Beyond three-neutrino oscillations: sterile neutrinos, NSI, and others

Michele Maltoni

Instituto de Física Teórica UAM/CSIC

2nd school on "Multi-Aspect Young-ORiented Advanced Neutrino Academy (MAYORANA)" Palazzo Grimaldi, Modica, Italy – June 24th & 25th, 2025

Neutrino oscillations: where we are

- Global 6-parameter fit (including $\delta_{\scriptscriptstyle {\rm CP}}$):
 - Solar: Cl + Ga + SK(1-4) + SNO-full (I+II+III) + BX(1-3);
 - Atmospheric: IC19 | IC24 + SK(1–5);
 - Reactor: KamLAND + SNOplus + IC + DB + Reno;
 - Accelerator: Minos + T2K + NOvA;
- best-fit point and 1σ (3σ) ranges:

$$\begin{split} \theta_{12} &= 33.68 \substack{+0.73 \\ -0.70} \begin{pmatrix}+2.27 \\ -2.05\end{pmatrix}, \quad \Delta m_{21}^2 &= 7.49 \substack{+0.19 \\ -0.19} \begin{pmatrix}+0.56 \\ -0.57\end{pmatrix} \times 10^{-5} \text{ eV}^2, \\ \theta_{23} &= \begin{cases} 48.5 \substack{+0.7 \\ -0.9} \begin{pmatrix}+2.0 \\ -7.6\end{pmatrix}, \\ 48.6 \substack{+0.7 \\ -0.9} \begin{pmatrix}+2.0 \\ -7.2\end{pmatrix}, & \Delta m_{31}^2 &= \begin{cases} +2.534 \substack{+0.025 \\ -0.023} \begin{pmatrix}+0.072 \\ -0.071\end{pmatrix} \times 10^{-3} \text{ eV}^2, \\ -2.510 \substack{+0.024 \\ -0.025} \begin{pmatrix}+0.072 \\ -0.073\end{pmatrix} \times 10^{-3} \text{ eV}^2, \\ \theta_{13} &= 8.58 \substack{+0.11 \\ -0.13} \begin{pmatrix}+0.33 \\ -0.39\end{pmatrix}, & \delta_{\text{CP}} &= 285 \substack{+25 \\ -28} \begin{pmatrix}+129 \\ -182\end{pmatrix}; \end{split}$$

neutrino mixing matrix:

$$|U|_{3\sigma} = \begin{pmatrix} 0.801 \to 0.842 & 0.519 \to 0.580 & 0.142 \to 0.155 \\ 0.248 \to 0.505 & 0.473 \to 0.682 & 0.649 \to 0.764 \\ 0.270 \to 0.521 & 0.483 \to 0.690 & 0.628 \to 0.746 \end{pmatrix}$$

• ordering: $\Delta \chi^2_{\text{IO-NO}} = -0.6$ (IC19) | +6.1 (IC24 + SK).

[1] I. Esteban et al., JHEP 12 (2024) 216 [arXiv: 2410.05380] & NuFIT 6.0 [http://www.nu-fit.org]

Michele Maltoni <michele.maltoni@csic.es> MAYORANA school, 24-25/06/2025

Introduction

Open issues in 3v **oscillations**

- 3*v* picture is **robust**! But we still don't know:
- <u>**CP violation**</u>: $\delta_{CP} \approx 180^{\circ}$ (NO) | 270° (IO);
- <u>ordering</u>: Rea+Dis \rightarrow NO, T2K+NOvA \rightarrow IO;
- $\underline{\theta}_{23}$ octant: hints, but no clear indication;
- weak tensions in 3v data (T2K/NOvA for NO);
- anomalies in some 3 data (LSND, MB, BEST);
- future experiments expected to shed light;

¿? can New Physics play a role in their task?

SM with ν masses: general three-neutrino framework

• Equation of motion: 6 parameters (including Dirac and neglecting Majorana phases):

$$\begin{split} i\frac{d\vec{v}}{dt} &= H\,\vec{v}; \qquad H = U_{\text{vac}} \cdot D_{\text{vac}} \cdot U_{\text{vac}}^{\dagger} \pm V_{\text{mat}}; \\ U_{\text{vac}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \underbrace{\begin{pmatrix} i\eta_1 & 0 & \theta \\ 0 & \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}}, \quad \vec{v} = \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix}; \\ D_{\text{vac}} &= \frac{1}{2E_v} \Big[\operatorname{diag} \left(0, \, \Delta m_{21}^2, \, \Delta m_{31}^2 \right) + \underbrace{p_1^2} \Big]; \qquad V_{\text{mat}} = \sqrt{2}G_F N_e \operatorname{diag} \left(1, \, 0, \, 0 \right). \end{split}$$

Paradigms hardcoded in this construction

- Only the three neutrino flavors of the SM take part to the oscillation process;
- mixing angles in <u>vacuum</u> do not depend on energy;
- oscillation frequency in <u>vacuum</u> scales as 1/E;
- matter contributions are flavor-diagonal and determined by the SM (no parameters);
- neutrino production and detection processes occur as described by the SM.

Neutrinos in the Standard Model

• The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• LEP tested this symmetry to 1% precision and the missing particles t, v_{τ} were found:

$(1, 2)_{-1}$	$(3, 2)_{1/3}$	$(1, 1)_{-2}$	$(3, 1)_{4/3}$	$(3, 1)_{-2/3}$
$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array}\right)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{L}$	$\left(\begin{array}{c} c^i\\ s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu}_{\tau} \\ \boldsymbol{\tau} \end{array}\right)_{L}$	$\left(\begin{array}{c} t^i \\ b^i \end{array} ight)_L$	$ au_R$	t_R^i	b_R^i

• When SM was invented upper bounds on m_v:

$$\begin{split} m_{\nu_{e}} &< 2.2 \text{ eV} & (^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e}) \\ m_{\nu_{\mu}} &< 190 \text{ KeV} & (\pi \rightarrow \mu + \nu_{\mu}) \\ m_{\nu_{\tau}} &< 18.2 \text{ MeV} & (\tau \rightarrow n\pi + \nu_{\tau}, \text{ with } n > 3) \end{split}$$

Neutrinos are conjured to be massless and left-handed.

Notice there is no ν_R \Rightarrow Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau$

Neutrino masses: Dirac or Majorana?

• How to write a mass term for a fermion field? Two possibilities:

Dirac

$$\mathscr{L}^{\mathsf{D}} = -m\left(\overline{v_R}\,v_L + \overline{v_L}\,v_R\right)$$

 can be implemented in the SM via SSB as for up-type quarks:

$$\mathscr{L}^{\mathsf{D}} = -Y^{\ell} \,\overline{L_L} \,\Phi \,\ell_R - Y^{\nu} \,\overline{L_L} \,\tilde{\Phi} \,\nu_R + \mathsf{h.c.}$$

however, it requires a **new** field v_R ⇒ SM extension!

Majorana

$$\mathscr{L}^{\mathsf{M}} = -\frac{1}{2}m\left(\overline{v_{L}^{C}}\,v_{L} + \overline{v_{L}}\,v_{L}^{C}\right)$$

- only v_L used \Rightarrow no new field required;
- breaks gauge simmetries ⇒ unthinkable for charged particles (Q is conserved);
- can't be written explicitly in the SM ⇒ should be generated by some *effective* mechanism ⇒ SM extension!
- both possibilities are phenomenologically viable \Rightarrow most general case is to use <u>both</u>:

$$\mathscr{L} = -Y^{\ell} \,\overline{L_L} \,\Phi \,\ell_R - Y^{\nu} \,\overline{L_L} \,\tilde{\Phi} \,\nu_R - \frac{1}{2} M \,\overline{\nu_R^C} \,\nu_R + \text{h.c.}$$

- v_R is a singlet under SM symmetries \Rightarrow can have an explicit Majorana mass;
- but in any case, once we introduce new gauge singlets... why to stop at <u>three</u>?

Neutrino oscillations in the presence of extra mass states

• Equation of motion: same as usual, but only in the mass basis (identified by suffix "mb"):

$$i\frac{d\dot{v}_{\rm mb}}{dt} = H_{\rm mb}\,\vec{v}_{\rm mb}; \qquad H_{\rm mb} = D_{\rm vac} \pm U_{\rm vac}^{\dagger} \cdot V_{\rm mat} \cdot U_{\rm vac};$$
$$U_{\rm vac} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} & \dots \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} & \dots \end{pmatrix}, \quad \vec{v}_{\rm mb} = (v_1, v_2, v_3, v_4, \dots)^T;$$
$$D_{\rm vac} = \frac{1}{2E_v}\,\operatorname{diag}\left(0, \,\Delta m_{21}^2, \,\Delta m_{31}^2, \,\Delta m_{41}^2, \,\dots\right), \quad V_{\rm mat} = \sqrt{2}G_F\left[N_e\,\operatorname{diag}\left(1, \,0, \,0\right) - \frac{N_n}{2}I_3\right];$$

• notice that U_{vac} is a rectangular $3 \times N$ matrix, fulfilling unitarity relation $U_{vac} \cdot U_{vac}^{\dagger} = I_3$;

• formally, we can extend U_{vac} to a full $N \times N$ unitary matrix U by considering N - 3 "flavor" states $\{v_{s_1}, \dots, v_{s_{N-3}}\}$. In this case V_{mat} is extended with null diagonal entries, and:

$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{U}_{\text{vac}} & \\ U_{s_{1}1} & U_{s_{1}2} & U_{s_{1}3} & U_{s_{1}4} & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} \boldsymbol{v}_{\boldsymbol{e}}, \, \boldsymbol{v}_{\mu}, \, \boldsymbol{v}_{\tau}, \, \boldsymbol{v}_{s_{1}}, \, \dots \end{pmatrix}^{T};$$

• but notice that v_{s_i} states are defined arbitrarily, hence mixing among them is unphysical.

A long time ago... the LSND anomaly

- Back in the 90's, the LSND experiment observed an excess of \bar{v}_e events in a \bar{v}_{μ} beam ($E_v \sim 30$ MeV, $L \simeq 35$ m) [2];
- the Karmen collaboration did not confirm the claim, but couldn't fully exclude it either [3];
- the signal is compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations provided that $\Delta m^{2} \gtrsim 0.1 \text{ eV}^{2}$;
- on the other hand, global neutrino data give (at 3σ):

$$\begin{split} \Delta m_{\rm Sol}^2 &\simeq \left[6.8 \rightarrow 8.0 \right] \times 10^{-5} \, \mathrm{eV}^2 \,, \\ \left| \Delta m_{\rm ATM}^2 \right| &\simeq \left[2.4 \rightarrow 2.6 \right] \times 10^{-3} \, \mathrm{eV}^2 \,; \end{split}$$

- hence, to explain LSND with <u>mass-induced v oscillations</u> one needs <u>new</u> neutrino mass eigenstates;
- MiniBooNE: much larger E_{ν} and L but similar L/E_{ν} .
- [2] A. Aguilar-Arevalo et al. [LSND collab], Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049]
- [3] B. Armbruster et al. [KARMEN collab], Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021]

The MiniBooNE experiment

- MiniBooNE searched for $\overline{\nu}_e \rightarrow \overline{\nu}_\mu$ conversion ($E = 200 \rightarrow 1250$ MeV, $L \simeq 541$ m);
- excess in both $\bar{\nu}$ and $\nu \Rightarrow \underline{\text{oscillations}}$ compatible with LSND (ev = 4.8 σ , gof = 12.3%);
- however, the low energy part of the excess cannot be accounted just by oscillations...

[4] A.A. Aguilar-Arevalo *et al.* [MiniBooNE collab], PRL **110** (2013) 161801 [arXiv:1303.2588]
[5] A. Hourlier, talk at Neutrino 2020, Fermilab (online), USA, 22/6-2/7/2020

MiniBooNE low-energy excess

- Excess present from the very beginning;
- 2007 (ν): low-E excess too steep for oscillation fit ($P_{osc} \simeq 1\%$) \Rightarrow set $E \ge 475$ MeV \Rightarrow no signal left \Rightarrow reject LSND [6];
- 2013 ($\bar{\nu}$): low-E not so steep + mid-E excess observed \Rightarrow good oscillation fit ($P_{osc} \simeq 66\%$) \Rightarrow confirm LSND [4];
- 2018 (ν): low-E softened + mid-E excess seen also in $\nu \Rightarrow$ mild oscillation fit ($P_{osc} \simeq 15\%$) [7];
- 2020 (ν): more data released [8], oscillations confirmed but low-E excess definitely there.

- [6] A.A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500]
- [4] A.A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588]
- [7] A.A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028]
- [8] A.A. Aguilar-Arevalo et al. [MiniBooNE], Phys. Rev. D 103 (2021) 052002 [arXiv:2006.16883]

Present status of MiniBooNE

- Possible systematics related to the low-E excess:
 - misreconstruction of neutrino energy;
 - $-\pi^0$ from NC reconstructed as v_e ;
 - single photon from NC misidentified as v_e ;
- extensive studies performed by the collaboration;
- present status: no combination of known systematics could account for the whole excess [9];
- \Rightarrow independent experimental confirmation is required.

2v versus 4v oscillations

- Former MB studies overlooked oscillations of $\overline{\nu}_{e}$ beam contamination and $\overline{\nu}_{\mu}$ calibration sample [9];
- such effects can be very important. Omission corrected in recent reanalysis [10].

[9] V. Brdar and J. Kopp, Phys. Rev. D 105 (2022) 115024 [arXiv:2109.08157]
[10] A.A. Aguilar-Arevalo *et al.* [MiniBooNE], Phys. Rev. Lett. 129 (2022) 201801 [arXiv:2201.01724]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

The MicroBooNE experiment

- Baseline = 468.5 m (72.5 m upstream of MiniBooNE);
- LArTPC \Rightarrow imaging with mm-scale spatial resolution;
- ⇒ perfectly suited to cross-check MiniBooNE excess;
- first results presented in fall 2021:
 - no evidence of enhanced π^0 or γ production [11];
 - no evidence of v_e excess over SM prediction [12];
- however, rejection of MB signal in [12] based on the assumption that the entire v_e excess matches the difference between data and best-fit MB background;
- but in [13] it was noticed that various signal/background compositions can fit MB equally well, but lead to different μB sensitivity ⇒ rejection **not** model-independent...

[11] P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. 128 (2022) 111801 [arXiv:2110.00409]
[12] P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. 128 (2022) 241801 [arXiv:2110.14054]
[13] C.A. Argüelles *et al.*, Phys. Rev. Lett. 128 (2022) 241802 [arXiv:2111.10359]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Comparison of MicroBooNE and MicroBooNE results

- MiniBooNE: updated analysis including μ B bounds [10] $\Rightarrow 3\sigma$ region at $\Delta m_{41}^2 \lesssim 1$ eV;
- MicroBooNE: global 4ν analysis [14] disfavors MB/LSND but does not rule it out completely;
- other experiments exclude large Δm^2 (NOMAD) and large $\theta_{\mu e}$ (ICARUS, OPERA);
- remaining allowed region at $0.1 \leq \Delta m_{41}^2/\text{eV}^2 \leq 1$ and $10^{-3} \leq \sin^2 \theta_{\mu e} \leq \text{few} \times 10^{-2}$;
- Short Baseline Neutrino Program @ Fermilab: currently in progress;
- Japan: JSNS² will provide an independent check of LSND/MiniBooNE excess.

[10] A.A. Aguilar-Arevalo *et al.* [MiniBooNE], Phys. Rev. Lett. **129** (2022) 201801 [arXiv:2201.01724]
[14] P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. **130** (2023) 011801 [arXiv:2210.10216]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

MicroBooNE update: v_e appearance

- New analysis [15]: 5 year of data, 2 topologies, 3 observables $\Rightarrow v_e$ interpretation of MB excess ruled out at 99.5%;
- in progress [16]: extra 4v parameters degrade 2v exclusion plot \Rightarrow off-axis ν from NuMI beam can break degeneracy;
- Ref. [17]: profiling over 4v parameters hides information, real tension larger than it appears in 2v plot.

3.5 3.0 2.5 <u>ج</u> itrengt 5.0 le 1.5 1.0 0.5

[15] P. Abratenko et al. [MicroBooNE collaboration], arXiv: 2412.14407.

- [16] MicroBooNe collab., public note MICROBOONE-NOTE-1132-PUB, FERMILAB-FN-1255-PPD.
- O.B. Rodrigues, M. Hostert, K.J. Kelly, B. Littlejohn et al., arXiv: 2503.13594.

Michele Maltoni <michele.maltoni@csic.es>

Number of Events

MAYORANA school, 24-25/06/2025

99% C.L. T 90% C.L. T 68% C.L.

Shower $cos(\theta)$

[15]

Shower energy

MicroBooNE, 1.1 × 10²¹ POT

Best Fit Point

Neutrino energy

0.0

MicroBooNE update: dissecting the MiniBooNE low-energy excess

- In a search for 1γ events compatible with MB-LEE, μ B itself found an excess [18];
- prime-suspect NC $\Delta \rightarrow N\gamma$ already disfavored [19] and incompatible with *E* shape;
- instead, NC $\pi^0 1\gamma$ and ν interactions outside the detector show reasonable compatibility;
- presently no guarantee that this excess and the MB-LEE one are the same, but it's a start.

[18] P. Abratenko et al. [MicroBooNE collaboration], arXiv:2502.06064.

[19] P. Abratenko et al. [MicroBooNE collaboration], arXiv:2502.05750.

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

\bar{v}_e disappearance: the reactor anomaly

- In [20, 21] the reactor $\bar{\nu}$ fluxes was reevaluated;
- the new calculations result in a small increase of the flux by about 3.5%;
- hence, all reactor short-baseline (RSBL) finding no evidence are actually observing a deficit;
- this deficit could be interpreted as being due to SBL neutrino oscillations;
- no visible dependence on $L \Rightarrow \Delta m^2 \gtrsim 1 \text{ eV}^2$;

• global data (3 σ): $\begin{cases} \Delta m_{\text{sol}}^2 \simeq \left[6.8 \rightarrow 8.0\right] \times 10^{-5} \text{ eV}^2, \\ \left|\Delta m_{\text{ATM}}^2\right| \simeq \left[2.4 \rightarrow 2.6\right] \times 10^{-3} \text{ eV}^2; \end{cases}$

⇒ solutions: add new neutrinos or revise fluxes.

- [20] T.A. Mueller et al., Phys. Rev. C83 (2011) 054615 [arXiv:1101.2663]
- [21] P. Huber, Phys. Rev. C 84 (2011) 024617 [arXiv:1106.0687]
- [22] G. Mention et al., Phys. Rev. D83 (2011) 073006 [arXiv:1101.2755]

Reactor anomaly: sterile v or wrong fluxes?

- DB [23] and RENO [24]: fuel burnup cycle \Rightarrow reconstruct contribution of main isotopes;
- Results: 239 Pu mostly agrees with Huber-Mueller model, while 235 U substantially below;
- STEREO data [25] (pure ²³⁵U reactor) indicate a deficit similar to DB and RENO ones;
- sterile v: deficit should be the same for all isotopes \Rightarrow disagrees with observations.

[23] F.P. An *et al.* [Daya-Bay], Phys. Rev. Lett. **118** (2017) 251801 [arXiv:1704.01082]
[24] G. Bak *et al.* [RENO], Phys. Rev. Lett. **122** (2019) 232501 [arXiv:1806.00574]
[25] H. Almazán *et al.* [STEREO], Nature **613** (2023) 257-261 [arXiv:2210.07664]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Recent improvements in reactor flux models

- New reactor flux calculations: EF [26], HKSS [27], KI [28];
- EF model (summation) in good agreement with <u>total rates</u>, although the spectral shape is still not optimal;
- KI model (conversion) yields very similar results to EF;
- conversely, HKSS (conversion) gives rates similar to HM.

- [26] M. Estienne et al. [EF model], Phys. Rev. Lett. 123 (2019) 022502 [arXiv:1904.09358]
- [27] L. Hayen et al. [HKSS model], Phys. Rev. C 100 (2019) 054323 [arXiv:1908.08302]
- [28] V. Kopeikin et al. [KI model], Phys. Rev. D 104 (2021) L071301 [2103.01684]
- [29] J.M. Berryman and P. Huber, JHEP 01 (2021) 167 [arXiv:2005.01756]
- [30] F.P. An et al. [Daya-Bay], Phys. Rev. Lett. 130 (2023) 211801 [arXiv:2210.01068]

Michele Maltoni <michele.maltoni@csic.es>

1.2

1.1

1.0

ຸຂຶ້ 0.9

0.8

0.7

0.6

0.85

[29]

0.9

GLoBESfit v1.0

All Rates

Rate Evolution

Integrated Rates

1.0

0.95

[26] M. Estienne et al. [EF model], Phys. Rev. Lett. 123 (2019) 022502 [arXiv:1904.09358]

- [27] L. Hayen et al. [HKSS model], Phys. Rev. C 100 (2019) 054323 [arXiv:1908.08302]
- [28] V. Kopeikin et al. [KI model], Phys. Rev. D 104 (2021) L071301 [2103.01684]
- [31] C. Giunti et al., Phys. Lett. B 829 (2022) 137054 [arXiv:2110.06820]

Michele Maltoni <michele.maltoni@csic.es>

I/c. Oscillation anomalies: v_e disappearance

\bar{v}_{e} disapp: 5 MeV excess

- Neutrino 2014: RENO [32] reported an excess of events around 5 MeV:
- seen by most reactors (also old Chooz [34]);
- DB+Prospect [33]: affect both ²³⁵U & ²³⁹Pu:
- excess (not deficit) & independent of $L \Rightarrow$ flux feature, not sterile oscillations;
- accounted by HKSS, but not by EF and KI ⇒ reactor fluxes require further scrutiny.

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Sterile *v***: spectra and baselines**

- New detectors with spectral capability and baseline range:
 - NEOS (Korea), commercial, L = 23.7 m;
 - STEREO (France), enriched, $L = 9 \rightarrow 11$ m;
 - **PROSPECT** (USA), enriched, $L = 7 \rightarrow 12$ m;
 - DANSS (Russia) commercial, $L = 10.9 \rightarrow 12.9$ m;
 - SOLID (Belgium), enriched, $L = 5.5 \rightarrow 12$ m;
 - Neutrino4 (Russia), enriched, $L = 6 \rightarrow 12$ m;
- goals: $\begin{cases} \text{ accurate study of reactor } \nu \text{ spectrum;} \\ \text{ flux-independent osc. by near/far ratio;} \end{cases}$
- results: most experiments report no evidence, a few observe wiggles at low significance (DANSS, NEOS);
- exception: Neutrino4 reports 3σ signal with $\Delta m^2 \sim 7 \text{ eV}^2$.
- [35] Z. Atif et al. [NEOS & RENO], Phys. Rev. D 105 (2022) L111101 [arXiv:2011.00896]
- [36] E. Samigullin [DANSS], talk at NuFact 23, Seoul, Korea, 25/08/2023
- A.P. Serebrov et al. [NEUTRINO4], arXiv: 2302.09958

Flux-independent fits of reactor \bar{v}_e disappearance data

- Fits based on spectral ratios at various distances are independent of the reactor v spectrum;
- NEOS + Daya-Bay exhibits stronger wiggles than NEOS + RENO [39];
- no consistent pattern from various "hints". Combined fit weakly prefers $\Delta m^2 \sim 1.3 \text{ eV}^2$;
- SOLID's first results presented at TAUP'23 [40] not included here.

- [38] J.M. Berryman et al., JHEP 02 (2022) 055 [arXiv:2111.12530]
- [39] C. Giunti et al., JHEP 10 (2022) 164 [arXiv: 2209.00916]
- [40] D. Galbinski [SOLID], talk at TAUP 23, Vienna, Austria, 30/08/2023

Michele Maltoni <michele.maltoni@csic.es>

v_{ρ} disappearance: the gallium anomaly

- ${}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} \nu$ capture cross-section was calibrated with intense ⁵¹Cr and ³⁷Ar sources by GALLEX & SAGE (20 years ago) as well as BEST (2022);
- these measurements show a significant deficit with respect to the predicted values [41]:

GALLEX:
$$\begin{cases} R_1(Cr) = 0.953 \pm 0.11 \\ R_2(Cr) = 0.812 \pm 0.11 \\ R_3(Cr) = 0.95 \pm 0.12 \\ R_4(Ar) = 0.79 \pm 0.095 \\ R_5(I) = 0.791 \pm 0.05 \\ R_6(O) = 0.766 \pm 0.05 \end{cases} \Rightarrow \boxed{0.80 \pm 0.047}$$

- such deficit can be interpreted in terms of oscillations;
- data suggest $\Delta m^2 \gtrsim 1 \text{ eV}^2$ but require very large θ_{ee} .

Michele Maltoni <michele.maltoni@csic.es>

[41] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 $0.9 \quad 1.0$ $\sin^2 2\theta$ MAYORANA school, 24-25/06/2025

23

Origin of the gallium anomaly

- Large θ_{ee} required by Gallium v_e oscill. clashes with:
 - reactor \bar{v}_e data, as seen in previous slides;
 - solar v_e data, which don't tolerate a large v_s fraction;
- can the Gallium cross-section be overestimated?
 - well-known ground-state suffices for the tension;
 - ⁷¹Ge half-life may be wrong, but needed "error" very large;
 - solar data show no tension with current cross-section;
- \Rightarrow no obvious solution to the Gallium puzzle.

MAYORANA school, 24-25/06/2025

Tension between solar and gallium data: some insight

- Can SSM fluxes be the problem? → Try various options, or even leave the fluxes free;
- can we trust Gallium *solar* measurements? \rightarrow Both <u>fixed</u> or <u>free</u> f_{Ga} normalization;
- can we trust reactor fluxes? → Both constrained and free KamLAND (+ DB) scale;

[44] M. C. Gonzalez-Garcia et al., Phys. Lett. B 862 (2025) 139297 [arXiv:2411.16840]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Tension between solar and gallium data: results

- Solar+KL data favor $\theta_{14} = 0$ irrespective of SSM model, KL reactor fluxes, or inclusion of f_{Ga} ;
- even the least constraining scenario (everything free) has a p-value no better than 0.29%;
- only way to further reduce the tension acting on <u>solar</u> data is to relax the Luminosity Constraint.
 An increase larger than 10% is required, despite the current precision being 0.34%.

		$f_{\rm Ga} = 1$			$f_{\rm Ga}$ free		
	SSM	$\chi^2_{\rm PG}/n$	<i>p</i> -value (×10 ⁻³)	$\#\sigma$	$\chi^2_{\rm PG}/n$	<i>p</i> -value (×10 ⁻³)	$\#\sigma$
	MB-phot/GS98	14.9	0.11	3.9	13.1	0.3	3.6
Solar	AAG21/AGSS09	18.7	0.2	4.3	17.3	0.03	4.2
	SSM indep (wLC)	9.1	2.6	3.0	4.9	27	2.2
	MB-phot/GS98	15.9	0.07	4.0	15.1	0.1	3.9
Solar + KL-RFC	AAG21/AGSS09	19.4	0.1	4.4	18.7	0.01	4.3
	SSM indep (wLC)	13.5	0.23	3.7	10.5	1.2	3.2
	MB-phot/GS98	13.2	0.28	3.6	11.7	0.64	3.4
Solar + KL-RFF	AAG21/AGSS09	17.3	0.03	4.2	16.0	0.06	4.0
	SSM indep (wLC)	8.7	3.1	2.9	4.8	29	2.2

[44] M. C. Gonzalez-Garcia et al., Phys. Lett. B 862 (2025) 139297 [arXiv:2411.16840]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Comparison of all v_e and \bar{v}_e disappearance data

- Reactors: proper FC statistics relaxes bounds by about 1σ w.r.t. Wilk's limits [38];
- Gallium: FC not so important [38], but it cannot be reconciled with other data [38, 39];
- "least tension" $\overline{v}_e \rightarrow \overline{v}_e$ at $\Delta m^2 \sim 10 \text{ eV}^2$, in tension with $\overline{v}_\mu \rightarrow \overline{v}_e$ value $\Delta m^2 \sim 1 \text{ eV}^2$;
- solar data also disfavor large mixing angle, and tritium does so at large Δm^2 .

[38] J.M. Berryman *et al.*, JHEP 02 (2022) 055 [arXiv:2111.12530]
[39] C. Giunti *et al.*, JHEP 10 (2022) 164 [arXiv:2209.00916]

• <u>Approximation</u>: $\Delta m^2_{SOL} \ll \Delta m^2_{ATM} \ll \Delta m^2_{SBL} \Rightarrow 6$ different mass schemes:

• Total: 3 Δm^2 , 6 angles, 3 phases. Different set of experimental data *partially decouple*:

• in (2+2) models, fractions of v_s in solar (η_s) and atmos $(1 - d_s)$ add to one $\Rightarrow |\eta_s = d_s|$;

- 3σ allowed regions η_s ≡≤ 0.31 (solar) and d_s ≥ 0.63 (atmos) do not overlap; superposition occurs only above 4.5σ (χ²_{PC} = 19.9);
- the χ^2 increase from the combination of solar and atmos data is $\chi^2_{PG} = 28.6$ (1 dof), corresponding to a PG = 9×10^{-8} [45].

[45] M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, Nucl. Phys. B643 (2002) 321 [hep-ph/0207157]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

- no hint of v_{μ} disappearance has been observed;
- bound on $|U_{\mu4}|^2$ may be in tension with other data...

[46] M. Dentler et al., JHEP 08 (2018) 010 [arXiv:1803.10661]

Michele Maltoni <michele.maltoni@csic.es>

+IC

 $|U_{\mu 4}|^2$

 10^{-1}

combined

 10^{-2}

Search for v_{μ} disappearance at IceCube

- Since oscillations only depend on $\Delta m^2/E$, larger Δm^2 produce visible effects at larger *E*;
- IceCube has been detecting high-energy (~ TeV) atmos. neutrinos since its construction;
- a small "island" around $\Delta m^2 \sim \text{few eV}^2$ and $\sin^2 2\theta_{\mu\mu} \sim 0.1$ has been gaining prominence;
- *p*-value for no-oscillation: of 47% (1 year), 8% (8 years), 3.1% (10.7 years) \Rightarrow still OK.

[47] M.G. Aartsen *et al.* [lceCube], Phys. Rev. Lett. **117** (2016) 071801 [arXiv:1605.01990]
[48] M.G. Aartsen *et al.* [lceCube], Phys. Rev. Lett. **125** (2020) 141801 [arXiv:2005.12942]
[49] R. Abbasi *et al.* [lceCube], Phys. Rev. Lett. **133** (2024) 201804 [arXiv:2405.08070]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Search for ν_{μ} disappearance at LBL experiments

- Sterile v can be searched at LBL experiments by "switching" the roles of near & far detectors:
 - far detector observes fully averaged oscillations \Rightarrow fixes the *energy shape* of the beam;
 - near detector looks for spectral distortions which would indicate SBL oscillations;
- results presented by MINOS/MINOS+ [50], T2K [51], and NOvA [52] collaborations;
- sterile oscillations can also be studied by looking for deficit in neutral-current data [52].

[50] P. Adamson *et al.* [MINOS+], Phys. Rev. Lett. 122 (2019) no.9, 091803 [arXiv:1710.06488]
[51] K. Abe *et al.* [T2K], Phys. Rev. D 99 (2019) no.7, 071103 [arXiv:1902.06529]
[52] M.A. Acero *et al.* [NOvA], Phys. Rev. Lett. 127 (2021) no.20, 201801 [arXiv:2106.04673]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

(3+1): tension among data samples

- Inconsistency between Reactors and Gallium results prevents a combined fit of all $v_e \rightarrow v_e$ data;
- Limits on <u>a subset</u> of $v_e \rightarrow v_e$ and $v_\mu \rightarrow v_\mu$ disappear- \tilde{E}_{\forall} ance [53] imply a bound on $v_\mu \rightarrow v_e$ **stronger** than what required to explain the LSND and MiniBooNe excesses;
- such tension between APP and DIS data was first pointed out in 1999 [54]. Full global fit in 2001 [55] cornered (3+1) models. No conceptual change since then...
- [14] P. Abratenko *et al.* [MicroBooNE], Phys. Rev. Lett. **130** (2023) 011801 [arXiv:2210.10216]
- [39] C. Giunti et al., JHEP 10 (2022) 164 [arXiv: 2209.00916]
- [53] P. Adamson *et al.* [MINOS+ and Daya-Bay], Phys. Rev. Lett. **125** (2020) 071801 [arXiv:2002.00301]
- [54] S.M. Bilenky et al., PRD 60 (1999) 073007 [hep-ph/9903454]
- [55] MM, Schwetz, Valle, PLB 518 (2001) 252 [hep-ph/0107150]

I/d. Global fits with eV steriles: v_{μ} disappearance

Beyond (3+1) oscillations

- If (3+1) models do not work (and never did), why do we keep discussing them?
 - they are a natural extension of 3v;
 - they individually explain each anomaly;
 - hence, they make a great starting point;
- can we do better than this?
 - more steriles (3+2, 3+3, ...) not enough;
 - recent trend towards "dumping" [57] (first noted in [56]), but tensions remain;
 - alternatives explain some (not all) data;
 - usually very "exotic" and "ad-hoc";
- "vanilla v_s " still best working tool.

Explanations beyond the Standard Model [Goal: account for the Gallium anomaly] ν_s coupled to ultralight DM several exotic ingredients; somewhat tuned MSW resonance; $\star \star \star \star \star \star$ (MSW resonance, Sec. 5.1.1) new ν_4 decay channel required for cosmology. several exotic ingredients; somewhat tuned MSW resonance; ★★★☆☆ ν_e coupled to dark energy (MSW resonance, Sec. 5.1.2) cosmology similar to the previous scenario. ν_{\circ} coupled to ultralight DM several exotic ingredients; somewhat tuned parametric res-(param, resonance, Sec. 5.1.3) onance; cosmology requires post-BBN DM production via misalimmont

(Ref. [139])

	inisanginicite.	
decaying ν_s (Section 5.2)	difficult to reconcile with reactor and solar data; regeneration of active neutrinos in ν_s decays alleviates tension, but does not resolve it.	★★☆☆☆
vanilla eV-scale ν_s (Refs. [17, 18])	preferred parameter space is strongly disfavored by solar and reactor data.	★☆☆☆☆
ν_s with CPT violation (Refs. [130])	avoids constraints from reactor experiments, but those from solar neutrinos cannot be alleviated.	
extra dimensions (Refs. [131–133])	neutrinos oscillate into sterile Kaluza–Klein modes that propagate in extra dimensions; in tension with reactor data.	
stochastic neutrino mixing (Ref. [134])	based on a difference between sterile neutrino mixing angles at production and detection (see also [135, 136]); fit worse than for vanilla ν_s .	
decoherence (Refs. [137, 138])	non-standard source of decoherence needed; known experimen- tal energy resolutions constrain wave packet length, making an explanation by wave packet separation alone challenging.	
ν_s coupled to ultralight scalar (Ref. [120])	ultralight scalar coupling to ν_s and to ordinary matter affects storile neutrino parameters: can not avoid reactor constraints	[58]

sterile neutrino parameters; can not avoid reactor constraints

S. Palomares-Ruiz et al., JHEP 09 (2005) 048 [hep-ph/0505216] [56]

[57] J.M. Hardin et al., JHEP 09 (2023) 058 [arXiv: 2211.02610]

[58] V. Brdar et al., JHEP 05 (2023) 143 [arXiv: 2303.05528]

More sterile neutrinos? The case of (3+2) models

With one extra sterile neutrino, m₄:

$$P_{\mu e}^{4\nu} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\phi_{41}$$
 with $\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$

- for large energy $P_{\mu e}^{4\nu}$ drops as $1/E^2$;
- however, the low-energy MB excess is much sharper (~ $1/E^3$);
- On the other hand, with *two* extra neutrinos, m_4 and m_5 :

 $P_{\mu e}^{5\nu} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\phi_{41} + 4|U_{e5}|^2|U_{\mu 5}|^2\sin^2\phi_{51} + 8|U_{e4}U_{e5}U_{\mu 4}U_{\mu 5}|\sin\phi_{41}\sin\phi_{51}\cos(\phi_{54} - \delta);$

- terms of order $1/E^2$ suppressed if $\delta \approx \pi$ and $|U_{e4}U_{\mu4}|\Delta m_{41}^2 \approx |U_{e5}U_{\mu5}|\Delta m_{51}^2$;
- \Rightarrow two extra sterile states provide a better description of the MB low-energy ν data [59].
 - also, $\delta = \arg(U_{e4}^*U_{\mu4}U_{e5}U_{\mu5}^*)$ differentiates between ν (MB) from $\bar{\nu}$ (MB/LSND);
 - however, (3+2) models suffer from the same APP/DIS tension as (3+1) models;
 - also, (3+2) models have stronger problems with cosmology since $\sum m_{\nu}$ is larger;
- \Rightarrow (3+N) models **do not present substantial advantages** over the simpler (3+1) model.

[59] M. Maltoni, T. Schwetz, Phys. Rev. D76 (2007) 093005 [arXiv:0705.0107]

35

General bounds on sterile neutrinos

- Reactors & accelerator: weak matter effects ⇒ mass window determined by baseline;
- experiments with <u>near</u> & <u>far</u> detectors reach max sensitivity between the two scales, but drop considerably when oscillations become averaged at both sites;
- atmospheric: important contributions to sensitivity from resonant conversion in matter.

[49] R. Abbasi *et al.* [IceCube], Phys. Rev. Lett. 133 (2024) 201804 [arXiv:2405.08070]
[50] P. Adamson *et al.* [MINOS+], Phys. Rev. Lett. 122 (2019) no.9, 091803 [arXiv:1710.06488]
[60] F.P. An *et al.* [Daya Bay], Phys. Rev. Lett. 133 (2024) 051801 [arXiv:2404.01687]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Sterile neutrinos and solar data

- Notation: $\vec{v} = (v_s, v_e, v_\mu, v_\tau), \vec{v}_{mb} = (v_0, v_1, v_2, v_3),$ $D_{vac} \propto \operatorname{diag}(\Delta m_{01}^2, 0, \Delta m_{21}^2, \Delta m_{31}^2), U \equiv U_{SM} R_{01}^{\alpha};$
- as noted in [61], a sterile with $R_{\Delta} \equiv \Delta m_{01}^2 / \Delta m_{21}^2 \sim 0.2$ and small mixing α modifies the vacuum-matter transition \Rightarrow explain why low-E turn-up not so prominent;
- for very small values of Δm_{01}^2 , the oscillation length becomes larger than Earth eccentricity, and then comparable with the Sun-Earth distance;
- excluded region determined by a number of different phenomena, and exhibits a rich phenomenology.
- [61] P.C. de Holanda and A.Yu. Smirnov, Phys. Rev. D 69 (2004) 113002 [hep-ph/0307266]
- [62] P.C. de Holanda and A.Yu. Smirnov, Phys. Rev. D 83 (2011) 113011 [arXiv:1012.5627]
- [63] Z. Chen, J. Liao, J. Ling and B. Yue, JHEP 09 (2022) 004 [arXiv:2205.07574]

Michele Maltoni <michele.maltoni@csic.es>

[64] C. Peña-Garay, Master's thesis, University of Valencia (Spain), 2001.

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

I/e. Beyond the eV window: ultra-light sterile neutrinos

 $\chi^2 - \chi^2_{SM} < -1 \mid < 1 \mid < 4 \mid < 9$

Bounds from current solar data

- Warning: we set $\Delta m^2_{21} = 7.5 \times 10^{-5} \text{ eV}^2$:
 - outside gray bands: KL fixes Δm_{21}^2 ;
 - light band: KL fixes $\Delta m_{ee}^2 \sim \Delta m_{21}^2$;
 - dark band: allowed OK, excluded not;

102

10¹

 10^{0}

10⁻¹

I. Seaches for extra sterile neutrinos: summary

- Anomalies in $v_e \rightarrow v_e$ disappearance and $v_\mu \rightarrow v_e$ appearance experiments point towards conversion mechanisms beyond the well-established 3v oscillation paradigm;
- each of these anomalies can be **individually** explained by sterile neutrinos ($\Delta m^2 \sim 1 \text{ eV}^2$);
- unlike a few years ago, sterile neutrinos no longer succeed in simultaneously explaining groups of anomalies sharing the same oscillation channel. Concretely:
 - $-\nu_e \rightarrow \nu_e$ disappearance data exhibit a serious tension in <u>solar/reactor vs gallium</u> results, as well as some issue between different <u>"spectral shape"</u> reactor experiments;
 - $-\nu_{\mu} \rightarrow \nu_{e}$ appearance data show an excess in low-E neutrino data, which cannot be explained by oscillations alone and so far has eluded the searches for new systematics;
- the quest for a "global" model reconciling $v_e \rightarrow v_e$, $v_\mu \rightarrow v_e$, $v_\mu \rightarrow v_\mu$ data is now secondary: it is more urgent to clarify the "local" inconsistencies within each of these classes;
- to this aim, <u>new experimental data are required</u>. A number of experiments are under way, we will hear about them during this conference;
- if the $v_e \rightarrow v_e$ and $v_\mu \rightarrow v_e$ anomalies are confirmed, new physics will be needed. Such new physics will probably involve extra sterile states, but together with "something else". At present, however, **no model is known** which can <u>convincingly</u> explain everything.

Neutrino interactions in the Standard Model

• Effective low-energy Lagrangian for **standard** neutrino interactions with matter:

$$\begin{aligned} \mathscr{L}_{\mathsf{SM}}^{\mathsf{eff}} &= -2\sqrt{2}G_F \sum_{f,\beta} \left([\bar{\nu}_{\beta}\gamma_{\mu}P_L \ell_{\beta}] [\bar{f}\gamma^{\mu}P_L f'] + \mathsf{h.c.} \right) - 2\sqrt{2}G_F \sum_{f,P,\beta} g_P^f [\bar{\nu}_{\beta}\gamma_{\mu}P_L \nu_{\beta}] [\bar{f}\gamma^{\mu}Pf] \\ \text{where } P \in \{P_L, P_R\}, (f, f') \text{ form an SU(2) doublet, and } g_P^f \text{ is the } Z \text{ coupling to fermion } f: \\ g_L^\nu &= \frac{1}{2}, \qquad g_L^\ell = \sin^2 \theta_W - \frac{1}{2}, \qquad g_L^u = -\frac{2}{3}\sin^2 \theta_W + \frac{1}{2}, \qquad g_L^d = \frac{1}{3}\sin^2 \theta_W - \frac{1}{2}, \\ g_R^\nu &= 0, \qquad g_R^\ell = \sin^2 \theta_W, \qquad g_R^u = -\frac{2}{3}\sin^2 \theta_W, \qquad g_R^d = \frac{1}{3}\sin^2 \theta_W; \end{aligned}$$

- this form of the Lagrangian and expressions for the couplings lead to:
 - matter potentials: $V_{CC} = \sqrt{2} G_F N_e \operatorname{diag}(1, 0, 0)$ and $V_{NC} = -\sqrt{2}/2 G_F N_n \operatorname{diag}(1, 1, 1)$;
 - the usual neutrino cross-sections, in particular the *neutrino-electron elastic scattering*

$$\frac{\mathrm{d}\sigma_{\beta}^{\mathrm{SM}}}{\mathrm{d}T_{e}}(E_{\nu},T_{e}) = \frac{2G_{F}^{2}m_{e}}{\pi} \Biggl\{ c_{L\beta}^{2} \left[1 + \frac{\alpha}{\pi}f_{-}(y) \right] + c_{R\beta}^{2} (1-y)^{2} \Biggl[1 + \frac{\alpha}{\pi}f_{+}(y) \Biggr] - 2 c_{L\beta} c_{R\beta} \frac{m_{e}y}{2E_{\nu}} \Biggl[1 + \frac{\alpha}{\pi}f_{\pm}(y) \Biggr] \Biggr\}$$
where $c_{Le} = g_{L}^{\ell} + 1$, $c_{L\mu} = c_{L\tau} = g_{L}^{\ell}$, and $c_{Re} = c_{R\mu} = c_{R\tau} = g_{R}^{\ell}$ (at tree level). Here f_{+} , f_{-} , f_{\pm} are loop functions and $y \equiv T_{e}/E_{\nu}$. We will return on this later.

II/a. Non-standard neutrino-matter interactions

Non-standard neutrino interactions: a first example

[65] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, Phys. Lett. B 583 (2004) 149 [hep-ph/0309100]
[66] M. Maltoni, A. Yu. Smirnov, Eur. Phys. J. A 52 (2016) 87 [arXiv:1507.05287]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

Non-standard neutrino interactions: general formalism

• Let us extend the SM by a NC-like non-standard neutrino-matter term:

$$\mathscr{L}_{\mathsf{NSI}}^{\mathsf{eff}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{fP} \left[\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\beta} \right] \left[\bar{f} \gamma^{\mu} P f \right];$$

where $P \in \{P_L, P_R\}$ and $f \in \{e, u, d\}$ is a fermion present in <u>ordinary</u> matter;

- however, most general parameter space too large to handle \Rightarrow simplifications needed;
- here we <u>assume</u> that the v flavor structure is **independent** of the charged fermion type:

$$\varepsilon_{\alpha\beta}^{fP} \equiv \varepsilon_{\alpha\beta}\,\xi^{f}\chi^{P}\,, \quad \Rightarrow \quad \mathscr{L}_{\mathsf{NSI}}^{\mathsf{eff}} = -2\sqrt{2}G_{F}\bigg[\sum_{\alpha,\beta}\varepsilon_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta})\bigg]\bigg[\sum_{fP}\xi^{f}\chi^{P}(\bar{f}\gamma_{\mu}Pf)\bigg];$$

• quarks always confined inside nucleons \Rightarrow introduce effective couplings:

$$\xi^p = 2\xi^u + \xi^d$$
, $\xi^n = 2\xi^d + 2\xi^u$;

- length of $\vec{\xi} \equiv (\xi^e, \xi^p, \xi^n)$ degenerate with $|\varepsilon_{\alpha\beta}| \Rightarrow$ fix $|\vec{\xi}| = \sqrt{5} \Rightarrow$ half-sphere;
- strenght of various effects (matter potential, scattering, ...) controlled by mediator mass $m_{Z'}$ [67].

[67] Y. Farzan, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906]

Non-standard neutrino interactions: propagation effects

- Typical oscillation length \gg km \Rightarrow contact-interaction regime for $m_{Z'} \gg 10^{-11}$ eV;
- most neutrino detection occur through CC interactions ⇒ unaffected by our NC-like NSI;
- some experiments sensitive to <u>elastic scattering</u> \Rightarrow affected by NC-like NSI <u>with e</u>, but effects suppressed for $m_{Z'} \ll O(500 \text{ keV})$ [Borexino] or $m_{Z'} \ll O(5-10 \text{ MeV})$ [SK, SNO];
- hence, for a large range of $m_{Z'}$, our NC-like NSI only manifest themselves in <u>v</u> propagation;
- matter potential sensitive to vector couplings \Rightarrow only $\chi^V \equiv \chi^L + \chi^R$ combination relevant;
- NSI effects controlled by fermion $N_f(\vec{x})$, but <u>matter neutrality</u> implies $N_e(\vec{x}) = N_p(\vec{x})$, hence:

$$\mathcal{V}_{\mathsf{NSI}} \propto \sum_{f} N_{f}(\vec{x}) \, \varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta} \, \chi^{V} \sum_{f} N_{f}(\vec{x}) \, \xi^{f} = \varepsilon_{\alpha\beta} \, \chi^{V} \left[N_{e=p}(\vec{x}) \left(\xi^{e} + \xi^{p} \right) + N_{n}(\vec{x}) \, \xi^{n} \right];$$

• only the <u>direction</u> in the $(\xi^e + \xi^p, \xi^n)$ plane probed by ν oscillations \Rightarrow define an angle η' :

$$\xi^e + \xi^p \equiv \sqrt{5} \mathcal{N} \cos \eta'$$
, $\xi^n \equiv \sqrt{5} \mathcal{N} \sin \eta'$, $\varepsilon'_{\alpha\beta} \equiv \mathcal{N} \varepsilon_{\alpha\beta}$ with $\mathcal{N} \equiv \left| (\xi^e + \xi^p, \xi^n) \right| / \left| \vec{\xi} \right|$;

• special cases: $\eta' = \pm 90^{\circ}$ (*n*), $\eta' = 0$ (*p* + *e*), $\eta' \approx 26.6^{\circ}$ (*u*), $\eta' \approx 63.4^{\circ}$ (*d*).

Non-standard interactions and 3*v* **oscillations**

• Equation of motion: 6 (vac) + 8 (NSI- ν) + 1 (NSI-f) = 15 parameters [68]:

$$\begin{split} i\frac{d\vec{v}}{dt} &= H \,\vec{v}; \qquad H = U_{\text{vac}} \cdot D_{\text{vac}} \cdot U_{\text{vac}}^{\dagger} \pm V_{\text{mat}}; \qquad D_{\text{vac}} = \frac{1}{2E_{\nu}} \operatorname{diag}\left(0, \,\Delta m_{21}^{2}, \,\Delta m_{31}^{2}\right); \\ U_{\text{vac}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} e^{i\delta_{CP}} & 0 \\ -s_{12} e^{-i\delta_{CP}} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}, \\ \mathcal{E}_{\alpha\beta}(\vec{x}) &\equiv \sum_{f} \frac{N_{f}(\vec{x})}{N_{e}(\vec{x})} \varepsilon_{\alpha\beta}^{fV} = \sqrt{5} \varepsilon_{\alpha\beta}^{\prime} \chi^{V} [\cos \eta^{\prime} + Y_{n}(\vec{x}) \sin \eta^{\prime}], \qquad Y_{n}(\vec{x}) \equiv \frac{N_{n}(\vec{x})}{N_{e}(\vec{x})}, \\ V_{\text{mat}} &\equiv V_{\text{SM}} + V_{\text{NSI}} = \sqrt{2}G_{F}N_{e}(\vec{x}) \begin{pmatrix} 1 + \mathcal{E}_{ee}(\vec{x}) & \mathcal{E}_{e\mu}(\vec{x}) & \mathcal{E}_{\mu\tau}(\vec{x}) \\ \mathcal{E}_{e\tau}^{\star}(\vec{x}) & \mathcal{E}_{\mu\tau}(\vec{x}) & \mathcal{E}_{\tau\tau}(\vec{x}) \end{pmatrix}; \end{split}$$

• notice that our definition of U_{vac} differ by the "usual" one by an overall rephasing, $U_{\text{vac}} = \Phi \cdot U \cdot \Phi^*$ with $\Phi \equiv \operatorname{diag}(e^{i\delta_{\text{CP}}}, 1, 1)$, which is irrelevant in the standard case of no-NSI.

[68] I. Esteban et al., JHEP 08 (2018) 180 [arXiv:1805.04530]

The generalized mass ordering degeneracy

• General symmetry: $H \rightarrow -H^{\star}$ does not affect the neutrino probabilities;

• we have
$$H = H_{\text{vac}} \pm V_{\text{mat}}$$
. For vacuum, $H_{\text{vac}} \rightarrow -H_{\text{vac}}^{\star}$ occurs if:
$$\begin{cases} \Delta m_{31}^2 \rightarrow -\Delta m_{32}^2, \\ \theta_{12} \rightarrow \pi/2 - \theta_{12}, \\ \delta_{\text{CP}} \rightarrow \pi - \delta_{\text{CP}}, \end{cases}$$

notice how this transformation links together mass ordering and solar octant [69, 70, 71];

- since $V_{mat} = V_{SM} + V_{NSI}$ and V_{SM} is fixed, this symmetry requires NSI;
- in general, $\mathscr{E}_{\alpha\beta}(\vec{x})$ varies along trajectory \Rightarrow symmetry only approximate, **unless**:
 - NSI proportional to electric charge ($\eta' = 0$), so same matter profile for SM and NSI;
 - neutron/proton ratio $Y_n(\vec{x})$ is constant, and same for all the neutrino trajectories.
- [69] M.C. Gonzalez-Garcia, M. Maltoni, JHEP 09 (2013) 152 [arXiv:1307.3092]
- [70] P. Bakhti, Y. Farzan, JHEP 07 (2014) 064 [arXiv:1403.0744]
- [71] P. Coloma, T. Schwetz, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772]

Matter potential for solar and KamLAND neutrinos

• One mass dominance $(\Delta m_{31}^2 \rightarrow \infty) \Rightarrow P_{ee} = c_{13}^4 P_{eff} + s_{13}^4$ with the probability P_{eff} determined by an effective 2ν model (as in the SM):

$$\begin{split} \frac{d\vec{v}}{dt} &= \begin{bmatrix} H_{\text{vac}}^{\text{eff}} + H_{\text{mat}}^{\text{eff}} \end{bmatrix} \vec{v}, \qquad \vec{v} = \begin{pmatrix} v_e \\ v_a \end{pmatrix}, \qquad H_{\text{vac}}^{\text{eff}} &\equiv \frac{\Delta m_{21}^2}{4E_v} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} e^{i\delta_{\text{cP}}} \\ \sin 2\theta_{12} e^{-i\delta_{\text{cP}}} & \cos 2\theta_{12} \end{pmatrix}, \\ H_{\text{mat}}^{\text{eff}} &\equiv \sqrt{2} G_F N_e(\vec{x}) \begin{bmatrix} \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + \sqrt{5} \chi^V [\cos \eta' + Y_n(\vec{x}) \sin \eta'] \begin{pmatrix} -\varepsilon'_D & \varepsilon'_N \\ \varepsilon'_N^* & \varepsilon'_D \end{pmatrix} \end{bmatrix}, \\ \begin{cases} \varepsilon'_D &= c_{13} s_{13} \operatorname{Re}(s_{23} \varepsilon'_{e\mu} + c_{23} \varepsilon'_{e\tau}) - (1 + s_{13}^2) c_{23} s_{23} \operatorname{Re}(\varepsilon'_{\mu\tau}) \\ - c_{13}^2 (\varepsilon'_{ee} - \varepsilon'_{\mu\mu}) \end{pmatrix} / 2 + (s_{23}^2 - s_{13}^2 c_{23}^2) (\varepsilon'_{\tau\tau} - \varepsilon'_{\mu\mu}) / 2, \\ \varepsilon'_N &= c_{13} (c_{23} \varepsilon'_{e\mu} - s_{23} \varepsilon'_{e\tau}) + s_{13} \begin{bmatrix} s_{23}^2 \varepsilon'_{\mu\tau} - c_{23}^2 \varepsilon'_{\mu\tau}^* + c_{23} s_{23} (\varepsilon'_{\tau\tau} - \varepsilon'_{\mu\mu}) \end{bmatrix}; \end{split}$$

- solar data can be perfectly fitted by NSI only ⇒ solar LMA solution is unstable with respect to the introduction of NSI;
- KamLAND requires Δm_{21}^2 but only weakly sensitive to NSI \Rightarrow it determines Δm_{21}^2 ;
- in the solar core $Y_n(\vec{x}) \in [1/6, 1/2] \Rightarrow \underline{\text{approximate}}$ cancellation of NSI for $\eta' \in [-80^\circ, -63^\circ]$.

Oscillation results for solar and KamLAND neutrinos

- Generalized mass-ordering degeneracy \Rightarrow new LMA-D solution with $\theta_{12} > 45^{\circ}$ [72];
- $\eta' = 0 \Rightarrow$ NSI terms proportional to $N_p(\vec{x}) \equiv N_e(\vec{x}) \Rightarrow$ the degeneracy becomes exact.

[72] O.G. Miranda, M.A. Tortola, J.W.F. Valle, JHEP 10 (2006) 008 [hep-ph/0406280]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Matter potential for atmospheric and long-baseline neutrinos

- In <u>Earth matter</u>: $Y_n(\vec{x}) \to Y_n^{\oplus} \approx 1.051 \Rightarrow \mathscr{E}_{\alpha\beta}(\vec{x}) \to \varepsilon_{\alpha\beta}^{\oplus}$ becomes an effective parameter: $\varepsilon_{\alpha\beta}^{\oplus} \equiv \sqrt{5} \left[\cos \eta' + Y_n^{\oplus} \sin \eta'\right] \varepsilon_{\alpha\beta}'$,
- the bounds on $\varepsilon_{\alpha\beta}^{\oplus}$ are independent of the fermion couplings (*i.e.*, of η');
- for $\eta' = \arctan(-1/Y_n^{\oplus}) \approx -43.6^{\circ}$ ATM+LBL data imply **no** bound on $\varepsilon'_{\alpha\beta}$;
- the NSI parameter space is too big to be properly studied ⇒ simplification needed;
- bounds on $\varepsilon_{\alpha\beta}^{\oplus}$ are <u>weakest</u> when $V_{\text{mat}} \propto \delta_{e\alpha} \delta_{e\beta} + \varepsilon_{\alpha\beta}^{\oplus}$ has <u>two</u> degenerate eigenvalues [73] \Rightarrow focus on such case \Rightarrow introduce parameters ($\varepsilon_{\oplus}, \varphi_{12}, \varphi_{13}, \alpha_1, \alpha_2$) and define:

$$\begin{aligned} \varepsilon_{ee}^{\oplus} - \varepsilon_{\mu\mu}^{\oplus} &= \varepsilon_{\oplus} \left(\cos^{2} \varphi_{12} - \sin^{2} \varphi_{12} \right) \cos^{2} \varphi_{13} - 1 , \\ \varepsilon_{\tau\tau}^{\oplus} - \varepsilon_{\mu\mu}^{\oplus} &= \varepsilon_{\oplus} \left(\sin^{2} \varphi_{13} - \sin^{2} \varphi_{12} \cos^{2} \varphi_{13} \right) , \\ \varepsilon_{e\mu}^{\oplus} &= -\varepsilon_{\oplus} \cos \varphi_{12} \sin \varphi_{12} \cos^{2} \varphi_{13} e^{i(\alpha_{1} - \alpha_{2})} , \\ \varepsilon_{e\tau}^{\oplus} &= -\varepsilon_{\oplus} \cos \varphi_{12} \cos \varphi_{13} \sin \varphi_{13} e^{i(2\alpha_{1} + \alpha_{2})} , \\ \varepsilon_{\mu\tau}^{\oplus} &= \varepsilon_{\oplus} \sin \varphi_{12} \cos \varphi_{13} \sin \varphi_{13} e^{i(\alpha_{1} + 2\alpha_{2})} . \end{aligned}$$

• for definiteness we also assume on <u>CP conservation</u> and set $\delta_{_{CP}} = \alpha_1 = \alpha_2 = 0$.

[73] A. Friedland, C. Lunardini, M. Maltoni, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

 $\varepsilon_{ee} = -0.15$

0.5

Impact of NSI on the oscillation parameters

- Once marginalized over η' , analysis of solar + KamLAND data shows strong deterioration of the precision on Δm_{21}^2 and θ_{12} , as well as the appearance of the LMA-D solution [72];
- a similar worsening appears in ATM + LBL-dis + LBL-app + IceCUBE + MBL-rea analysis;
- synergies between solar and atmospheric sectors allow to recover the SM accuracy on most parameters (except θ₁₂);
- notice that the LMA-D solution persists also in the global fit;
- high-energy atmos. IceCUBE data have no sensitivity to oscillations ($P_{\mu\mu} \propto 1/E^2$), hence they contribute little.

[72] O.G. Miranda, M.A. Tortola, J.W.F. Valle, JHEP 10 (2006) 008 [hep-ph/0406280]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24–25/06/2025

II/b. Bounds on NSI from oscillation data: propagation effects

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Non-standard interactions with electrons: formalism

- Let's focus on solar ν and assume $m_{Z'} \gtrsim O(\text{MeV})$. In the presence of NC-like NSI with e, elastic scattering is modified \Rightarrow detection process (SK, SNO, Borexino) is affected;
- in the SM, v interactions (both CC and NC) are diagonal in the <u>flavor basis</u>. Hence:

$$N_{\rm ev} \propto \sum_{\beta} P_{e\beta} \sigma_{\beta}^{\rm SM}$$
 with $P_{e\beta} \equiv |S_{\beta e}|^2$ ($\nu_e \rightarrow \nu_{\beta}$ transition probabilities)

• this expression is only valid in the <u>flavor</u> basis. Unitary rotation $U \Rightarrow$ <u>arbitrary</u> basis:

$$S_{\beta e} = \sum_{i} U_{\beta i} S_{ie} \quad \Rightarrow \quad P_{e\beta} = \sum_{ij} U_{\beta i} \rho_{ij}^{(e)} U_{j\beta}^{\dagger} \quad \text{with} \quad \rho_{ij}^{(e)} \equiv S_{ie} S_{ej}^{\dagger} = \left[S \Pi^{(e)} S^{\dagger} \right]_{ij}$$

• where $\rho^{(e)}$ is the *v* density matrix at the detector (for a v_e at the source). Substituting:

$$N_{\rm ev} \propto \sum_{ij} \rho_{ij}^{(e)} \sum_{\beta} U_{j\beta}^{\dagger} \sigma_{\beta}^{\rm SM} U_{\beta i} = \left[\operatorname{Tr} \left[\boldsymbol{\rho}^{(e)} \boldsymbol{\sigma}^{\rm SM} \right] \right] \quad \text{with} \quad \sigma_{ji}^{\rm SM} \equiv \left[\boldsymbol{U}^{\dagger} \operatorname{diag} \left\{ \sigma_{\beta}^{\rm SM} \right\} \boldsymbol{U} \right]_{ji};$$

• here σ^{SM} is a <u>matrix</u> in flavor space, containing enough information to describe the ES interaction of *any* neutrino state without the need to explicitly project it onto the interaction eigenstates: such projection is now implicitly encoded into σ^{SM} .

Neutrino-electron cross-section in the presence of NSI

- In the presence of flavor-changing NSI, the SM flavor basis no longer coincides with the interaction eigenstates. Hence, the general formula $N_{\rm ev} \propto {\rm Tr} \left[\rho^{(e)} \sigma^{\rm NSI} \right]$ must be used;
- the cross-section matrix σ^{NSI} is the integral over T_e of the following expression:

$$\frac{\mathrm{d}\sigma^{\mathrm{NSI}}}{\mathrm{d}T_{e}}(E_{v},T_{e}) = \frac{2G_{F}^{2}m_{e}}{\pi} \left\{ C_{L}^{2} \left[1 + \frac{\alpha}{\pi}f_{-}(y) \right] + C_{R}^{2} (1-y)^{2} \left[1 + \frac{\alpha}{\pi}f_{+}(y) \right] - \left\{ C_{L},C_{R} \right\} \frac{m_{e}y}{2E_{v}} \left[1 + \frac{\alpha}{\pi}f_{\pm}(y) \right] \right\}$$

where
$$f_+$$
, f_- , f_{\pm} are loop functions, $y \equiv T_e/E_v$, and C_L , C_R are 3 × 3 hermitian matrices:

$$\begin{cases} C_{\alpha\beta}^{L} \equiv c_{L\beta} \, \delta_{\alpha\beta} + \varepsilon_{\alpha\beta}^{eL} \\ C_{\alpha\beta}^{R} \equiv c_{L\beta} \, \delta_{\alpha\beta} + \varepsilon_{\alpha\beta}^{Re} \end{cases} \quad \text{with} \quad \begin{cases} c_{L\tau} = c_{L\mu} = g_{L}^{\ell} \quad \text{and} \quad c_{Le} = g_{L}^{\ell} + 1 \,, \\ c_{R\tau} = c_{R\mu} = c_{Re} = g_{R}^{\ell} \quad (\text{at tree level}) \,; \end{cases}$$

- when the NSI terms $\varepsilon_{\alpha\beta}^{eL}$ and $\varepsilon_{\alpha\beta}^{eR}$ are set to zero, the matrix $d\sigma^{NSI}/dT_e$ becomes diagonal and the SM expressions are recovered;
- the cross section for antineutrinos can be obtained by interchanging $C_L \leftrightarrow C_R^*$;
- NSI effects on neutrino propagation are the same as in the previous section (with $\eta' = 0$ for $\xi^p = \xi^n = 0$) and are accounted by the density matrix $\rho^{(e)}$.

Bounds on NSI-*e* from Borexino

- $m_{Z'} \gtrsim \mathcal{O}(500 \text{ keV}) \Rightarrow$ Borexino sensitive to NSI-*e*;
- Ref. [74]: { only diagonal NSI considered; - only 1 or 2 NSI varied at-a-time;
- in [75] we studied the general case. We found:
 - degeneracies strongly weakens the bounds;
 - yet a definite $\mathcal{O}(1)$ bound is <u>always</u> found.

	Allowed regions at 90% CL ($\Delta \chi^2 = 2.71$)				
	Vec	etor	Axial Vector		
	1 Parameter	Marginalized	1 Parameter	Marginalized	
ε_{ee}	[-0.09, +0.14]	[-1.05, +0.17]	[-0.05, +0.10]	[-0.38, +0.24]	
$\varepsilon_{\mu\mu}$	[-0.51, +0.35]	[-2.38, +1.54]	$[-0.29, +0.19] \oplus [+0.68, +1.45]$	[-1.47, +2.37]	
$\varepsilon_{\tau\tau}$	[-0.66, +0.52]	[-2.85, +2.04]	$[-0.40, +0.36] \oplus [+0.69, +1.44]$	[-1.82, +2.81]	
$\varepsilon_{e\mu}$	[-0.34, +0.61]	[-0.83, +0.84]	[-0.30, +0.43]	[-0.79, +0.76]	
$\varepsilon_{e\tau}$	[-0.48, +0.47]	[-0.90, +0.85]	[-0.40, +0.38]	[-0.81, +0.78]	
$\varepsilon_{\mu\tau}$	[-0.25, +0.36]	[-2.07, +2.06]	$[-1.10, -0.75] \oplus [-0.13, +0.22]$	[-1.95, +1.91]	

Allowed confidence regions

[74] Borexino coll., JHEP 02 (2020) 038 [arXiv:1905.03512]
[75] Coloma *et al.*, JHEP 07 (2022) 138 [arXiv:2204.03011]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Bounds on NSI-*e* from global data

- $m_{Z'} \gtrsim \mathcal{O}(10 \text{ MeV}) \Rightarrow \text{SK} \& \text{SNO}$ sensitive to NSI-*e*:
 - SK measures ES events with high statistics;
 - SNO determines the ⁸B flux accurately via NC;
- bounds from Borexino alone greatly enhanced [76];
- limits dominated by NSI contributions to the ES crosssection, which allow to derive separate bounds on diagonal $\varepsilon_{\alpha\alpha}^{eV}$ and $\varepsilon_{\alpha\alpha}^{eA}$ couplings.

	Allowed ranges at 90% CL (marginalized)				
	Vec	tor $(X = V)$	Axial-vector $(X = A)$		
	Borexino	GLOB-OSC w NSI in ES	Borexino	GLOB-OSC w NSI in ES	
$\varepsilon_{ee}^{e,X}$	[-1.1, +0.17]	[-0.13, +0.10]	[-0.38, +0.24]	[-0.13, +0.11]	
$\varepsilon^{e,X}_{\mu\mu}$	[-2.4, +1.5]	[-0.20, +0.10]	[-1.5, +2.4]	[-0.70, +1.2]	
$\varepsilon^{e,X}_{\tau\tau}$	[-2.8, +2.1]	[-0.17, +0.093]	[-1.8, +2.8]	[-0.53, +1.0]	
$\varepsilon^{e,X}_{e\mu}$	[-0.83, +0.84]	$\left[-0.097, +0.011 ight]$	[-0.79, +0.76]	[-0.41, +0.40]	
$\varepsilon^{e,X}_{e\tau}$	[-0.90, +0.85]	[-0.18, +0.080]	[-0.81, +0.78]	[-0.36, +0.36]	
$\varepsilon^{e,X}_{\mu\tau}$	[-2.1, +2.1]	$\left[-0.0063, +0.016 ight]$	[-1.9, +1.9]	[-0.79, +0.81]	

[76] Coloma et al., JHEP 08 (2023) 032 [arXiv:2305.07698]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

Neutrino-nucleus cross-section in the presence of NSI

- At $m_{Z'} \gtrsim O(50 \text{ MeV})$, coherent neutrino-nucleus scattering becomes senstive to NSI;
- the cross-section matrix σ^{coh} is the integral over the recoil energy of the nucleus E_R of:

$$\frac{\mathrm{d}\sigma^{\mathrm{coh}}}{\mathrm{d}E_R}(E_\nu, E_R) = \frac{G_F^2}{2\pi} \, \mathcal{Q}^2 \, F^2(2m_A E_R) \, m_A \left(2 - \frac{m_A E_R}{E_\nu^2}\right)$$

where m_A is the nucleus' mass, $F(q^2)$ its nuclear form factor, and Q an hermitian matrix:

$$\mathcal{Q}_{\alpha\beta} = Z(g_V^p \delta_{\alpha\beta} + \varepsilon_{\alpha\beta}^{pV}) + N(g_V^n \delta_{\alpha\beta} + \varepsilon_{\alpha\beta}^{nV});$$

• here g_V^p and g_V^n are the SM vector couplings to protons and neutrons. We can rewrite:

$$\mathcal{Q}_{\alpha\beta} = Z \big[(g_p^V + Y_n^{\text{coh}} g_n^V) \,\delta_{\alpha\beta} + \varepsilon_{\alpha\beta}^{\text{coh}} \big] \quad \text{with} \quad \varepsilon_{\alpha\beta}^{\text{coh}} \equiv \varepsilon_{\alpha\beta}^{pV} + Y_n^{\text{coh}} \,\varepsilon_{\alpha\beta}^{nV} \quad \text{and} \quad Y_n^{\text{coh}} \equiv N/Z \,;$$

• notice that only vector couplings matter, as for oscillations. Assuming factorization:

$$\varepsilon_{\alpha\beta}^{\rm coh} = \varepsilon_{\alpha\beta} \, \chi^V \big(\xi^p + Y_n^{\rm coh} \, \xi^n\big) = \sqrt{5} \, \varepsilon_{\alpha\beta}^{\prime\prime} \, \chi^V \big[\cos\eta^{\prime\prime} + Y_n^{\rm coh} \sin\eta^{\prime\prime}\big]$$

were we have used that only the direction η'' in the (ξ^p, ξ^n) plane is probed by coherent:

$$\xi^{p} \equiv \sqrt{5} \mathcal{N} \cos \eta'', \quad \xi^{n} \equiv \sqrt{5} \mathcal{N} \sin \eta'', \quad \varepsilon_{\alpha\beta}'' \equiv \mathcal{N} \varepsilon_{\alpha\beta} \text{ with } \mathcal{N} \equiv \left| (\xi^{p}, \xi^{n}) \right| / \left| \vec{\xi} \right|.$$

The COHERENT experiment

• Observation of coherent neutrino-nucleus scattering [77] allows to put bounds on vector NSI:

$$\varepsilon_{\alpha\beta}^{\rm coh} = \sqrt{5} \, \varepsilon_{\alpha\beta}'' \, \chi^V \big[\cos \eta'' + Y_n^{\rm coh} \sin \eta'' \big] \, ;$$

• $Y_n^{\text{coh}} \approx 1.407 \Rightarrow$ no bound on $\varepsilon_{\alpha\beta}^{\prime\prime}$ is implied for $\eta^{\prime\prime} = \arctan(-1/Y_n^{\text{coh}}) \approx -35.4^\circ$;

• combination: $\begin{cases} \text{oscillation effects} \to \eta', \\ \text{coherent scattering} \to \eta'', \\ \text{elastic scattering} \to \xi^e; \end{cases}$

- NSI with <u>quarks</u> $\Rightarrow \xi^e = 0 \Rightarrow \eta' = \eta'';$
- separate bounds on diagonal $\varepsilon_{\alpha\alpha}$ (= $\varepsilon'_{\alpha\alpha} = \varepsilon''_{\alpha\alpha}$) couplings can be placed.

[77] D. Akimov et al. [COHERENT], Science 357 (2017) 1123 [arXiv:1708.01294]

Michele Maltoni <michele.maltoni@csic.es>

MAYORANA school, 24-25/06/2025

II/d. Impact on NSI of coherent neutrino-nucleus scattering data

Bounds on NSI with quarks

- Inclusion of COHERENT data rules out LMA-D for NSI with *u*, *d*, or *p*, but **not** in the general case;
- our general 2σ bounds [78]:

	OSCILLATIO	ONS	+ COHERENT (t+E Duke)		
	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$	$LMA = LMA \oplus LMA-D$		
$\begin{array}{l} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{array}$	$\begin{matrix} [-0.072, +0.321] \\ [-0.001, +0.018] \end{matrix}$	$\oplus [-1.042, -0.743]$ [-0.016, +0.018]	$ \begin{array}{l} \varepsilon^u_{ee} & [-0.031, +0.476] \\ \varepsilon^u_{\mu\mu} & [-0.029, +0.068] \oplus [+0.309, +0.415] \\ \varepsilon^u_{\tau\tau} & [-0.029, +0.068] \oplus [+0.309, +0.414] \end{array} $		
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$ $\varepsilon^{u}_{\mu\tau}$	$\begin{array}{l} [-0.050, +0.020] \\ [-0.077, +0.098] \\ [-0.006, +0.007] \end{array}$	$\begin{array}{l} [-0.050, +0.059] \\ [-0.111, +0.098] \\ [-0.006, +0.007] \end{array}$	$ \begin{array}{l} \varepsilon^{u}_{e\mu} & [-0.048, +0.020] \\ \varepsilon^{u}_{e\tau} & [-0.077, +0.095] \\ \varepsilon^{u}_{\mu\tau} & [-0.006, +0.007] \end{array} $		
$ \begin{array}{c} \varepsilon^d_{ee} - \varepsilon^d_{\mu\mu} \\ \varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu} \end{array} $	$\begin{matrix} [-0.084, +0.326] \\ [-0.001, +0.018] \end{matrix}$	$\oplus [-1.081, -1.026]$ [-0.001, +0.018]	$ \begin{array}{l} \varepsilon^d_{ee} [-0.034, +0.426] \\ \varepsilon^d_{\mu\mu} [-0.027, +0.063] \oplus [+0.275, +0.371] \\ \varepsilon^d_{\tau\tau} [-0.027, +0.067] \oplus [+0.274, +0.372] \end{array} $		
$\varepsilon^{d}_{e\mu}$ $\varepsilon^{d}_{e\tau}$ $\varepsilon^{d}_{\mu\tau}$	$\begin{array}{l} [-0.051, +0.020] \\ [-0.077, +0.098] \\ [-0.006, +0.007] \end{array}$	$\begin{array}{l} [-0.051, +0.038] \\ [-0.077, -0.098] \\ [-0.006, +0.007] \end{array}$	$ \begin{array}{l} \varepsilon^{d}_{e\mu} & [-0.050, +0.020] \\ \varepsilon^{d}_{e\tau} & [-0.076, +0.097] \\ \varepsilon^{d}_{\mu\tau} & [-0.006, +0.007] \end{array} $		
$\varepsilon_{ee}^p - \varepsilon_{\mu\mu}^p$ $\varepsilon_{\tau\tau}^p - \varepsilon_{\mu\mu}^p$	$\begin{matrix} [-0.190, +0.927] \\ [-0.001, +0.053] \end{matrix}$	$\oplus [-2.927, -1.814]$ [-0.052, +0.053]	$ \begin{array}{l} \varepsilon^p_{ee} [-0.086, +0.884] \oplus [+1.083, +1.605] \\ \varepsilon^p_{\mu\mu} [-0.097, +0.220] \oplus [+1.063, +1.410] \\ \varepsilon^p_{\tau\tau} [-0.098, +0.221] \oplus [+1.063, +1.408] \end{array} $		
$ \begin{array}{c} \varepsilon^p_{e\mu} \\ \varepsilon^p_{e\tau} \\ \varepsilon^p_{\mu\tau} \end{array} $	$\begin{array}{c} [-0.145,+0.058] \\ [-0.238,+0.292] \\ [-0.019,+0.021] \end{array}$	$\begin{array}{l} [-0.145,+0.145] \\ [-0.292,+0.292] \\ [-0.021,+0.021] \end{array}$	$ \begin{array}{l} \varepsilon^p_{e\mu} & [-0.124, +0.058] \\ \varepsilon^p_{e\tau} & [-0.239, +0.244] \\ \varepsilon^p_{\mu\tau} & [-0.013, +0.021] \end{array} $		

• Argon data add further $\Delta \chi^2 \sim 4$ [79].

[78] P. Coloma, I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, JHEP 02 (2020) 023 [arXiv:1911.09109]
[79] M. Chaves and T. Schwetz, JHEP 05 (2021), 042 [arXiv:2102.11981]

II/d. Impact on NSI of coherent neutrino-nucleus scattering data

Vector NSI in the general case

- <u>Direction</u> of $(\xi^e, \xi^u, \xi^d) \leftrightarrow$ half-sphere $|\vec{\xi}| = \sqrt{5}$;
- choose *two* angles (η, ζ) and define:

$$\varepsilon_{\alpha\beta}^{fV} \equiv \varepsilon_{\alpha\beta} \,\xi^f \,\chi^V \quad \text{with} \begin{cases} \xi^e = \sqrt{5} \cos \eta \sin \zeta \,, \\ \xi^p = \sqrt{5} \cos \eta \cos \zeta \,, \\ \xi^n = \sqrt{5} \sin \eta \,; \end{cases}$$

- each type of "effect" is constant on given lines: oscillations: $\tan \eta' = \tan \eta / (\cos \zeta + \sin \zeta)$, coherent sc.: $\tan \eta'' = \tan \eta / \cos \zeta$, elastic sc.: $\xi^e / |\vec{\xi}| = \cos \eta \sin \zeta$;
- combining different sets breaks degeneracy;
- special case: $\zeta = 0 \Rightarrow \xi^e = 0 \Rightarrow \eta' = \eta'' = \eta$.

[76] Coloma et al., JHEP [arXiv:2305.07698]

Michele Maltoni <michele.maltoni@csic.es>

II/d. Impact on NSI of coherent neutrino-nucleus scattering data

Bounds on vector NSI

- Determination of oscillation parameters remain stable under NSI (except θ_{12});
- ES effects disfavor region at large ξ^e (roughly $|\zeta| \gtrsim 45^\circ$) but have little impact on rejection of LMA-D;
- inclusion of coherent scattering data rules out LMA-D (except in a small region).

Allowed ranges at $\begin{array}{c} 90\% {\rm CL} \\ 99\% {\rm CL} \end{array}$ marginalized				
	GLOB-OSC w/o NSI in ES	GLOB-OSC w NSI in ES + $CE\nu NS$		
$\varepsilon^\oplus_{ee} - \varepsilon^\oplus_{\mu\mu}$	$\begin{matrix} [-3.1, -2.8] \oplus [-2.1, -1.88] \oplus [-0.15, +0.17] \\ [-4.8, -1.6] \oplus [-0.40, +2.6] \end{matrix}$	\oplus_{ee}	$\begin{bmatrix} -0.19, +0.20 \end{bmatrix} \oplus \begin{bmatrix} +0.95, +1.3 \\ -0.23, +0.25 \end{bmatrix} \oplus \begin{bmatrix} +0.81, +1.3 \\ \end{bmatrix}$	
$_{\tau\tau}^\oplus - \varepsilon_{\mu\mu}^\oplus$	[-0.0215, +0.0122] [-0.075, +0.080]	$\bigoplus_{\mu\mu}$ $\bigoplus_{\tau\tau}$	$\begin{bmatrix} -0.43, +0.14 \end{bmatrix} \oplus \begin{bmatrix} +0.91, +1.3 \end{bmatrix} \\ \begin{bmatrix} -0.29, +0.20 \end{bmatrix} \oplus \begin{bmatrix} +0.83, +1.4 \end{bmatrix} \\ \begin{bmatrix} -0.43, +0.14 \end{bmatrix} \oplus \begin{bmatrix} +0.91, +1.3 \end{bmatrix} \\ \begin{bmatrix} -0.29, +0.20 \end{bmatrix} \oplus \begin{bmatrix} +0.83, +1.4 \end{bmatrix}$	
$\stackrel{\oplus}{_{e\mu}}$	$\begin{matrix} [-0.11, -0.021] \oplus [+0.045, +0.135] \\ [-0.32, +0.40] \end{matrix}$	$\stackrel{\oplus}{_{e\mu}}$	$[-0.12, +0.011] \\ [-0.18, +0.08]$	
$\stackrel{\oplus}{_{\mu\tau}}$	$\substack{[-0.22, +0.088]\\ [-0.49, +0.45]}$	$\stackrel{\oplus}{e\tau}$	$\left[-0.16, +0.083 ight] \left[-0.25, +0.33 ight]$	
$_{\mu \tau }^{\oplus }$	$\begin{matrix} [-0.0063, +0.013] \\ [-0.043, +0.039] \end{matrix}$	$\stackrel{\oplus}{_{\mu\tau}}$	$\begin{matrix} [-0.0047, +0.012] \\ [-0.020, +0.021] \end{matrix}$	

[76] Coloma et al., JHEP [arXiv:2305.07698]

Solar + KamLAND + reactors w NSI in ES 15F 10 GLOB - OSC w NSI in ES GLOB – OSC w NSI in ES + 10F $CE\nu NS$ $\Delta m_{12}^2 \, [imes 10^{-5} {
m eV}^2]$ $-\chi^2_{LMA}$ Δ χ^2_{LMA} GLOB - OSC w NSI in ES GLOB - OSC w NSL in ES + COH - Csl GLOB - OSC w NSI in ES + COH - CsI + COH - Ar GLOB - OSC w NSI in ES + COH - CsI + COH - Ar -10+Dresden - II (Ge) -150.8 50 -75 -50 0 25 $\sin^2\theta_{12}$ η (°) $\chi^2_{\rm LMA}(\eta,\zeta) - \chi^2_{\rm No-NSI}$ $\chi^2_{\text{LMA}-\text{D}}(\eta,\zeta) - \chi^2_{\text{No}-\text{NSI}}$ $\chi^2_{\text{IMA} - D}(\eta, \zeta) - \chi^2_{\text{IMA}}(\eta, \zeta)$ GLOB-OSC w/o NSI ir GLOB-OSC w/o NSI in GLOB-OSC w/o NSI in E 15 (°) -5 $\Delta \chi^2_{min} =$ -8.2-7 20 15 GLOB-OSC w NSI in ES GLOB-OSC w NSI in ES GLOB-OSC w NSI in ES 0 -5 $\Delta \chi^2_{min} = -6.8$ $\Delta \chi^2_{min} = -3.0$ -7 20 GLOB-OSC w NSI in ES+CEvNS GLOB-OSC w NSI in ES+CEvNS 15 GLOB-OSC w NSI in ES+CE₂NS (°) -5 $\Delta \chi^2_{min} = 0.45$ -7

 η (°)

 $n(\circ)$

MAYORANA school, 24-25/06/2025

 η (°)

II. Non-standard neutrino-matter interactions: summary

- Most of the present data from solar, atmospheric, reactor and accelerator experiments are well explained by the 3v oscillation hypothesis. The three-neutrino scenario is nowadays well proven and robust;
- however, the possibility of physics beyond the 3ν paradigm remains open. Here we have focused on NC-like non-standard neutrino-matter interactions;
- we have extended previous studies by considering NSI with an arbitrary ratio of couplings to the constituents of ordinary matter (parametrized by coefficients ξ^e, ξ^u, ξ^d) and a lepton-flavor structure independent of the fermion type (parametrized by a matrix ε_{αβ});
- we have found that NSI can spoil the precise determination of the oscillation parameters offered by **specific** class of experiments, but the 3ν precision is recovered once all the data are combined **together** – except for θ_{12} where a new region (LMA-D) appears;
- for $m_{Z'} \gtrsim O(10 \text{ MeV})$ NSI with electrons also affect ES interactions in solar data. Interference between oscillation and scattering effects requires careful treatment;
- the degeneracy between LMA-D and the ν mass ordering cannot be resolved by oscillation data alone. Combination with scattering experiments (*e.g.*, COHERENT) is essential, but requires a sufficiently large mediator mass $m_{Z'} \ge \mathcal{O}(50 \text{ MeV})$.