10097

gν  

νM 
‘Usual’ νM exchange ~1/kF2 ~1/Q2 
Coulomb-like long-range potential  

VC,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729

13

‘New’:  short-range potential with 
coupling gν ~1/Q2 
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• LO contact term is required by renormalization of the 1S0 nn→pp amplitude in presence of strong interactions  

UV divergence ∝ (mNC/4π)2 ~1/Q2

+ + +…

C ~ 4π/(mNQ)   LO strong potential π C 
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gν  

gν  flows to                         
1/Q2   >> 1/(4πFπ)2
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Can we extract gν from data?

• NN scattering data at low energy  (ann+app-2anp) determine C1+C2, confirming LO scaling!

• Isospin symmetry relates gν to one of two I=2 e.m. couplings (hard γ’s versus hard ν’s)  

15

Quarks, 
gluons

Quarks, 
gluons



Impact on nuclear matrix elements 

16

• Assuming gν~(C1+C2)/2  → O(1) impact on m.e.  and mββ extraction

Jokiniemi-Soriano-Menendez,  2107.13354 

ML

ML+MS

ML-MS

Key question:                   
is the interference 

constructive or 
destructive? 

For 76Ge: 
30-70% effect in QRPA 

and 15-45% in NSM. 
Similar or large in other isotopes 



Impact on nuclear matrix elements 

16

• Assuming gν~(C1+C2)/2  → O(1) impact on m.e.  and mββ extraction

• Several approaches to determine gν 

• Dispersive approach inspired by Cottingham formula for δmp,n (EM) 

• Large-NC arguments point to  gν~(C1+C2)/2  

Tuo  et al.  1909.13525;  
  Detmold, Murphy 2004.07404 Davoudi, Kadam,  2012.02083 

Richardson, Shindler, Pastore, Springer, 
2102.02814

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

• Lattice QCD  — gearing up

π

e−

e−

π



Estimating the contact term
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VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371
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Towards complete leading-order predictions for neutrinoless double � decay

Vincenzo Cirigliano,1 Wouter Dekens,2 Jordy de Vries,3, 4 Martin Hoferichter,5 and Emanuele Mereghetti1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA

3Amherst Center for Fundamental Interactions, Department of Physics,
University of Massachusetts, Amherst, MA 01003

4RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
5Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,

University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

The amplitude for the neutrinoless double � (0⌫��) decay of the two-neutron system, nn !
ppe�e�, constitutes a key building block for nuclear-structure calculations of heavy nuclei employed
in large-scale 0⌫�� searches. Assuming that the 0⌫�� process is mediated by a light-Majorana-
neutrino exchange, a systematic analysis in chiral e↵ective field theory shows that already at leading
order a contact operator is required to ensure renormalizability. In this work, we develop a method
to estimate the numerical value of its coe�cient in analogy to the Cottingham formula and validate
the result by reproducing the charge-independence-breaking contribution to the nucleon–nucleon
scattering lengths. Our central result, while derived in the MS scheme, is given in terms of the
renormalized amplitude A⌫(|p|, |p0|), matching to which will allow one to determine the contact-
term contribution in regularization schemes employed in nuclear-structure calculations. Our results
thus greatly reduce a crucial uncertainty in the interpretation of searches for 0⌫�� decay.

INTRODUCTION

Neutrinoless double � decay is by far the most sensi-
tive laboratory probe of lepton number violation (LNV).
Its observation would prove that neutrinos are Majo-
rana fermions, constrain neutrino mass parameters, and
provide experimental validation for leptogenesis scenar-
ios [1–4]. If 0⌫�� decay is caused by the exchange of
light Majorana neutrinos, as we consider here, the am-
plitude is proportional to the “e↵ective” neutrino mass
m�� =

P
i U

2

eimi, where the sum runs over light neutrino
masses mi and Uei are elements of the neutrino-mixing
matrix. 0⌫�� is a complicated process involving parti-
cle, nuclear, and atomic physics and the interpretation of
experimental limits [5–10], and even more so of potential
future discoveries, is hampered by substantial uncertain-
ties in the calculation of hadronic and nuclear matrix
elements [11–19].

Chiral e↵ective field theory (EFT) [20–25] plays a key
role in addressing these uncertainties. Nuclear struc-
ture, ab-initio calculations based on chiral-EFT inter-
actions [26–28] have recently become available for some
phenomenologically relevant nuclei [29–31] and the issue
of gA quenching in single � decays has been resolved as
a combination of two-nucleon weak currents and strong
correlations in the nucleus [32–34]. In addition, the few-
nucleon amplitudes used as input in nuclear structure cal-
culations have been scrutinized in chiral EFT for various
sources of LNV [35–44]. In the context of light-Majorana-
neutrino exchange, using naive dimensional counting, the
leading contribution in the chiral-EFT expansion arises
from a neutrino-exchange diagram, in which the LNV
arises from insertion of the �L = 2 e↵ective neutrino
mass m�� . In analogy to the nucleon–nucleon (NN) po-

FIG. 1: Forward scattering amplitude (left) and self-energy
contraction (right). The solid line refers to the hadronic states
(pion, nucleon, two-nucleon), the gray blob to the nonpertur-
bative amplitude, and the wiggly lines to the massless medi-
ator attached to the currents (photon or neutrino).

tential itself [23–25] and external currents [45], this con-
clusion no longer holds when demanding manifest renor-
malizability of the amplitude, which requires the promo-
tion of an nn ! ppe�e� contact operator to leading order
(LO) [40, 43], encoding the exchange of neutrinos with
energy/momentum greater than the nuclear scale. The
size of this contact operator is currently unknown, lead-
ing to an additional source of uncertainty in the interpre-
tation of 0⌫�� decays besides the nuclear-structure ones.
In this work we present a first estimate of the complete
nn ! ppe�e� amplitude including this contact-term con-
tribution. For related progress towards a calculation of
this amplitude based on lattice gauge theory, we refer to
the recent literature [46–52].

The hadronic part of the light-Majorana-neutrino-
exchange amplitude has the structure

A⌫ /

Z
d4k

(2⇡)4
gµ⌫

k2 + i✏

Z
d4x eik·xhpp|T{jµ

w
(x)j⌫

w
(0)}|nni

(1)
and is ultimately determined by the two-nucleon matrix
element of the time-ordered product T{jµ

w
(x)j⌫

w
(0)} of

ar
X

iv
:2

01
2.

11
60

2v
1 

 [n
uc

l-t
h]

  2
1 

D
ec

 2
02

0

Cottingham (1963) approach to electromagnetic contributions to hadron masses

Forward Compton amplitude Self-energy ~ mass



Estimating the contact term

nn → pp amplitude controlled by a forward “Compton” amplitude

n p
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νM

e− e−

W− (k)W+ (k)
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High k: QCD OPE
Low k: chiral EFT to NLO

Intermediate k:  resonance contributions 
in     and     , 

πNN intermediate state, … 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



Estimating the contact term 
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VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

Dominant uncertainty from 
inelastic intermediate states  

(NNπ , …):

k

k

π

Determined gν  with ~30% uncertainty  (validated with ΔI=2  NN electromagnetic coupling C1 + C2)



Impact of the contact term 
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VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

We provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν in nuclear calculations 

[2] Wirth, Yao, Hergert,  2105.05415        [3]  Belley et al, 2307.15156      [4]  Belley et al,   2308.15634 

Contact term fit to synthetic data and used in ab-initio calculations for  
48Ca [1], 130Te [2], 136Xe, [2],   76Ge [3]

 Enhances matrix elements by ~40% [Ca, Ge] and >50% [Te, Xe]  — 

good news for phenomenology, while we wait for Lattice QCD results 

Determined gν  with ~30% uncertainty  (validated with ΔI=2  NN electromagnetic coupling C1 + C2)



Figure adapted from Primakoff-Rosen 1969

+  VI=2 

 Hard, soft, and potential ν 

Vν ~ 1/Q2 ,  1/(Λχ)2, …

 Ultrasoft ν

Loop calculable in terms of En -Ei  and       
<f |Jμ|n><n|Jμ|i>, that also control 2νββ. 
Contributes to the amplitude at N2LO

LO

 VI=2 

N2LO
20

What about higher orders?



• Known factorizable corrections to 1-body currents (radii, …) 

N2LO 0νββ potential

• Non-factorizable contributions to Vν,2 ~Vν,0 (kF/4πFπ)2   

[π-N loops and new contact terms] 

• 2-body x 1-body current (and  another contact…)

Wang-Engel-Yao 1805.10276

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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Wang-Engel-Yao 1805.10276

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729

Calculations of these effects in light and heavy nuclei show O(10%) corrections 
S. Pastore,  J. Carlson,  V.C.,   W. Dekens,  E. Mereghetti, R. Wiringa  1710.05026             
Castillo, Jokiniemi, Menendez, Soriano  2408.03373,       Belley et al,  2308.15634   
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Ultrasoft neutrino contributions
Figure adapted from Primakoff-Rosen 1969

• Ultrasoft ν’s couple to nuclear states: sensitivity to En -Ei  and <f |Jμ|n><n|Jμ|i>  (see also 2νββ amplitude)

• Ultrasoft ν loop suppressed by (En - Ei)/(4πkF) ~ (Q/Λχ)2. → N2LO contribution.                                           
This scaling is consistent with previous studies of the closure approximation and recent calculations

V. Cirigliano,  W. Dekens,  E. Mereghetti, A. Walker-Loud, 1710.01729
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Castillo, Jokiniemi, Menendez, Soriano  2408.03373Sen’kov-Horoi 1310.3254 ,   

Wang-Zhao-Meng 2105.02649 



Progress in controlling all uncertainties
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 Belley et al,   2308.15634  and references therein  
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FIG. 2. Comparison of 0⌫��-decay NMEs in Ge76
from nuclear models and ab initio calculations. a, The NMEs from phenomenological

models, including the interacting-boson model (IBM-2) [9, 34], energy-density-functional (EDF) methods [8, 11], quasiparticle random-phase
approximation (QRPA) [12, 35, 36], interacting shell model (ISM) [7, 10], ISM with generalized contact formalism (ISM-GCF) [37], realistic
shell model (RSM) [13] and e↵ective field theory (EFT) [38], are compared to the results of the VS-IMSRG and IM-GCM using di↵erent chiral
interactions. The error bars of phenomenological nuclear models reflect the discrepancy of calculations from di↵erent groups and the bands
shows results with the short range contributions included [37, 39]. b, The posterior distribution function of the 0⌫�� NME using the MM-DGP
emulator of the VS-IMSRG with 8188 non-implausible samples of chiral interactions from which the confidence intervals are extracted. The
final distribution including all errors yields a value of M0⌫�� = 2.60+1.28

�1.36. The samples are weighted by phase-shifts in the 1S 0 partial wave and
nuclear observables for mass A=2-4,16 as described in the supplemental material [40] . The uncertainties ✏i from EFT, many-body, operator
and emulator are then added independently. See text for details.

with dipole form factors is a good approximation, once the
contact term is properly considered. In short, we take a con-
servative value ✏OP = 0.47 which includes 0.26 from the use of
closure approximation, 0.13 from the uncertainty of the LEC
of the SR transition operator, and 0.08 from the truncation on
the chiral expansion of transition operators.

Finally, ✏EM is given by the MM-DGP emulator as it is
based upon Gaussian Processes, which inherently come with
a variance for each prediction. We obtain the final predic-
tive posterior distribution by sampling the PPD 108 times and
adding errors independently sampled from a normal distribu-
tion for each ✏ term. Figure 2 shows the PPDs obtained with
each error term discussed above, added separately. We find
that M0⌫ = 2.60+1.28

�1.36, where the uncertainty represents a 68%
confidence interval. We compare the PPD with results ob-
tained from the VS-IMSRG and IM-GCM methods, using the
EM1.8/2.0 nuclear interaction [33] and VS-IMSRG with four
other state-of-the-art chiral NN+3N interactions [33, 41, 59].

All these fall within our confidence interval. Our predictions
are further compared to NMEs from various phenomenolog-
ical nuclear models, where the contribution of the contact
transition operator is usually not considered due to the chal-
lenge in determining the unknown LEC of the SR transition
operator in such approaches. With the LECs’s value esti-
mated by considering the charge-independence-breaking cou-
pling of nuclear Hamiltonians, the contribution of the SR op-
erator was quantified with the interacting shell-model (ISM)
and quasiparticle random-phase approximation (QRPA) [39].
Taking this into account, the discrepancy among di↵erent phe-
nomenological models can exceed one order of magnitude, as
depicted in Fig.2.

Conclusions. In summary, we have presented the first
comprehensive uncertainty quantification in ab initio calcu-
lations of NMEs for the 0⌫�� decay of Ge76 using nuclear
interactions derived from �EFT and recently developed many-
body emulators based on the standard mechanism of exchang-

Various nuclear models ‘Ab initio’ methods using 
different chiral interactions 

• Several first-principles many-body methods are  
used for the calculation of matrix elements

• Estimated uncertainty from: 

• EFT for nuclear force (effective 
couplings, convergence, … )

• Truncations in many-body methods

• Transition operator (contact term, 
closure approximation,  …)

• Overall uncertainty still sizable but improvable

• Smaller results compared to nuclear models.         

• This input + LEGEND-200 result: 
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in ab initio nuclear theory have followed the parallel de-
velopment of nuclear forces from chiral e↵ective field the-
ory (�EFT) [18, 19], a systematically improvable low-energy
expansion of QCD, where undetermined low-energy con-
stants (LECs) are optimized to data in few-nucleon systems,
and similarity-renormalization-group (SRG) methods [20] for
evolving such forces to the low-energy scale typical for atomic
nuclei. With the resulting interactions and operators, the A-
body Schrödinger equation can now be solved fairly accu-
rately for most atomic nuclei in the medium-mass region [21],
and even in the Pb208 region [22], by employing nonperturba-
tive and systematically improvable many-body methods. The
application of ab initio methods to 0⌫�� decay is important be-
cause theoretical uncertainties related to the many-body wave
functions and transition operators become controllable.

So far, three ab initio methods, the in-medium generator co-
ordinate method (IM-GCM) [23], the valence-space formula-
tion of the in-medium SRG (VS-IMSRG) [24], and coupled-
cluster theory [25], have been used to calculate the NME of
48Ca, the lightest nucleus that could be used in an experiment.
When starting from the same chiral two-nucleon-plus-three-
nucleon (NN+3N) interaction and 0⌫��-decay operators, the
approaches obtain results that agree within roughly estimated
uncertainties. These methods were also successfully bench-
marked against one another, as well as against quasi-exact di-
agonalization in light nuclei [25–27]. The di↵erence between
NMEs for 0⌫�� decay calculated with di↵erent ab initio meth-
ods but the same input has been found to give a useful approxi-
mation to the inaccuracies caused by truncation in many-body
methods. These studies make it feasible to carry out uncer-
tainty quantification in the ab initio prediction of the NMEs
of experimentally relevant nuclei.

The second-lightest such nucleus, Ge76 , is, along with
136Xe, one of the two most important isotopes for exper-
imental searches, and is now within the reach of multiple
ab initio methods. The VS-IMSRG was the first ab initio
approach to calculate the NME for 76Ge, using the long-
range (LR) transition operator associated with standard light-
neutrino exchange [24]. The resulting NME, 2.14(9), was
25-45% smaller than those obtained from phenomenologi-
cal shell-model calculations. However, the contributions of
the recently discovered leading-order short-range (SR) con-
tact transition operator [28] and higher-order terms were not
evaluated. In this work, we now include these contributions.
In particular, we report the results from the IM-GCM calcula-
tion and present the first comprehensive uncertainty quantifi-
cation for the NME in 76Ge using strong and weak interactions
consistently derived within �EFT.

Quantifying the uncertainty in the 0⌫��-decay NME.
For the 0⌫�� decay 76Ge(0+1 ) ! 76Se(0+1 ) + 2e�, the NME,
called M0⌫, can be written as:

M0⌫ = h76Se(0+1 )| Ô0⌫ |76Ge(0+1 )i , (1)

where the decay operator Ô0⌫ is derived in the standard
mechanism of exchange light Majorana neutrinos, depicted
in Fig. 1(a). The wave functions are obtained with the two

TABLE I. The recommended value for the total NME of 0⌫��
decay in Ge76

, together with the uncertainties from di↵erent

sources.
M0⌫ ✏LEC ✏�EFT ✏MBT ✏OP ✏EM

2.60+1.28
�1.36 0.75 0.3 0.88 0.47 <0.06

ab initio methods, i.e., IM-GCM and VS-IMSRG. The main
challenge in the assessment of theoretical error is the propa-
gation of the uncertainties in the LECs from the chiral inter-
action through the complicated many-body calculations that
ultimately produce the NME. To this end, we use the Sam-
pling/Importance Resampling [29] formulation of Bayes’ the-
orem for discrete samples, as was done in Ref. [22] to obtain
a theoretical uncertainty on the neutron skin of 208Pb.

Following this procedure, a posterior predictive distribution
(PPD) of the NMEs depending on the LECs (c) is given by

PPD =
�
M0⌫

k (c) : c ⇠ P(c|calibration)
 
, (2)

where M0⌫
k represents the NME from a specific theoretical cal-

culation (i.e. using a particular many-body method and oper-
ators truncated at order k) and P(c|calibration) represents the
probability of an LEC sample to yield results for a set of cal-
ibration observables that match experimental data. We label
the standard deviation coming from this (non-Gaussian) dis-
tribution ✏LEC to make comparison with other sources of error
easier. As calibration observables, we use properties of nuclei
of mass A = 2�4 and A = 16 as done in Ref. [30] to which we
add the neutron-proton scattering phase shift in the 1S 0 partial
wave at lab energy of 50 MeV, since it has recently been dis-
covered to correlate strongly with the NMEs [31]. The NMEs
for the LEC samples are then evaluated using the recently
developed Multi-output Multi-fidelity Deep Gaussian Process
(MM-DGP) emulator [32] for the VS-IMSRG, which allows
us to, within minutes, predict the results of billions of many-
body calculations that would otherwise take years to perform
in full.

We further assume that our errors are normally distributed
and mutually independent, such that the true value of the NME
in Eq. (1) can be written as:

M0⌫ = M0⌫
k + ✏�EFT + ✏MBT + ✏OP + ✏EM, (3)

where ✏�EFT represents the error coming from truncation of the
nuclear forces, ✏MBT the error from the many-body method,
✏OP the error due to the truncation of the decay operator and
finally, ✏EM the error on the emulated results. The values of the
NME, together with the errors ✏i from di↵erent sources, are
presented in Table I. We detail below how each uncertainty is
assessed.

We employ nuclear interactions derived in a formulation
of �EFT where the �-isobars are considered explicitly [41].
In particular, these interactions are given at next-to-next-to-
leading order (N2LO) in the chiral expansion, where 17 LECs
arise. These interactions are particularly useful for the present
study since more diagrammatic contributions are considered
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date. The Bayesian analysis yields an identical 90% C.I. lower
limit under uniform signal and background priors. Adopting a
prior on the signal rate that assumes equiprobable Majorana
neutrino masses yields a limit of 2.8 ⇥ 1026 yr, stronger than
with a uniform prior as expected in the absence of a signal.

The overall effect of uncertainties in the 0nbb decay signal
model on the limit is at the percent level. Systematic uncer-
tainties in the fit model have a marginal impact; for example,
assuming a linear background shifts the limit by a few percent.

We calculate constraints on the effective Majorana mass <bb
using a range of nuclear matrix elements (NMEs) from phe-
nomenological calculations [58–72], i.e. 2.35–6.34, yielding a
range of upper limits of <bb < 75–200 meV in the frequentist
framework. In addition, we provide a second estimate based
on a recent ab-initio calculation that includes for the first time
a comprehensive Bayesian treatment of theoretical uncertain-
ties [73]. Using this approach, we derive an upper limit of
<bb < 320 meV in the Bayesian framework, with its strength
significantly limited by the large uncertainty in the NME value.
The posterior distributions are available in [30].

We have presented first results from the initial data-taking
phase of LEGEND-200. With the deployment of additional
large mass IC detectors and background reduction through re-
fined surface treatment of nearby components, data acquisition
will resume with an improved detector array. This paper marks
the beginning of the phased LEGEND program, which ulti-
mately aims to operate up to one ton of HPGe detectors enriched
in 76Ge in the future LEGEND-1000 infrastructure [19]. The
program is designed to achieve discovery sensitivities for 0nbb
decay half-lives beyond 1028 years that explore the inverted
and a significant fraction of the normal neutrino mass ordering
regime, as predicted by neutrino oscillation experiments [4, 74].
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LNV @ multi-TeV-scale: EFT
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• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

ν

• New mechanisms at the hadronic scale:  
need appropriate chiral EFT treatment.   
Not including pion-range effects leads to 
factor ~ (Q/Λχ)2 ~1/100 reduction in 
sensitivity to short-distance couplings! 

• 31 operators up to dimension 9
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• Higher dim operators arise in well motivated 
models of neutrino mass. Can compete with 
Dim=5 operator if  Λ~ O(1-10 TeV) 
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(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

ν

• New mechanisms at the hadronic scale:  
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Not including pion-range effects leads to 
factor ~ (Q/Λχ)2 ~1/100 reduction in 
sensitivity to short-distance couplings! 

• 31 operators up to dimension 9
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Some reviews:     
Rodejohann 1106.1334,    

Vergados-Eijiri-Simkovic 1205.0649 
  Deppisch-Hirsch-Pas 1208.0727
      deGouvea-Vogel 1303.4097

…

Vast literature, with varying degree of enthusiasm for EFT tools (SM-EFT,  chiral EFT)
Some recent papers: 

 VC-Dekens-deVries-Graesser-Mereghetti,1806.02780   
Neacsu-Horoi 1801.04496.     

Graf-Deppisch-Iachello-Kotila, 1806.06058
Graf, Lindner, Scholer 2204.10845 

…    

• Higher dim operators arise in well motivated 
models of neutrino mass. Can compete with 
Dim=5 operator if  Λ~ O(1-10 TeV) 



Dimension 6 and 7 operators
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(In the LEFT, between EW and GeV scale)

Hadronic matrix elements for �L = 2

n p

n p

e
-

e
-

2. L
(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

ν

Dim 7 in 
SM-EFT

C ~(vew/Λ)3



Dimension 9 operators
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(In the LEFT, between EW and GeV scale)

Dim 9 in 
SM-EFT

C ~ (vew/Λ)5



Hadronic realization of dim-7 operators 
Hadronic matrix elements for �L = 2

n p

n p

e
-

e
-

2. L
(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

SM weak 
charged current

• Long range neutrino exchange without mass insertion 

• Hadronic input in good shape:  isovector nucleon charges  V, A, S, P, T 

• Nuclear m.e.:  same as the ones needed for light νM exchange

LNV vertex from dim-7 
SMEFT operators

Doi, Kotani, Takasugi 1985

Pas,  Hirsch,  Klapdor-
Kleingrothaus, Kovalenko 1999  

ν

V. Cirigliano,  W. Dekens,  J. de 
Vries,  M. Graesser,  E. Mereghetti,  

1708.09390

Horoi and  Neacsu,1706.05391  
and refs therein
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• Hadronic realization depends on Oi’s chiral properties

VC, W. Dekens, M. Graesser, E. Mereghetti, J. de Vries 1806.02780

• Example: scalar operators (arising in most models)

30

Hadronic realization of dim-9 operators

Prezeau, Ramsey-Musolf, 
Vogel  hep-ph/0303205 
M. Graesser 1606.04549

operators induced by O1 contain two derivatives and are therefore relatively suppressed. The
mesonic chiral Lagrangian2 for O1,2,3,4,5 is

L
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ēLCēT
L

v5
+ (L $ R) + . . . , (17)

where U = u2 = exp (i⇡ · ⌧/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the pion
decay constant in the chiral limit, and Lµ = iUDµU †. We use F⇡ = 92.2 MeV for the physical
pion decay constant. By NDA the LECs of the non-derivative pion operators are expected to be
g⇡⇡2,3,4,5 = O(⇤2

�), while g⇡⇡1 = O(1). These expectations are very well respected by the extractions
of Ref. [42–44] based on chiral symmetry and lattice QCD results. In Table 1 we give the value
of the LECs at µ = 2 GeV in the MS scheme, obtained in Ref. [44]. The physical amplitudes

are scale and scheme independent provided one uses Wilson coe�cients C(9)
i

evaluated at the
same scale and in the same scheme as used for the g⇡⇡

i
.

The ⇡N terms are only relevant for the O1 operator and can be written as

L
scalar
⇡N = gAg⇡N1 C(9)
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h
N̄Sµu†⌧+uN Tr
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⇤ ēLCēT
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v5
+ (L $ R) + . . . , (18)

where uµ = u†Lµu = i
⇥
u(@µ � irµ)u†

� u†(@µ � ilµ)u
⇤
, gA ' 1.27, N = (p, n)T , and Sµ and

vµ are the nucleon spin and velocity. In the nucleon restframe we have S↵ = (0, �/2) and
vµ = (1, 0). The LEC g⇡N1 is unknown, but expected to be O(1) by NDA.

In a power counting based on NDA, LNV four-nucleon interactions are relevant only for
O1, in which case they would compete with the ⇡⇡ and ⇡N interactions g⇡⇡1 and g⇡N1 . How-
ever, the LNV potential induced by the non-derivative ⇡⇡ operators in Eq. (17) has the same
short-distance behavior as the neutrino potential mediated by the neutrino Majorana mass,
V (q) ⇠ 1/q2 at large |q|. Ref. [27] showed that for these potentials the nn ! ppee scatter-
ing amplitude has a logarithmic UV divergence, which can be absorbed by promoting the NN

2
The ⇡⇡ couplings defined here are related to those of Refs. [25,31,43] by g⇡⇡

1 = g27⇥1, g
⇡⇡

2 = g6⇥6̄, g
⇡⇡

3 = gmix
6⇥6̄,

g⇡⇡

4 = g8⇥8, g
⇡⇡

5 = gmix
8⇥8, while for the ⇡N andNN couplings we have g⇡N

1 = g⇡N

27⇥1 and gNN

1 = gNN

27⇥1. The notation

of Refs. [25, 31,43] emphasizes the transformation properties under SU(3)L ⇥ SU(3)R.
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operators stemming from O2,3,4,5 to leading order. The relevant NN interactions are

L
scalar
NN = gNN

1 C(9)
1L (N̄u†⌧+uN)(N̄u†⌧+uN)
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The couplings gNN

i
= O(1) in the Weinberg power counting, but need to be promoted to

O((4⇡)2) in the case of O2,3,4,5. The renormalization of the scattering amplitude does not
require such enhancement for gNN

1 .
The ⇡⇡, ⇡N , and NN Lagrangians for the O0

1,2,3 operators, which are related by parity to

O1,2,3, can be obtained by replacing C(9)
1L, 2L, 3L ! C(9) 0

1L, 2L, 3L, C(9)
1R, 2R, 3R ! C(9) 0

1R, 2R, 3R, S↵ !

�(�1)↵S↵, u↵ ! �(�1)↵u↵, u ! u†, and U ! U † in Eqs. (17)-(19). 3 This leads to ⇡⇡, ⇡N ,

and NN Lagrangians of the same form (with C(L,R)
1,2,3 ! C 0 (L,R)

1,2,3 ) after expanding the meson
matrices u (and U) to two, one, and zero pions, respectively.

From Eq. (19) we see that all scalar operators in Eq. (8) induce a LNV four-nucleon operator
that contributes to the nn ! ppee amplitude at the same order as the pion-range contributions
from the ⇡⇡ee operators. This happens either because the ⇡⇡ee interaction is suppressed by
two powers in the chiral counting (as it is for O1 and O0

1), or because of non-perturbative
renormalization which enhances the four-nucleon operator to leading order (O2,3,4,5 and O0

2,3).
In other words, for all scalar operators the ⇡⇡ee and NN interactions appear at the same order.
For O1 and O0

1 there appear additional contributions from the ⇡N interaction. More details on
the renormalization of the nn ! ppee scattering amplitude and the non-perturbative RGE of
gNN

i
are given in Appendix B.

3.2 Vector operators

The vector operators induce mesonic interactions involving a derivative on the pion fields, which,
up to a total derivative, give rise to contributions proportional to me [21, 24]. Instead, the
contributions to the nn ! ppee amplitude from the ⇡N and NN interactions are proportional
to |q| ⇠ kF and therefore larger than the contributions from the purely mesonic terms by one
power of 1/✏�.

3
We use the following standard notation: (�1)

µ
= 1 for µ = 0 and (�1)

µ
= �1 for µ = 1, 2, 3 [57].
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ēLCēT
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2L � g⇡⇡3 C(9)
3L

⌘
⇡�⇡�

�

ēLCēT
L

v5
+ (L $ R) + . . . , (17)

where U = u2 = exp (i⇡ · ⌧/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the pion
decay constant in the chiral limit, and Lµ = iUDµU †. We use F⇡ = 92.2 MeV for the physical
pion decay constant. By NDA the LECs of the non-derivative pion operators are expected to be
g⇡⇡2,3,4,5 = O(⇤2

�), while g⇡⇡1 = O(1). These expectations are very well respected by the extractions
of Ref. [42–44] based on chiral symmetry and lattice QCD results. In Table 1 we give the value
of the LECs at µ = 2 GeV in the MS scheme, obtained in Ref. [44]. The physical amplitudes

are scale and scheme independent provided one uses Wilson coe�cients C(9)
i

evaluated at the
same scale and in the same scheme as used for the g⇡⇡

i
.

The ⇡N terms are only relevant for the O1 operator and can be written as

L
scalar
⇡N = gAg⇡N1 C(9)

1L F 2
0

h
N̄Sµu†⌧+uN Tr

⇣
uµu†⌧+u

⌘i ēLCēT
L

v5
+ (L $ R)

=
p

2gAg⇡N1 C(9)
1L F0

⇥
p̄ S · (@⇡�)n

⇤ ēLCēT
L

v5
+ (L $ R) + . . . , (18)

where uµ = u†Lµu = i
⇥
u(@µ � irµ)u†

� u†(@µ � ilµ)u
⇤
, gA ' 1.27, N = (p, n)T , and Sµ and

vµ are the nucleon spin and velocity. In the nucleon restframe we have S↵ = (0, �/2) and
vµ = (1, 0). The LEC g⇡N1 is unknown, but expected to be O(1) by NDA.

In a power counting based on NDA, LNV four-nucleon interactions are relevant only for
O1, in which case they would compete with the ⇡⇡ and ⇡N interactions g⇡⇡1 and g⇡N1 . How-
ever, the LNV potential induced by the non-derivative ⇡⇡ operators in Eq. (17) has the same
short-distance behavior as the neutrino potential mediated by the neutrino Majorana mass,
V (q) ⇠ 1/q2 at large |q|. Ref. [27] showed that for these potentials the nn ! ppee scatter-
ing amplitude has a logarithmic UV divergence, which can be absorbed by promoting the NN

2
The ⇡⇡ couplings defined here are related to those of Refs. [25,31,43] by g⇡⇡

1 = g27⇥1, g
⇡⇡

2 = g6⇥6̄, g
⇡⇡

3 = gmix
6⇥6̄,

g⇡⇡

4 = g8⇥8, g
⇡⇡

5 = gmix
8⇥8, while for the ⇡N andNN couplings we have g⇡N

1 = g⇡N

27⇥1 and gNN

1 = gNN

27⇥1. The notation

of Refs. [25, 31,43] emphasizes the transformation properties under SU(3)L ⇥ SU(3)R.
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Pion-range 
effects

Short-range 
effects

Vergados 1982,  Faessler, Kovalenko, Simkovic, Schweiger 1996
Prezeau, Ramsey-Musolf, Vogel  hep-ph/0303205 

Naive dimensional analysis  →   Vππ  dominates (except for O1)

Q-2 Q0 Q0 



Pion-range 
effects

Short-range 
effects

Oi

Nicholson et al (CalLat), 1805.02634
Detmold et al, 2208.05322

1. ππ matrix elements now precisely 
calculated in lattice QCD 

Hadronic realization of dim-9 operators

32

• Developments: 



Pion-range 
effects
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effects

Oi

2. Renormalization →  Vππ and  VNN  
are both leading order

(Similar to light neutrino exchange!)

V.C,  W. Dekens,  J. de Vries, M. Graesser, E. Mereghetti  [1806.02780]

Hadronic realization of dim-9 operators

33

Several unknown LO NN contact couplings!  Opportunity for LQCD

• Developments: 
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• Framework to interpret 0νββ 
searches in terms of any high-
scale model and possibly unravel 
the underlying mechanism in 
case of discovery

34

V. Cirigliano,  W. Dekens,  J. de Vries, M. Graesser, E. Mereghetti,   JHEP 1812 (2018) 097 [1806.02780]

• Put everything together:        
master formula for half-life 

νDoBe Python tool: 
Scholer-deVries-Graf,  2304.05415 
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are su�cient to constrain all e↵ective operators up to dim-9. In the chiral EFT power counting
all NMEs are expected to be O(1), with the exception of MMM

GT
and MMM

T
that are formally

suppressed by ✏2�. From Table 2 we see that these expectations are well respected by the Fermi

and Gamow-Teller NMEs. MMM

GT
is larger than expected, which can be understood by taking

into account that the ✏2� suppression is partially compensated by the large isovector nucleon
magnetic moment, gM ' 4.7. The tensor matrix elements are usually smaller because the tensor
operator S(12) vanishes between nn pairs in the 1S0 channel, which is the dominant two-nucleon
component [61]. Part of this suppression might be an artifact of the applied many-body methods,
as Variational Monte Carlo calculations in lighter nuclei, such as 12Be and 12C, show the ratio
MAP

T
/MAP

GT
to be roughly 25% [31].

4.2 Master formula for the 0⌫�� decay rate

Using the amplitude in Eq. (26), the expression for the inverse half-life becomes [62,63],

⇣
T 0⌫
1/2

⌘�1
=

1

8 ln 2

1

(2⇡)5

Z
d3k1
2E1

d3k2
2E2

|A|
2F (Z, E1)F (Z, E2)�(E1 + E2 + Ef � Mi) . (37)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the electrons
and final daughter nucleus in the rest frame of the decaying nucleus. The functions F (Z, Ei)
are defined in Appendix A.1 and take into account the fact that the emitted electrons feel the
Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in Eq. (28) to separate the di↵erent leptonic struc-
tures, we obtain the final expression

⇣
T 0⌫
1/2

⌘�1
= g4A

⇢
G01

�
|A⌫ |

2 + |AR|
2
�

� 2(G01 � G04)ReA⇤
⌫AR + 4G02 |AE |

2

+2G04
⇥
|Ame

|
2 + Re

�
A

⇤
me

(A⌫ + AR)
�⇤

� 2G03 Re [(A⌫ + AR)A⇤
E + 2Ame

A
⇤
E ]

+G09 |AM |
2 + G06 Re [(A⌫ � AR)A⇤

M ]

�
. (38)

This ‘Master-formula’ describes the 0⌫�� decay rate up to dim-9 operators in the SM-EFT.
It includes all contributions from the low-energy �L = 2 operators in Eq. (1) and takes into
account all interference terms. It should provide a useful tool to constrain any model of high-
scale LNV, using the most up-to-date hadronic and nuclear input. A di↵erential version of
Eq. (38) is given in Appendix A.1. The various components in Eq. (38) can be obtained as
follows:

• G0i are phase space factors defined in Appendix A.1 and their numerical values are given
in Table 4.

• The five sub-amplitudes A↵ (↵ 2 {⌫, R, E, me, M}) corresponding to di↵erent leptonic
bilinears are decomposed in Eq. (29) in terms of contributions from LNV operators of

di↵erent dimension, generically denoted as M
(d)
↵ with d = 3, 6, 9.

• Expressions for M
(d)
↵ can be found in Eqs. (30)-(36). Each M

(d)
↵ is given by a linear combi-

nation of terms that are products of: (i) short-distance Wilson coe�cients, which depend
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additional structures appear in V3,6,7(q2) and we define

A =
g2
A
G2

F
me

⇡RA


A⌫ ū(k1)PRCūT (k2) + AR ū(k1)PLCūT (k2) (28)

+AE ū(k1)�0CūT (k2)
E1 � E2

me

+ Ame
ū(k1)CūT (k2) + AM ū(k1)�0�5CūT (k2)

�
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall
factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted, where
me is the electron mass and RA = 1.2 A1/3 fm in terms of A, the number of nucleons of the
daughter nucleus. This normalization was chosen in order to align the definition of the various
nuclear matrix elements with those appearing in the literature, but stress that in the final decay
rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coe�cients of the �L = 2 operators, on hadronic
matrix elements, and nuclear matrix elements. The required LECs encoding hadronic matrix
elements are listed in Table 1. It turns out that all nuclear input that appears in Eq. (28) can
be expressed in terms of nine long-range NMEs (MF , MAA

GT
, MAP

GT
, MPP

GT
, MMM

GT
, MAA

T
, MAP

T
,

MPP

T
, MMM

T
) and six short-range matrix elements (MF, sd, MAA

GT, sd
, MAP

GT, sd
, MPP

GT, sd
, MAP

T, sd
,

MPP

T, sd
). For the exact definitions we refer to Appendix A.2. All NMEs, apart from one (MAA

T
),

can be extracted from existing calculations of light- and heavy Majorana-neutrino exchange
contributions. Furthermore, at LO in �PT the fifteen NMEs are related by five identities that
can be used to further reduce the number of required many-body calculations or as a consistency
check of the results [25]. In Table 2 we summarize several recent calculations of the NMEs,
obtained by di↵erent groups applying di↵erent many-body methods. The NMEs often appear
in certain linear combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from LNV
operators of di↵erent dimension

A⌫ =
m��

me

M
(3)
⌫ +

mN

me

M
(6)
⌫ +

m2
N

mev
M

(9)
⌫ ,

AR =
m2

N

mev
M

(9)
R

,

AE = M
(6)
E,L

+ M
(6)
E,R

,

Ame
= M

(6)
me,L

+ M
(6)
me,R

,

AM =
mN

me

M
(6)
M

+
m2

N

mev
M

(9)
M

. (29)

The subamplitude A⌫ multiplies the leptonic structure that arises from light Majorana-
neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-
range dim-9 contributions. We have therefore decomposed it in a component proportional to

the electron-neutrino Majorana mass m�� , and the additional terms M
(6)
⌫ and M

(9)
⌫ , generated,

respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance component M
(9)
⌫

arises from V9 and always involves an additional power of 1/v with respect to the contribution
from light Majorana-neutrino exchange. To compensate for this factor and for the absence of
the neutrino mass, we have factored out two powers of mN in Eq. (29). In terms of the standard
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MF M
AA
GT M

AP
GT M

PP
GT M

MM
GT M

AA
T M

AP
T M

PP
T M

MM
T MFsd M

AA
GTsd M

AP
GTsd M

PP
GTsd M

AP
Tsd M

PP
Tsd

76Ge -0.78 6.06 -0.86 0.17 0.20 0.0 0.24 -0.06 0.04 -1.20 4.18 -1.24 0.29 -0.77 0.23
82Se -0.67 4.93 -0.71 0.14 0.17 0.0 0.24 -0.06 0.04 -1.01 3.46 -1.03 0.25 -0.73 0.22
96Zr -0.36 4.32 -0.64 0.13 0.15 0.0 -0.21 0.05 -0.04 -0.87 3.06 -0.89 0.21 0.64 -0.20

100Mo -0.51 5.55 -0.90 0.20 0.22 0.0 -0.29 0.07 -0.05 -1.28 4.48 -1.33 0.30 0.93 -0.28
110Pd -0.42 4.43 -0.76 0.17 0.18 0.0 -0.21 0.06 -0.04 -1.07 3.72 -1.11 0.25 0.79 -0.24
116Cd -0.34 3.17 -0.55 0.12 0.13 0.0 -0.12 0.04 -0.03 -0.80 2.72 -0.81 0.18 0.49 -0.16
124Sn -0.57 3.37 -0.50 0.11 0.12 0.0 0.12 -0.03 0.02 -0.82 2.56 -0.77 0.19 -0.42 0.13
128Te -0.72 4.32 -0.64 0.13 0.15 0.0 0.12 -0.04 0.03 -1.03 3.24 -0.98 0.24 -0.52 0.16
130Te -0.65 3.89 -0.57 0.12 0.14 0.0 0.14 -0.04 0.02 -0.94 2.95 -0.89 0.22 -0.47 0.15
134Xe -0.69 4.21 -0.62 0.13 0.15 0.0 0.12 -0.04 0.03 -0.97 3.07 -0.92 0.22 -0.48 0.15
136Xe -0.52 3.20 -0.45 0.09 0.11 0.0 0.12 -0.03 0.02 -0.73 2.32 -0.69 0.17 -0.36 0.12
148Nd -0.36 2.52 -0.48 0.11 0.12 0.0 -0.12 0.02 -0.02 -0.78 2.54 -0.79 0.19 0.30 -0.09
150Nd -0.51 3.75 -0.76 0.17 0.19 0.0 -0.12 0.04 -0.03 -0.74 2.46 -0.76 0.18 0.34 -0.10
154Sm -0.34 2.98 -0.52 0.11 0.13 0.0 -0.12 0.03 -0.02 -0.78 2.64 -0.79 0.19 0.39 -0.13
160Gd -0.42 4.22 -0.71 0.15 0.17 0.0 -0.21 0.05 -0.03 -1.02 3.52 -1.04 0.24 0.60 -0.19
198Pt -0.33 2.27 -0.50 0.11 0.12 0.0 -0.12 0.03 -0.02 -0.78 2.57 -0.78 0.18 0.37 -0.12
232Th -0.44 4.17 -0.76 0.17 0.18 0.0 -0.21 0.05 -0.04 -1.08 3.80 -1.11 0.25 0.69 -0.22
238U -0.52 4.96 -0.90 0.20 0.21 0.0 -0.21 0.06 -0.04 -1.29 4.51 -1.32 0.30 0.82 -0.25

Table 2. NMEs used in our calculations based on the IBM2 model [43]

written as
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(2.7)

The matrix elements Mi depend on the different LECs and Wilson coefficients. We explic-
itly state the dependency on the different Wilson coefficients within the brackets in (2.7).
A⌫ depends on the matrix elements

M
(3)
⌫ = �V

2
ud

✓
�
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g2A

MF +MGT +MT + 2
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NN
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Nuclear amplitudes depend on 32 
effective LNV couplings and 

corresponding nuclear matrix elements  
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are su�cient to constrain all e↵ective operators up to dim-9. In the chiral EFT power counting
all NMEs are expected to be O(1), with the exception of MMM

GT
and MMM

T
that are formally

suppressed by ✏2�. From Table 2 we see that these expectations are well respected by the Fermi

and Gamow-Teller NMEs. MMM

GT
is larger than expected, which can be understood by taking

into account that the ✏2� suppression is partially compensated by the large isovector nucleon
magnetic moment, gM ' 4.7. The tensor matrix elements are usually smaller because the tensor
operator S(12) vanishes between nn pairs in the 1S0 channel, which is the dominant two-nucleon
component [61]. Part of this suppression might be an artifact of the applied many-body methods,
as Variational Monte Carlo calculations in lighter nuclei, such as 12Be and 12C, show the ratio
MAP

T
/MAP

GT
to be roughly 25% [31].

4.2 Master formula for the 0⌫�� decay rate

Using the amplitude in Eq. (26), the expression for the inverse half-life becomes [62,63],

⇣
T 0⌫
1/2

⌘�1
=

1

8 ln 2

1

(2⇡)5

Z
d3k1
2E1

d3k2
2E2

|A|
2F (Z, E1)F (Z, E2)�(E1 + E2 + Ef � Mi) . (37)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the electrons
and final daughter nucleus in the rest frame of the decaying nucleus. The functions F (Z, Ei)
are defined in Appendix A.1 and take into account the fact that the emitted electrons feel the
Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in Eq. (28) to separate the di↵erent leptonic struc-
tures, we obtain the final expression

⇣
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2
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me
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E + 2Ame

A
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E ]

+G09 |AM |
2 + G06 Re [(A⌫ � AR)A⇤

M ]

�
. (38)

This ‘Master-formula’ describes the 0⌫�� decay rate up to dim-9 operators in the SM-EFT.
It includes all contributions from the low-energy �L = 2 operators in Eq. (1) and takes into
account all interference terms. It should provide a useful tool to constrain any model of high-
scale LNV, using the most up-to-date hadronic and nuclear input. A di↵erential version of
Eq. (38) is given in Appendix A.1. The various components in Eq. (38) can be obtained as
follows:

• G0i are phase space factors defined in Appendix A.1 and their numerical values are given
in Table 4.

• The five sub-amplitudes A↵ (↵ 2 {⌫, R, E, me, M}) corresponding to di↵erent leptonic
bilinears are decomposed in Eq. (29) in terms of contributions from LNV operators of

di↵erent dimension, generically denoted as M
(d)
↵ with d = 3, 6, 9.

• Expressions for M
(d)
↵ can be found in Eqs. (30)-(36). Each M

(d)
↵ is given by a linear combi-

nation of terms that are products of: (i) short-distance Wilson coe�cients, which depend
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additional structures appear in V3,6,7(q2) and we define

A =
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F
me
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
A⌫ ū(k1)PRCūT (k2) + AR ū(k1)PLCūT (k2) (28)
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me

+ Ame
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,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall
factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted, where
me is the electron mass and RA = 1.2 A1/3 fm in terms of A, the number of nucleons of the
daughter nucleus. This normalization was chosen in order to align the definition of the various
nuclear matrix elements with those appearing in the literature, but stress that in the final decay
rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coe�cients of the �L = 2 operators, on hadronic
matrix elements, and nuclear matrix elements. The required LECs encoding hadronic matrix
elements are listed in Table 1. It turns out that all nuclear input that appears in Eq. (28) can
be expressed in terms of nine long-range NMEs (MF , MAA

GT
, MAP

GT
, MPP

GT
, MMM

GT
, MAA

T
, MAP

T
,

MPP

T
, MMM

T
) and six short-range matrix elements (MF, sd, MAA

GT, sd
, MAP

GT, sd
, MPP

GT, sd
, MAP

T, sd
,

MPP

T, sd
). For the exact definitions we refer to Appendix A.2. All NMEs, apart from one (MAA

T
),

can be extracted from existing calculations of light- and heavy Majorana-neutrino exchange
contributions. Furthermore, at LO in �PT the fifteen NMEs are related by five identities that
can be used to further reduce the number of required many-body calculations or as a consistency
check of the results [25]. In Table 2 we summarize several recent calculations of the NMEs,
obtained by di↵erent groups applying di↵erent many-body methods. The NMEs often appear
in certain linear combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from LNV
operators of di↵erent dimension
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me
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. (29)

The subamplitude A⌫ multiplies the leptonic structure that arises from light Majorana-
neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-
range dim-9 contributions. We have therefore decomposed it in a component proportional to

the electron-neutrino Majorana mass m�� , and the additional terms M
(6)
⌫ and M

(9)
⌫ , generated,

respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance component M
(9)
⌫

arises from V9 and always involves an additional power of 1/v with respect to the contribution
from light Majorana-neutrino exchange. To compensate for this factor and for the absence of
the neutrino mass, we have factored out two powers of mN in Eq. (29). In terms of the standard
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A Phase space factors and nuclear matrix elements

A.1 Phase space factors

The definitions of the phase space factors appearing in Eq. (38) are given by,

G0k =
1

ln 2

G4
F
m2

e

64⇡5R2
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Z
dE1dE2|k1||k2|d cos ✓ b0k F (Z, E1)F (Z, E2)�(E1 + E2 + Ef � Mi) . (63)

Here ✓ is the angle between the momenta of the outgoing electrons and we followed the standard
normalization of Ref. [62]. The Fermi functions F (Z, E1,2) take into account the fact that
the outgoing electrons interact with the Coulomb potential of the daughter nucleus, and their
wavefunctions are not plane waves. Their expressions are given by

F (Z, E) =


2

�(2� + 1)

�2
(2|k|RA)2(��1)

|�(� + iy)|2e⇡y ,

� =
p

1 � (↵Z)2 , y = ↵ZE/|k| , |k| =
p

E2 � m2
e , (64)

where RA = 1.2 A1/3 fm and Z are, respectively, the radius and atomic number of the daughter
nucleus. The Fermi functions describe the Coulomb corrections in the assumption of a uniform
charge distribution in the nucleus and only account for the lowest-order terms in an expansion
in the electron position. It is possible to go beyond these approximations by using exact Dirac
wave functions [103] and including the e↵ect of electron screening [104]. The use of exact wave
functions leads to smaller phase space factors, with a reduction of up to 30% for the heaviest
nuclei. The e↵ects of electron screening are at the percent level [103]. The phase space factors
in Table 4 do not rely on Eq. (63), but reflect the more accurate results of Refs. [60, 103]. Eq.
(63) can be used to get a quick estimate of the half-life, and of the di↵erential decay rates we
discuss below.

The b0k factors are obtained from the electron traces that result from taking the square of
Eq. (28). Here we follow the notation of Ref. [25], in which these factors take the following form

b01 = E1E2 � k1 · k2 , b02 =

✓
E1 � E2

me

◆2 E1E2 + k1 · k2 � m2
e

2
, b03 = (E1 � E2)

2 ,
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e

�
, b06 = 2me (E1 + E2) , b09 = 2

�
E1E2 + k1 · k2 + m2

e

�
.

(65)

These definitions agree with those commonly used in the literature [62], up to the trivial rescal-
ings discussed in Ref. [25]. With the definitions of Eq. (65), the di↵erent phase space factors for
a given isotope are all of similar size, with no parametric enhancement or suppression, such that
the relative importance of di↵erent contributions is determined by the matching coe�cients and
by the nuclear matrix elements. We list the phase space factors for 76Ge, 82Se, 130Te and 136Xe
in Table 4, for which we use the calculation of Ref. [60].

As discussed in Ref. [25], the measurement of the half-life in one or several isotopes will not
by itself allow to disentangle the e↵ects of dim-5, dim-7 or dim-9 operators. Some additional
information can in principle be extracted from the di↵erential decay rate with respect to the
energy di↵erence of the two electrons, y = (E1 � E2)/Q, and the angle between the electron
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Different leptonic structure lead to different phase space weights 
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are su�cient to constrain all e↵ective operators up to dim-9. In the chiral EFT power counting
all NMEs are expected to be O(1), with the exception of MMM

GT
and MMM

T
that are formally

suppressed by ✏2�. From Table 2 we see that these expectations are well respected by the Fermi

and Gamow-Teller NMEs. MMM

GT
is larger than expected, which can be understood by taking

into account that the ✏2� suppression is partially compensated by the large isovector nucleon
magnetic moment, gM ' 4.7. The tensor matrix elements are usually smaller because the tensor
operator S(12) vanishes between nn pairs in the 1S0 channel, which is the dominant two-nucleon
component [61]. Part of this suppression might be an artifact of the applied many-body methods,
as Variational Monte Carlo calculations in lighter nuclei, such as 12Be and 12C, show the ratio
MAP

T
/MAP

GT
to be roughly 25% [31].

4.2 Master formula for the 0⌫�� decay rate

Using the amplitude in Eq. (26), the expression for the inverse half-life becomes [62,63],

⇣
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8 ln 2
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2F (Z, E1)F (Z, E2)�(E1 + E2 + Ef � Mi) . (37)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the electrons
and final daughter nucleus in the rest frame of the decaying nucleus. The functions F (Z, Ei)
are defined in Appendix A.1 and take into account the fact that the emitted electrons feel the
Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in Eq. (28) to separate the di↵erent leptonic struc-
tures, we obtain the final expression

⇣
T 0⌫
1/2
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⇢
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2 + |AR|
2
�
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⌫AR + 4G02 |AE |

2

+2G04
⇥
|Ame

|
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2 + G06 Re [(A⌫ � AR)A⇤

M ]

�
. (38)

This ‘Master-formula’ describes the 0⌫�� decay rate up to dim-9 operators in the SM-EFT.
It includes all contributions from the low-energy �L = 2 operators in Eq. (1) and takes into
account all interference terms. It should provide a useful tool to constrain any model of high-
scale LNV, using the most up-to-date hadronic and nuclear input. A di↵erential version of
Eq. (38) is given in Appendix A.1. The various components in Eq. (38) can be obtained as
follows:

• G0i are phase space factors defined in Appendix A.1 and their numerical values are given
in Table 4.

• The five sub-amplitudes A↵ (↵ 2 {⌫, R, E, me, M}) corresponding to di↵erent leptonic
bilinears are decomposed in Eq. (29) in terms of contributions from LNV operators of

di↵erent dimension, generically denoted as M
(d)
↵ with d = 3, 6, 9.

• Expressions for M
(d)
↵ can be found in Eqs. (30)-(36). Each M

(d)
↵ is given by a linear combi-

nation of terms that are products of: (i) short-distance Wilson coe�cients, which depend
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This ‘Master-formula’ describes the 0⌫�� decay rate up to dim-9 operators in the SM-EFT.
It includes all contributions from the low-energy �L = 2 operators in Eq. (1) and takes into
account all interference terms. It should provide a useful tool to constrain any model of high-
scale LNV, using the most up-to-date hadronic and nuclear input. A di↵erential version of
Eq. (38) is given in Appendix A.1. The various components in Eq. (38) can be obtained as
follows:

• G0i are phase space factors defined in Appendix A.1 and their numerical values are given
in Table 4.

• The five sub-amplitudes A↵ (↵ 2 {⌫, R, E, me, M}) corresponding to di↵erent leptonic
bilinears are decomposed in Eq. (29) in terms of contributions from LNV operators of
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additional structures appear in V3,6,7(q2) and we define

A =
g2
A
G2

F
me

⇡RA


A⌫ ū(k1)PRCūT (k2) + AR ū(k1)PLCūT (k2) (28)

+AE ū(k1)�0CūT (k2)
E1 � E2

me

+ Ame
ū(k1)CūT (k2) + AM ū(k1)�0�5CūT (k2)

�
,

where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall
factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted, where
me is the electron mass and RA = 1.2 A1/3 fm in terms of A, the number of nucleons of the
daughter nucleus. This normalization was chosen in order to align the definition of the various
nuclear matrix elements with those appearing in the literature, but stress that in the final decay
rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coe�cients of the �L = 2 operators, on hadronic
matrix elements, and nuclear matrix elements. The required LECs encoding hadronic matrix
elements are listed in Table 1. It turns out that all nuclear input that appears in Eq. (28) can
be expressed in terms of nine long-range NMEs (MF , MAA

GT
, MAP

GT
, MPP

GT
, MMM

GT
, MAA

T
, MAP

T
,

MPP

T
, MMM

T
) and six short-range matrix elements (MF, sd, MAA

GT, sd
, MAP

GT, sd
, MPP

GT, sd
, MAP

T, sd
,

MPP

T, sd
). For the exact definitions we refer to Appendix A.2. All NMEs, apart from one (MAA

T
),

can be extracted from existing calculations of light- and heavy Majorana-neutrino exchange
contributions. Furthermore, at LO in �PT the fifteen NMEs are related by five identities that
can be used to further reduce the number of required many-body calculations or as a consistency
check of the results [25]. In Table 2 we summarize several recent calculations of the NMEs,
obtained by di↵erent groups applying di↵erent many-body methods. The NMEs often appear
in certain linear combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from LNV
operators of di↵erent dimension
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me
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M

. (29)

The subamplitude A⌫ multiplies the leptonic structure that arises from light Majorana-
neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-
range dim-9 contributions. We have therefore decomposed it in a component proportional to

the electron-neutrino Majorana mass m�� , and the additional terms M
(6)
⌫ and M

(9)
⌫ , generated,

respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance component M
(9)
⌫

arises from V9 and always involves an additional power of 1/v with respect to the contribution
from light Majorana-neutrino exchange. To compensate for this factor and for the absence of
the neutrino mass, we have factored out two powers of mN in Eq. (29). In terms of the standard
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Sensitivities reflect dependence on Λχ /Λ and  Q/Λχ

What scales are we probing?
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For some mechanisms, 
there is a possibility of 

simultaneous detection in 
0νββ and at the LHC
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• May lead to correlated (or precursor!) signal at LHC:  pp →ee jj 

Keung-Senjanovic ’83

Maiezza-Nemevesek-
Nesti- Senjanovic 

1005.5160

Helo-Kovalenko-Hirsch-
Pas 1303.0899, 1307.4849

Cai, Han, Li, Ruiz 
1711.02180

Connection to collider physics

Peng,  Ramsey-Musolf,  
Winslow, 1508.0444 

…

pp →eejj

Simplified model 

Hadronic / nuclear 
uncertainty 

• LHC searches important to unravel origin of LNV and implications for letpogenesis  
Deppisch-Harz-Hirsch 1312.4447,        Deppisch-Graf-Harz-Huang 1711.10432,         Harz, Ramsey-Musolf, Shen, Urrutia-Quiroga 2106.10838 , …
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Unraveling 0νββ mechanisms? 

• 32 operators below weak scale @ dim=3, 6, 7, 9 
contribute to 0νββ

• Can they be distinguished by 

1. Isotope-dependence of the decay rates?  

3. Phase space observables? (single electron 
spectra, relative angle of outgoing electrons) 

Useful diagnosing tools ‘within’ 0νββ — can falsify specific models 

Graf, Lindner, Scholer 2204.10845 
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Phase space observables
Graf, Lindner, Scholer 2204.10845 

• Six phase space structures G0k,  after including interference terms

Figure 1. Comparison of the normalized single electron spectra (lower left) and angular correlation
coefficients (upper right) in 136Xe that result from the 6 PSFs which appear in the 0⌫�� half-
life “master-formula”. Red curves correspond to the red-labelled PSFs on horizontal axis, while
blue curves represent the PSFs denoted in blue on the vertical axis. The x-axis covers the range
✏̃ 2 [0� 1].
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Figure 1. Comparison of the normalized single electron spectra (lower left) and angular correlation
coefficients (upper right) in 136Xe that result from the 6 PSFs which appear in the 0⌫�� half-
life “master-formula”. Red curves correspond to the red-labelled PSFs on horizontal axis, while
blue curves represent the PSFs denoted in blue on the vertical axis. The x-axis covers the range
✏̃ 2 [0� 1].

correlation part proportional to the cosine of the opening angle ✓. Additionally, G04,06,09

have to be rescaled to comply with the definitions in [6, 7] as

G04 !
9

2
G04,

G06 !
meR

2
G06,

G09 !

✓
meR

2

◆2

G09.

(3.2)

The relations between the electron wave functions and the functions h0k and g0k are given
in [54] to which we will refer here. We apply their simplest approximation scheme ‘A’
assuming a uniform charge distribution in the nucleus. Using Eq. (3.1) one can write the
angular correlation coefficient a1/a0 which is defined via

d�
d cos ✓d✏̃1

= a0

✓
1 +

a1

a0
cos ✓

◆
(3.3)

with

✏̃i =
✏i �me

Q��
2 [0, 1] (3.4)

– 10 –∝a1(ε1)~∝a0(ε1)~

In practice, only 4 
groups of operators 
can be distinguished
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Isotope dependence

• 12 groups of operators can be distinguished by taking ratios of decay rates 

• Quite sensitive to LECs (varied around reference values denoted by larger markers) 

• Distinguishing classes of operators will require combined theoretical uncertainty     
of ~10% , due to LEC  + NME (here only IBM used)

Graf, Lindner, Scholer 2204.10845 

Figure 3. The single electron spectra for 4 different naturally occurring 0⌫��
�
� isotopes are

shown. While the exact quantitative curves depend on the choice of the isotope, their shape is
mostly independent of this choice. As before, the x-axis shows the normalized electron energy ✏̃.

operators corresponding to G01 and the ones corresponding to G09. The PSF observables
that result from each of these 4 groups are shown in Figure 2. Here, we can see that the
left-handed vector current operator C

(6)
V L and the operators corresponding to G09, while

corresponding to distinct PSFs, are practically indistinguishable since the C
(6)
V L phase-space

turns out to be dominated by the contribution from G09. The remaining groups are distin-
guishable from each other using at least one of the considered observables.

Note that while the electron wave functions depend on the charge of the daughter
nucleus as well as on the decay energy, the general shape of the induced observables is
not very dependent on the choice of the decaying isotope. In Figure 3 we show the single
electron spectra and in Figure 4 the angular correlation coefficients corresponding to the 6
different PSFs in 4 different naturally occurring 0⌫��

�
� isotopes.

3.2 Decay Rate Ratios

The remaining 0⌫�� observable is the decay rate � itself. While the phase-space can be
used to distinguish operators with different leptonic currents, information about the decay
rates in various isotopes can be also applied to operators with distinct hadronic structures,
as these give rise to different NMEs. The isotope dependence of the existing calculations
of NMEs can be inferred from Table 2. Therefore, one can study the half-life ratios

R
Oi(AX) ⌘

T
Oi
1/2(

AX)

T
Oi
1/2(

76Ge)
=

P
j |M

Oi
j (76Ge)|2GOi

j (76Ge)
P

k |M
Oi
k (AX)|2GOi

k (AX)
(3.7)

where T
Oi
1/2(

A
X) is the half-life induced by the operator Oi in the isotope A

X. The sumsP
j,k are taken over all different PSFs generated by the operator Oi and become relevant only

for C(6)
V L,V R (see Eqs. (B.2) and (B.3)). Studying the half-life ratio allows for elimination of

– 12 –
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• Quite sensitive to LECs (varied around reference values denoted by larger markers) 

• Distinguishing classes of operators will require combined theoretical uncertainty     
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Figure 5. The decay rate ratios ROi (upper plot) and Rim�� (lower plot) for the different operator
groups are shown. The larger markers represent the choice of vanishing unknown LECs with
g
NN
6,7 = g

⇡N

V
= g̃

⇡N

V
= 1. Isotopes with a PSF G0 > 10�14 y�1 are represented by stars while

isotopes with smaller PSFs are represented by round markers. The additional points represent
variations of the different unknown LECs gi randomly chosen from

⇥
�
p
10,�1/

p
10

⇤
⇥ |gi| and⇥

+1/
p
10,+

p
10

⇤
⇥ |gi| except for g

NN
⌫

which is varied in a range of ±50%. The crosses represent
the central values of the variation i.e. the median values. The reference isotope is chosen to be
76Ge. Note that the variation of gNN

⌫
does induce a small variation of Rm�� which is, however, not

visible in the above plot.

the corresponding 0⌫��-decay rate. Although for some operator groups, such as C
(9)
2S�5S ,

the spread of the values of the ratios obtained by varying the unknown LECs is relatively
small, for other groups like the short-range vector contributions C

(9)
V , C̃

(9)
V the variation of

the unknown LECs results in a significant stretch around the central values. For these ratios
the precise numerical value of the unknown LECs is of particular importance. The different
sensitivities of the short-range scalar and vector operators arise from the fact that for the
scalar operators some of the relevant LECs, namely those encoding pion-pion interactions
g
⇡⇡
i , are known, while for the short-range vector operators all relevant LECs are unknown.

Since we do not fix the sign of the unknown LECs (except gNN
⌫ ) there can be a gap within

the LEC-varied ratios resulting in two visible central values for the operator groups, for
which the ratios are sensitive to the sign of the LECs. The lower part of Figure 5 which
displays the normalized Rim�� shows that the central values of the LEC-varied ratios are
closer to 0 than the benchmark scenario. Therefore, the inclusion of the unknown LECs
tends to impair the distinguishability from the standard mechanism.

The above discussion clearly shows the importance of determining the yet unknown
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Figure 4. Comparison of the angular correlation coefficients in 4 different isotopes as done for the
single electron energy spectra in Fig. 3.

the unknown particle physics couplings, as was first discussed in [56] and shortly after also
in [57]. Here, we take 76Ge for the reference isotope. To be able to quantify how well one
can distinguish two different operators Oi,j from each other we can take the ratio

Rij(
A
X) =

R
Oi(AX)

ROj (AX)
. (3.8)

Specifically, the ratios Rim�� relating the non-standard mechanisms with the standard mass
mechanism will be of interest to compare the effect of different higher-dimensional operators
and possibly identify the existence of additional exotic contributions to the 0⌫�� rate in
experiments. Obviously, two operators Oi,j would be indistinguishable via this method if
the resulting ratio would equal unity, i.e., if Rij = 1. Vice versa, they would be perfectly
distinguishable for either Rij ! 1 or Rij = 0, that is, for | log10(Rij)| ! 1.

Studying the decay rate ratios has several benefits. First of all, in case only one Wilson
coefficient contributes at a time, it drops out. Therefore, the ratio corresponding to a certain
operator and its Wilson coefficient is a constant that depends only on the corresponding
NMEs, LECs and PSFs. If more Wilson coefficients contribute at the same time, then only
the overall magnitude can be factored out. In this case, the relations between different
coefficients can, of course, affect the resulting ratios. However, one can still utilize this
method to study specific models and see if they are distinguishable from the standard mass
mechanism. We will discuss this possibility in section 4. Additionally, when taking ratios
of the half-lives, one can expect that the impact of correlated systematic relative errors on
the NMEs decreases as they should (at least partially) cancel. In [58] it was shown that for
the NME calculations using QRPA uncertainties arising from unknown gA quenching and
nucleon-nucleon potentials are correlated among different isotopes. Half-life measurements
in different isotopes as a tool to discriminate among different mechanisms of 0⌫�� decay
have also been employed previously in [59–62].

– 13 –
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and possibly identify the existence of additional exotic contributions to the 0⌫�� rate in
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• Despite degeneracies, useful diagnosing tools ‘within’ 0νββ
• This analysis reiterates two important points: 

• Need improved hadronic and nuclear input, with O(10%) uncertainty.  With these in hand,  
specific mechanisms can be falsified by isotope dependence  

• Unraveling the mechanism of LNV will also require other probes (collider, cosmology, …) 



0νββ and sterile neutrinos

1/Coupling 

M

vEW

Light sterile ν’s 

MMR

Thanks to Wouter Dekens and Sebastian Urrutia-Quiroga 
for material presented in the following slides  
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Minimal and non-minimal scenarios

• Add n νR singlets and include operators of dimension 4 and higher:   νSMEFT 

L⌫R = i⌫̄R /@⌫R � 1

2
⌫̄
c
RMR⌫R � L̄H̃YD⌫R + L(6)

⌫R
+ L(7)

⌫R

<latexit sha1_base64="T5YbpUH9xfUtYpflJUAItjtWmLg="></latexit>

+ …
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• 3+n seesaw by itself an attractive class of “minimal” models 

• νR can give rise to light neutrino masses

• νR can provide a dark matter candidate 

• νR can generate the baryon asymmetry through leptogenesis 

Minimal and non-minimal scenarios

• Add n νR singlets and include operators of dimension 4 and higher:   νSMEFT 

L⌫R = i⌫̄R /@⌫R � 1

2
⌫̄
c
RMR⌫R � L̄H̃YD⌫R + L(6)

⌫R
+ L(7)

⌫R

<latexit sha1_base64="T5YbpUH9xfUtYpflJUAItjtWmLg="></latexit>

+ …

Arbitrary scale MR ↔ Λ

Akhmedov. Rubakov, Smirnov hep-ph/9803255
Canetti, Drewes, Shaposhnikov  1204.3902

…

ℒmass =
1
2

N̄cMνN Mν =
0 v

2
YD

v

2
YD M†

R
N = (νL

νc
R) νmass = UNflavor
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Minimal and non-minimal scenarios

• Add n νR singlets and include operators of dimension 4 and higher:   νSMEFT 

L⌫R = i⌫̄R /@⌫R � 1

2
⌫̄
c
RMR⌫R � L̄H̃YD⌫R + L(6)

⌫R
+ L(7)

⌫R

<latexit sha1_base64="T5YbpUH9xfUtYpflJUAItjtWmLg="></latexit>

+ …

Disfavored by BBN + CMB + osc. 

Dark 
Matter 

MR

Plot by Marco Drewes

Dark 
Matter

Drewes-Garbrecht 1502.00477
Drewes-Eijima 1606.06221

Hernandez et al  1606.06719
…



• 0νββ provides strong constraints on 
sterile νR’s in various mass ranges

…
Mitra-Senjanovic-Vissani 1108.0004

Abada  et al.   1712.03984
Bolton, Deppisch, Dev 1912.03058

 …

LNV meson and 
tau decays

LNC
 probes

0νββ 

(μ−→ e+ conversion BR  at 10-12 level)

3+n model phenomenology

• Can be probed at colliders, beam 
dump, semileptonic decays, EWPO, …

• Flip side:  plenty of  “discovery 
potential” for 0νββ within this 
class of models 
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L⌫R = i⌫̄R /@⌫R � 1

2
⌫̄
c
RMR⌫R � L̄H̃YD⌫R + L(6)

⌫R
+ L(7)

⌫R

<latexit sha1_base64="T5YbpUH9xfUtYpflJUAItjtWmLg="></latexit>

+ …

Theory developments and challenges

• νSMEFT + chiral EFT analysis 
Dekens et al. 2002.07182,  2402.07993

ℒmass =
1
2

N̄cMνN Mν =
0 v

2
YD

v

2
YD M†

R
N = (νL

νc
R) νmass = UNflavor

• If new states are heavier than GeV: integrate them out, induce dim-9 operators 

• If new states are lighter than GeV: contributions similar to the ones of active neutrinos, except that 

∝
3+n

∑
i=1

mi

q2 − m2
i

U2
ei ≃

1
q2 (Mν)*

ee
= 0

e�

e�

WL

WL ≃ 0

• The ‘potential’ and contact terms depend on mi

• For mi< kF,  the leading term cancels and the 
ultra-soft contributions become leading 
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Theory developments and challenges

• νSMEFT + chiral EFT analysis 
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• If new states are heavier than GeV: integrate them out, induce dim-9 operators 

• If new states are lighter than GeV: contributions similar to the ones of active neutrinos, except that

Ausoft
ν ∼ ∑

n

⟨ f |Jμ |n⟩⟨n |Jμ | i⟩ × ΔE ≡ En + Ee − Ei

mi

kF
, ΔE ≲ mi ≲ kF

m2
i
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, mi ≲ ΔE}

This effect was missed in 
the previous literature
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Simple illustration: 3+1toy model
Dekens et al. 2002.07182,  2402.07993
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• Largest differences: 
• Ultrasoft neutrinos for  m4 ≪ mπ

• Unrealistic neutrino mass spectrum but illustrates the main features 
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VC, W. Dekens, S. Urrutia-Quiroga, 2412.10497 
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3+3 model: expectations for 0νββ 

• Use up to date constraints (semileptonic decays, precision electroweak, …) to get  likelihood function in 
18-dimensional parameter spac 

• Profile likelihood shows that 95% C.L. intervals extend beyond the ones for light neutrino exchange for 
both normal (NH) and inverted (IH) spectrum of light neutrinos   ⇒    broad discovery potential
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Figure 3: 2D profile likelihood of a scan setup imposing BBN constraints for |me↵
�� | vs. m⌫min (left), m� (center), and

P
i m⌫i (right), respectively. The dashed black

line corresponds to the bounds predicted by the light neutrino exchange mechanism in normal hierarchy (NH).
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Figure 4: Same as Fig. 3, but for inverse hierarchy (IH).
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• Use up to date constraints (semileptonic decays, precision electroweak, …) to get  likelihood function in 
18-dimensional parameter spac 
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both normal (NH) and inverted (IH) spectrum of light neutrinos   ⇒    broad discovery potential
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Figure 4: Same as Fig. 3, but for inverse hierarchy (IH).
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Conclusions & Outlook

• Theory is essential to get at the underlying physics.                                             
EFT approach provides a general framework to

1. Relate 0νββ to underlying LNV dynamics 

2. Organize contributions to hadronic and nuclear matrix elements

Improving the theory uncertainty is challenging,  but there are exciting prospects thanks 
to advances in EFT,  lattice QCD,  and nuclear structure  

• Ton-scale 0νββ searches have significant discovery potential — we 
simply don’t know the origin of mν and the scale Λ associated with LNV 

High-scale see-saw

Left-Right SM
RPV SUSY

...

Light sterile ν’s 

Decreasing Coupling Strength 

In
cr

ea
si

ng
 M

as
s

Λχ ~ GeV

kF ~ 100 MeV

• Exciting prospects with multiple ton-scale experiments 
ready to start construction   
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Backup



Contact term: results & validation

54

• LECs in dim. reg.  with modified minimal subtraction 

Uncertainty in matrix 
element of local operator 
controlling the high-k tail 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



Contact term: results & validation

54

• LECs in dim. reg.  with modified minimal subtraction 

• Validation:  use C1+C2 to predict CIB scattering lengths to LO in χEFT

Uncertainty estimate is realistic

vs                        from data       

Fairly good agreement.  

Note:  (C1+C2)(Mπ)=0   →  aCIB ~ 30 fm:  contact term pushes result in the right direction. 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



Connecting to nuclear structure

55

Uncertainty dominated by topology C (fractional error of ~30-40%), 
but A and B give large contribution to the amplitude at this kinematic point 

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

• Provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν with regulators suitable for 
many-body nuclear calculations 



Λ= 2 fm-1

Λ= 20 fm-1

Contact term

Long-range

Total (synthetic data)  

• Provided ‘synthetic data’ for the nn→pp amplitude to be used to fit gν with regulators suitable for 
many-body nuclear calculations 

Connecting to nuclear structure

• Constructive or destructive?  The sign 
of the interference is regulator 
dependent!

56

• Illustrated fitting procedure with 
various cutoffs  

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371



• ‘Ab-initio’ results (VS-IMSRG) tend to be systematically lower than phenomenological nuclear models, 
with signifiant impact on the interpretation of current and future experiments in terms of mββ

Matrix elements for 130Te and 136Xe

57

3

FIG. 2. Range of ab initio VS-IMSRG results compared
to nuclear models calculations of the NME, excluding (lines)
and including (bands) the short-range contact term, denoted
ML and ML+MS respectively. For nuclear models the sign
of the short-range term is unknown, giving rise two possible
bands. The box labelled “Phen.” represents the spread of phe-
nomenological values typically used to interpret experimental
results.

in nuclear structure calculations and include the contact
term to provide ab initio results for the heaviest of the
most prominent experimental isotopes, 130Te and 136Xe.
We explore implications on existing and future searches
as well as refined limits on the effective neutrino mass.

In Fig. 1 we show the convergence of each operator
contributing to the final NME, starting from three state-
of-the-art parameterizations of chiral NN and 3N forces.
Convergence must be reached for both the size of the
single-particle space, denoted emax, as well as the addi-
tional energy cut on included 3N forces, denoted E3max

(see Methods for details). As we show in the Extended
Data and by the color gradients on Fig. 1, our results are
converged to better than 2% at emax = 14, i.e., 15 major
harmonic-oscillator shells, so we focus the discussion here
on E3max. We illustrate this in Fig. 1, where all operators
are well converged at E3max = 28, while noting that for
the previous limit of E3max = 18, this is not the case for
any NME component with any interaction. In order to
include all contributions from 3N forces, we would require
E3max = 3 · emax, but since this has not been achievable
until recently for large emax values [28], we instead use
extrapolation techniques [24] to obtain values for full 3N
forces at emax = 10 � 14. We then finally extrapolate
the results including all 3N forces to an infinite model
space size using an exponential fit. Due to truncation

of many-body operators in the IMSRG procedure (see
Methods), our calculation depends on the choice of ref-
erence state (e.g., parent or daughter nucleus), which we
also illustrate as bands in Fig. 1.

Taking the final results for all components together,
we find the following NME values:

130Te : M0⌫�� 2 [1.52, 2.40]
136Xe : M0⌫�� 2 [1.08, 1.90].

While the spread arises primarily from choice of nuclear
interaction, we note it also includes reference-state de-
pendence, basis extrapolation, the uncertainty coming
from the closure approximation (see Methods), and the
coefficient gNN

⌫
. While a rigorous statistical analysis is

currently in progress using IMSRG-based emulators, we
have recently observed that the NMEs are strongly cor-
related with the scattering phase shift in the 1S0 (spin-
singlet) partial wave. Since this quantity is very well
reproduced by all interactions used in this work, we ex-
pect the spread given here to likely be representative of
the final value of the NME.

In Fig. 2, we compare our ab initio results to three
other classes of calculations: i) phenomenological nuclear
models that do not include the short-range contributions;
ii) phenomenological nuclear models that attempt to es-
timate the possible contributions of the short-range con-
tact; and iii) an EFT approach that uses a possible cor-
relation between 0⌫�� decay and the double Gamow-
Teller charge exchange transition NMEs [29]. These phe-
nomenological models have traditionally been used by
experimental searches to interpret lower lifetime limits
in terms of limits on neutrino masses. Here we include
results from the quasi-particle random-phase approxima-
tion (QRPA) [30–35], the nuclear shell-model (NSM) [35–
38], the interacting-boson model (IBM) [39, 40], both
relativistic and non-relativistic energy density functional
theory (EDF) [41–44], and a hybrid approach combining
the NSM using the generalized contact formalism (GCF)
with variational Monte-Carlo results in light nuclei to fix
short-range correlations [45].

Several attempts have been made to estimate the
short-range contributions within these models by tak-
ing the charge-independence-breaking coupling constant
of the nuclear Hamiltonian as the coupling constant for
the contact operator. Since the sign of this coupling is
unknown, there are two possible bands for these NMEs.
Nevertheless, first results have been obtained with QRPA
and NSM [35] as well as the GCF formalism [45]. As seen
in Fig. 2, ab initio results increase on the order of 60-90%
when including the contact term, still lie at the lower end
of NME values with a significantly smaller spread from
starting NN+3N forces. While work remains to more ro-
bustly assess EFT truncation uncertainties, our results
appear to strongly disfavour the larger NMEs obtained
with particular phenomenological models.

4

FIG. 3. Effective neutrino mass, m�� , extracted from current
experimental limits in 130Te and 136Xe using phenomenolog-
ical or ab initio NMEs from Fig. 2, compared to the allowed
phase-space for both the normal and inverted hierarchies.
Lighter shades of the allowed phase-space indicate the 3� er-
ror on the neutrino oscillation parameters taken from [46].

To interpret the implications for neutrino masses, the
NME connects a given 0⌫�� decay lifetime limit to the
effective neutrino mass through the following relation:

[T 0⌫��
1/2 ]�1 = G0⌫ |M0⌫�� |2

✓
hm��i
me

◆2

,

where T 0⌫��
1/2 is the half-life of the decay, G0⌫ a well-

established phase-space factor [47], M0⌫�� the NME, and
m�� is the effective Majorana mass of the neutrino. We
relate m�� to the neutrino mass eigenstates, mk, via
hm��i =

P
k
U2
ek
mk, where Uek are the elements of the

Pontecorvo–Maki–Nakagawa–Sakata matrix, connecting
neutrino mass and flavour eigenstates. While the abso-
lute scale of the mass eigenstates is unknown, we know
m1 and m2 have a similar squared masses in addition
to the squared mass difference between these two and
m3 [48]. This creates two different scenarios: the nor-
mal hierarchy (NH), where m3 is the heaviest; and the
inverted hierarchy (IH), where m3 is the lightest. Using
the values of the oscillation parameters [46], we can con-
strain the allowed effective mass of the neutrino, m�� ,
as a function of the lightest neutrino state, mlightest, for
both hierarchies.

In Fig. 3, we compare limits on the effective neutrino
mass to allowed values for both hierarchies, extracted
with either conventional phenomenological NMEs or our
ab initio results (using accepted G0⌫ values [47]). Here we
take the half-life limits from CUORE [46] (T 0⌫��

1/2 > 2.2⇥
1025yr) and KamLAND-Zen [3] (T 0⌫��

1/2 > 2.3 ⇥ 1026yr),

the current best experimental limits for 130Te and 136Xe,
respectively. We see that with ab initio NMEs, not only
is the uncertainty significantly smaller, but the exper-
imental reach is reduced by nearly an order of magni-
tude. Our results suggest that, except for the quasi-
degenerate region where neutrino masses are nearly the
same for both hierarchies, most of the allowed effective
neutrino mass phase space has not yet been probed by
any current experiment. This is in contrast to claims
that, with particular phenomenological NMEs, the in-
verted mass hierarchy has already been partially probed
by recent KamLAND-Zen observations [3]. Finally, these
new results are vital for the strategic planning of next-
generation ton-scale searches, which endeavour to com-
pletely probe the inverted hierarchy. With anticipated
half-life sensitivities [49] on the order of 1028yr, given the
range of ab initio NMEs presented here, this is unlikely to
be achieved with current time and material allocations.

Ab initio nuclear theory provides the most complete
account for physics expected to be relevant for NMEs in
all 0⌫�� decay nuclei, at once offering a consistent treat-
ment of the new short-range contact contribution, as well
as a viable path towards rigorous quantification of theo-
retical uncertainties. We stress, however, that while these
results are promising first steps in heavy systems, they do
not yet represent final values for the NMEs. Further anal-
ysis of theoretical uncertainties (similar to recent 208Pb
studies [25]) is needed to rigorously assess errors arising
from i) the choice of parameters as well as truncations in
the expansion of chiral nuclear forces, ii) neglected many-
body physics in the IMSRG(2) approximation, and iii)
neglected higher-order contribution to the 0⌫�� decay
operator. With the development of IMSRG-based emu-
lators, this level of EFT uncertainty quantification is al-
ready within reach and currently underway. Calculations
explicitly including higher-order contributions to the ma-
trix elements, while not relying on the closure approxi-
mation, could potentially reduce the ab initio uncertainty
to the level where discrimination between different pro-
posed 0⌫�� decay mechanisms is possible, in the event
of an eventual observation [7]. Nevertheless the values
presented here, which lie at the lower end of previous
calculations and reduced spread, already have the po-
tential to refine a major obstacle to interpreting current
experimental limits on neutrino masses and planning of
next-generation searches.

[1] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45
(1986).

[2] V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter,
and E. Mereghetti, J. High Energy Phys. 2021, 289
(2021).

[3] S. Abe et al. (KamLAND-Zen Collaboration), Phys. Rev.
Lett. 130, 051801 (2023).

Belley, Miyagi, Stroberg, Holt.,  2307.15156



58

momenta, cos ✓. The di↵erential version of the master formula (38) is
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where all the dependence on y and cos ✓ is encoded in the unintegrated phase space factors g0k
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The variable y = (E1 � E2)/Q 2 [�1, 1], and the dimensionless factors b̃0k are related to Eq.
(65) by b̃0k(y, cos ✓) = 4b0k/Q2, and E1,2 = 1±y

2 Q + me.
As discussed in Ref. [25], g02 is the phase space factor whose y dependence is distinct from

the standard light neutrino exchange. A measurement of the electrons energy di↵erence could

therefore be used to single out operators, like C(6)
VR, which mainly contribute to AE . Furthermore,

the phase space factors in Eq. (65) exhibit a dependence on cos ✓ which is at most linear.
The slope of the cos ✓ dependence of the decay rate could distinguish between the standard
light neutrino exchange or the contributions of dim-9 scalar operators, for which one expects a

negative slope, and C(6)
VR,VL or dim-9 vector operators, which should produce a positive slope.

A.2 Nuclear Matrix Elements

To describe the nuclear parts of the amplitude, we follow standard conventions, e.g. those of
Ref. [32], and introduce the following definitions
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where K 2 {F, GT, T}, while j�(|q|r) are spherical Bessel functions, with � = 0 for F and GT,
and � = 2 for the tensor. The hij
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(r) functions describe long-range contributions, while the

hij

K,sd
(r) indicate short-range contributions. The factors of RA and m⇡ have been inserted so

that the hij

K,(sd) are dimensionless. The hij

K
(q2) are defined as follows

hAA

GT,T (q2) =
g2
A
(q2)

g2
A

, hAP

GT (q2) =
gP (q2)

g2
A

gA(q2)
q2

3mN

, hPP

GT (q2) =
g2
P
(q2)

g2
A

q4

12m2
N

,

hMM

GT (q2) = g2M (q2)
q2

6g2
A
m2

N

, hF (q2) = gV (q2) , (69)

where hAP

T
(q2) = �hAP

GT
(q2), hPP

T
(q2) = �hPP

GT
(q2), and hMM

T
(q2) = hMM

GT
(q2)/2. In addition,

at LO in �PT, gV (q2) = 1, gA(q2) = gA ' 1.27, gM (q2) = 1 + 1 ' 4.7, and gP (q2) =
�gA

2mN

q2+m2
⇡

. The NMEs computed in the literature [32–35] adopt the dipole parameterization of

the vector and axial form factors

gV (q2) =

✓
1 +

q2

⇤2
V

◆�2

, gA(q2) = gA

✓
1 +

q2

⇤2
A

◆�2

, (70)

40

momenta, cos ✓. The di↵erential version of the master formula (38) is

d �

dy d cos ✓
= g4A

n
g01

�
|A⌫ |

2 + |AR|
2
�

� 2(g01 � g04)ReA⇤
⌫AR + 4g02 |AE |

2

+2g04
⇥
|Ame

|
2 + Re

�
A

⇤
me

(A⌫ + AR)
�⇤

� 2g03 Re ((A⌫ + AR)A⇤
E + 2Ame

A
⇤
E)

+g09 |AM |
2 + g06 Re ((A⌫ � AR)A⇤

M )
o

, (66)

where all the dependence on y and cos ✓ is encoded in the unintegrated phase space factors g0k

g0k =
1

ln 2

G4
F
m2

e

64⇡5R2
A

✓
Q

2

◆5p
1 � y2

s✓
1 + y +

4me

Q

◆✓
1 � y +

4me

Q

◆

b̃0k(y, cos ✓) F (Z, E1) F (Z, E2) . (67)

The variable y = (E1 � E2)/Q 2 [�1, 1], and the dimensionless factors b̃0k are related to Eq.
(65) by b̃0k(y, cos ✓) = 4b0k/Q2, and E1,2 = 1±y

2 Q + me.
As discussed in Ref. [25], g02 is the phase space factor whose y dependence is distinct from

the standard light neutrino exchange. A measurement of the electrons energy di↵erence could

therefore be used to single out operators, like C(6)
VR, which mainly contribute to AE . Furthermore,

the phase space factors in Eq. (65) exhibit a dependence on cos ✓ which is at most linear.
The slope of the cos ✓ dependence of the decay rate could distinguish between the standard
light neutrino exchange or the contributions of dim-9 scalar operators, for which one expects a

negative slope, and C(6)
VR,VL or dim-9 vector operators, which should produce a positive slope.

A.2 Nuclear Matrix Elements

To describe the nuclear parts of the amplitude, we follow standard conventions, e.g. those of
Ref. [32], and introduce the following definitions

hij

K
(r) =

2

⇡
RA

Z +1

0
d|q| hij

K
(q2)j�(|q|r) , hij

K,sd
(r) =

2

⇡

RA

m2
⇡

Z +1

0
d|q|q2 hij

K
(q2)j�(|q|r) ,

(68)
where K 2 {F, GT, T}, while j�(|q|r) are spherical Bessel functions, with � = 0 for F and GT,
and � = 2 for the tensor. The hij

K
(r) functions describe long-range contributions, while the

hij

K,sd
(r) indicate short-range contributions. The factors of RA and m⇡ have been inserted so

that the hij

K,(sd) are dimensionless. The hij

K
(q2) are defined as follows

hAA

GT,T (q2) =
g2
A
(q2)

g2
A

, hAP

GT (q2) =
gP (q2)

g2
A

gA(q2)
q2

3mN

, hPP

GT (q2) =
g2
P
(q2)

g2
A

q4

12m2
N

,

hMM

GT (q2) = g2M (q2)
q2

6g2
A
m2

N

, hF (q2) = gV (q2) , (69)

where hAP

T
(q2) = �hAP

GT
(q2), hPP

T
(q2) = �hPP

GT
(q2), and hMM

T
(q2) = hMM

GT
(q2)/2. In addition,

at LO in �PT, gV (q2) = 1, gA(q2) = gA ' 1.27, gM (q2) = 1 + 1 ' 4.7, and gP (q2) =
�gA

2mN

q2+m2
⇡

. The NMEs computed in the literature [32–35] adopt the dipole parameterization of

the vector and axial form factors

gV (q2) =

✓
1 +

q2

⇤2
V

◆�2

, gA(q2) = gA

✓
1 +

q2

⇤2
A

◆�2

, (70)

40

momenta, cos ✓. The di↵erential version of the master formula (38) is

d �

dy d cos ✓
= g4A

n
g01

�
|A⌫ |

2 + |AR|
2
�

� 2(g01 � g04)ReA⇤
⌫AR + 4g02 |AE |

2

+2g04
⇥
|Ame

|
2 + Re

�
A

⇤
me

(A⌫ + AR)
�⇤

� 2g03 Re ((A⌫ + AR)A⇤
E + 2Ame

A
⇤
E)

+g09 |AM |
2 + g06 Re ((A⌫ � AR)A⇤

M )
o

, (66)

where all the dependence on y and cos ✓ is encoded in the unintegrated phase space factors g0k

g0k =
1

ln 2

G4
F
m2

e

64⇡5R2
A

✓
Q

2

◆5p
1 � y2

s✓
1 + y +

4me

Q

◆✓
1 � y +

4me

Q

◆

b̃0k(y, cos ✓) F (Z, E1) F (Z, E2) . (67)

The variable y = (E1 � E2)/Q 2 [�1, 1], and the dimensionless factors b̃0k are related to Eq.
(65) by b̃0k(y, cos ✓) = 4b0k/Q2, and E1,2 = 1±y

2 Q + me.
As discussed in Ref. [25], g02 is the phase space factor whose y dependence is distinct from

the standard light neutrino exchange. A measurement of the electrons energy di↵erence could

therefore be used to single out operators, like C(6)
VR, which mainly contribute to AE . Furthermore,

the phase space factors in Eq. (65) exhibit a dependence on cos ✓ which is at most linear.
The slope of the cos ✓ dependence of the decay rate could distinguish between the standard
light neutrino exchange or the contributions of dim-9 scalar operators, for which one expects a

negative slope, and C(6)
VR,VL or dim-9 vector operators, which should produce a positive slope.

A.2 Nuclear Matrix Elements

To describe the nuclear parts of the amplitude, we follow standard conventions, e.g. those of
Ref. [32], and introduce the following definitions

hij

K
(r) =

2

⇡
RA

Z +1

0
d|q| hij

K
(q2)j�(|q|r) , hij

K,sd
(r) =

2

⇡

RA

m2
⇡

Z +1

0
d|q|q2 hij

K
(q2)j�(|q|r) ,

(68)
where K 2 {F, GT, T}, while j�(|q|r) are spherical Bessel functions, with � = 0 for F and GT,
and � = 2 for the tensor. The hij

K
(r) functions describe long-range contributions, while the

hij

K,sd
(r) indicate short-range contributions. The factors of RA and m⇡ have been inserted so

that the hij

K,(sd) are dimensionless. The hij

K
(q2) are defined as follows

hAA

GT,T (q2) =
g2
A
(q2)

g2
A

, hAP

GT (q2) =
gP (q2)

g2
A

gA(q2)
q2

3mN

, hPP

GT (q2) =
g2
P
(q2)

g2
A

q4

12m2
N

,

hMM

GT (q2) = g2M (q2)
q2

6g2
A
m2

N

, hF (q2) = gV (q2) , (69)

where hAP

T
(q2) = �hAP

GT
(q2), hPP

T
(q2) = �hPP

GT
(q2), and hMM

T
(q2) = hMM

GT
(q2)/2. In addition,

at LO in �PT, gV (q2) = 1, gA(q2) = gA ' 1.27, gM (q2) = 1 + 1 ' 4.7, and gP (q2) =
�gA

2mN

q2+m2
⇡

. The NMEs computed in the literature [32–35] adopt the dipole parameterization of

the vector and axial form factors

gV (q2) =

✓
1 +

q2

⇤2
V

◆�2

, gA(q2) = gA

✓
1 +

q2

⇤2
A

◆�2

, (70)
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