

Novel analysis techniques for neutrino and dark-matter experiments with the DIANA framework

Matteo Cappelli MAYORANA School, 20-06-2025

Matteo Cappelli - MAYORANA School 2025

The DIANA analysis framework

- **DIANA** is an analysis software written in C++ (with **ROOT** classes) for a **fast and robust analysis** of low energy particle physics experiments (neutrinos, dark matter...)
- Maintained for +10 years (<u>baltig.infn.it/diana/dianasw</u>), portable (runs on Linux distros and MacOS), and with an easy interface (configuration files for running the analysis, no coding required)
- Advanced algorithms in C++ for waveform analysis and python interface with jupyter notebooks for data visualization, fitting and high-level analysis

 Possibility to integrate the main installation with an external software for a specific experiment. Currently used for NUCLEUS and BULLKID

NUCLEUS detector

BULLKID detector

From raw to high level analysis

• Triggering on continuous stream with threshold trigger or matched filter trigger

Stream

Filtered Stream

Invalid Points

after Trigger

Trigger Points

• Average to build template pulse and noise power spectrum

Triggering of Continuous Stream

From raw to high level analysis

 Matched filter used for amplitude reconstruction of pulses. Template pulse s(t) and noise power spectrum σ(f) as inputs

• Python interface (Pandas and ROOT dataframes) for histograms, scatter plots, heatmaps, fitting (ROOT) and calibration

Novel technique: multidimensional matched filter

Exploit the information of many detectors to improve resolution. Filter simultaneously N waveforms, gives one filtered amplitude.
Best performance with correlated signals and uncorrelated noise

N filters (frequency domain)

 $H_b(f) = \frac{\sum_{a=1}^N \tilde{s}_a^*(f) \,\hat{\sigma}_{ab}^{-1}(f)}{\sum_{a=1}^N \int_{-\infty}^\infty df \, |\tilde{s}_a(f)|^2 \,\hat{\sigma}_{aa}^{-1}(f)}$

one filtered signal (frequency domain)

$$ilde{v}_{\mathrm{filt}}(f) = \sum_{b=1}^N H_b(f) \, ilde{v}_b(f)$$

Matteo Cappelli - MAYORANA School 2025

Novel technique: pulse shape deformation

Time dilation/contraction of the waveform w.r.t to the reference template estimated from the matched filter. Pulse shape variable ε to signal/background discrimination down to low SNR better than other parameters (<u>M. Cappelli et al 2024 JINST 19 P06034</u>).

Signals vs **Background** discrimination (simulation)

Thank you for your attention!