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Neutrino Quantum Decoherence

e Beyond Standard Model effect predicted by quantum gravity.

e Decoherence: loss of coherence of the neutrino mass eigenstates due
to the coupling of the neutrino quantum system to a larger environment.

e The time evolution of the neutrino density matrix p(t) is:
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Decoherence Standard
parameter Oscillations

Decoherence leads to a damping of the oscillation amplitude.



—— Standard oscillations
- T'=10"23GeV

Survival probability for Earth
crossing muon neutrino.

Our neutrino source is the
atmosphere.
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How can we probe this beyond Standard
Model effect with KM3NeT?



KM3NeT detectors

Water Cherenkov detectors in the
Mediterranean Sea

The amount of
expected muon
neutrinos is
different between
the standard
oscillations and
decoherence
hypothesis.
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How to search for decoherence with KM3NeT

1. Simulate the expected initial flux (atmospheric + astrophysical).

@ Propagate the flux with standard oscillations (HO) and with
decoherence (H1) -> obtain flux at detector site.

3. Reconstruct events (tracks and showers).
4. Remove atmospheric muon events using machine learning techniques.
@ Characterize effect of decoherence on reconstructed quantities.

6. Sensitivities: compute the ratio of probabilities between HO and H1.

Apply the analysis chain to data!



Difference between standard oscillations and decoherence:
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(true zenith angle, true energy). (reconstructed zenith angle and energy)
Theory! With detector effects and background!




Conclusions

e This is how (most) beyond Standard Model searches in neutrino oscillations
are performed in KM3NeT (ORCA).

e This work is the first analysis of this type with KM3NeT/ARCA.
-> sensitivities to be published soon.

e For ORCA, results were already obtained :
The KM3NeT Collaboration, Search for quantum decoherence in neutrino

oscillations with six detection units of KM3NeT/ORCA, JCAP
10.1088/1475-7516/2025/03/039
-> Upper limits on the decoherence parameter I'.



https://doi.org/10.1088/1475-7516/2025/03/039
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Backup



Theory of decoherence

Thomas Stuttard and Mikkel Jensen,
Neutrino decoherence from quantum
gravitational stochastic perturbations
10.1103/PhysRevD.102.115003




Final sample
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Before Boosted Decision
Tree (BDT):
~ 800000 atm. muons/year

After cut BDT score:
~ 5 atm. muons/year



Boosted Decision Tree training sample
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Boosted decision tree variables (example)
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Boosted decision tree performance
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Inside the Earth: attenuation and tau-regeneration

Interactions Interactions and tau-regeneration
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