Studies for the selection of fully contained ν_{μ} CC events in the ICARUS T600 detector at Fermilab

Christian Farnese, <u>Enrico Vedovato</u> INFN - Università di Padova, email: <u>evedovato@pd.infn.it</u> <u>MAYORANA School 2025</u>, 19 - 25 June

Istituto Nazionale di Fisica Nucleare

Università degli Studi di Padova

Short-Baseline Neutrino

- The SBN Program includes two detectors exposed to the Booster Neutrino Beam: SBND and ICARUS, and they are all based on very similar Liquid Argon Time Projection Chamber (LArTPC) technology.
- LArTPCs allow to perform three-dimensional and calorimetric reconstructions of **particle trajectories** in ultra-pure liquid Argon active volume
- Its main goal is to investigate the possible existence of 1 eV mass scale sterile neutrinos.

ICARUS T600

The ICARUS T600 detector is the **first large scale LArTPC** ever realized and actively taking data. ICARUS data taking for physics within SBN started on June 9th 2022.

- Two identical (3.6 x 3.9 x 19.6 m³) modules, and each module houses two TPCs separated by a common cathode
- Three wire planes that read ionization charge in each TPC
- 360 PMTs for timing and trigger
- CRT systems to identify cosmic particles

Event Reconstruction

Università degli Studi di Padova

Basic Selection

Università degli Studi di Padova

Selection based on a **series of cuts** on variables associated to the event by Pandora:

- SPILL -

 No CRT signal in 1.6µs beam spill window

- SLICE -

- vertex in Fiducial Volume
- charge and light barycenters within 1m
- containment of all tracks (>5cm from edge)

- PARTICLE -

- muon identification based on dE/dx vs residual range along the track
- µ is primary particle and longest in slice
- length μ > 50cm

Studies of variable distributions

BDT Selection

Boosted Decision Tree (BDT) training on Monte Carlo (MC) samples to discriminate signal from background using many variables, to name a few:

- - dist. vertex-µ_{start}
- muon length
- muon track-score vertex Y coord
 - muon end Y coord
 - muon dir. along Y&Z •
- energy deposited in the last 5-10-15-20 cm

- Selection procedure:
 - **Pre-selection** to identify potential ν_{μ} CC candidates (similar to basic selection but with looser cuts).
- Use BDT generated weights to discriminate between
 - signal and background.

Results

Basic Selection

Efficiency = 75.7% Purity = 83.3%

BDT Selection

Efficiency = **76.6%** Purity = **86.1%**

BDT bonus: provide a *stronger reduction* (almost a factor of **2**) of background associated to cosmics and to neutrino events with the primary vertex outside the active volume.

Comparison of the muon length in the events selected by the two procedures.

What's Next?

- Validation of the selection procedures using a *visual study* of selected events.
- Study of the reconstructed *neutrino energy* in ν_{μ} CC interactions: essential to see evidence of **neutrino oscillations**.

Thank you!

Enrico Vedovato 8 of 8

