# Searching for <sup>123</sup>Te Electron Capture with CUORE

Maya Moore

Yale University

June 23, 2025



#### <sup>123</sup>Te Electron Capture

- <sup>123</sup>Te is foreseen to EC to <sup>123</sup>Sb
- Second-order unique forbidden process
- Q-value = 51.9 keV
- High daughter nucleus angular momentum ( $J^p = \frac{7^+}{2}$ )
- Would be the first measurement made in these limits

#### Process has been unobserved thus far:

Limit on half-life\*,  $T_{1/2} > 9.2 \bullet 10^{16}$  years

\*Phys. Rev. D 67, 014323 (2003)



#### <sup>123</sup>Te Electron Capture

- <sup>123</sup>Te is foreseen to EC to <sup>123</sup>Sb
- Second-order unique forbidden process
- Q-value = 51.9 keV
- High daughter nucleus angular momentum ( $J^p = \frac{7^+}{2}$ )
- Would be the first measurement made in these limits

#### Process has been unobserved thus far:

Limit on half-life\*,  $T_{1/2} > 9.2 \bullet 10^{16}$  years

\*Phys. Rev. D 67, 014323 (2003)





#### <sup>123</sup>Te Electron Capture





## New Calculations for <sup>123</sup>Te EC

- Updated theoretical calculations completed for <sup>123</sup>Te EC ratios by O. Nitescu
  - Probability of captures from different shells tells us relative intensities of lines to expect to see in data
  - Confirm previous calculations that L3 line (2p<sub>3/2</sub> shell) would be the most intense line

| Sb Binding Energies: | Capture | Capture Fraction |  |
|----------------------|---------|------------------|--|
| K shell = 30.5 keV   | L1/K    | 14.42            |  |
| L1 shell = 4.7 keV   | L2/K    | 0.38             |  |
| L2 shell = 4.4 keV   | L3/K    | 338.65           |  |
| L3 shell = 4.1 keV   | L/K     | 353.45           |  |



#### How do we look for this process?





Wright Laboratory

- Located at Gran Sasso National Laboratory
- 988 natural TeO<sub>2</sub> crystals (detectors) operated at ~10 mK
  - <sup>123</sup>Te isotopic abundance ~0.9%
  - Searching for  $0\nu\beta\beta$  of <sup>130</sup>Te (Q<sub> $\beta\beta$ </sub> ~ 2528 keV)
- Low backgrounds, large exposure, and good energy resolution enables broad physics program beyond  $0\nu\beta\beta$ 
  - New analysis chain has allowed access to data down to 3 keV [arXiv:2505.23955]



## **CUORE Low Energy Spectrum**

M1 spectrum of detector with OT threshold lower than 3 keV



#### **Experimental Results**

- 1. 4.7 keV Signal Rate
- 2. 30.5 keV Signal Rate
  - 3. L1/K Ratio



#### 4.7 keV (L1-shell) Signal Rate





CUORE

#### 30.5 keV (K-shell) Signal Rate



CUORE

#### L1/K Ratio

 $\frac{L1}{K} = \frac{avg.rate \, of \, 4.7 \, keV \, peak}{avg.rate \, of \, 30.5 \, keV \, peak} = \frac{19.42 \pm 1.05^* cpd/kg}{1.22 \pm 0.03^* cpd/kg} = 15.9 \pm 0.9^{stat} + 4.5^{sys} - 2.4$ 

\* Rates are excluding ds3805



#### L1/K Ratio

$$\frac{L1}{K} = \frac{avg.rate \ of \ 4.7 \ keV \ peak}{avg.rate \ of \ 30.5 \ keV \ peak} = \frac{19.42 \pm 1.05^* cpd/kg}{1.22 \pm 0.03^* cpd/kg} = 15.9 \pm 0.9 \ {}^{stat} + {}^{+4.5} \ {}^{sys} - {}^{-2.4} \ {}^{*} \text{Rates are excluding } \text{ds3805}$$

• Ratio is compatible with theoretical calculations L1/K<sub>th</sub> = 14.42



## Missing L3 Shell?

A very intense line at 4.1 keV predicted from theoretical models which is not present in experimental data

- 1. Is this an issue with experiment? Miscalibration?
- 2. Peaks are due to other processes?
- 3. Is this an issue with theoretical models?

| <b>Capture Fraction</b> |        |  |
|-------------------------|--------|--|
| L1/K                    | 14.42  |  |
| L2/K                    | 0.38   |  |
| L3/K                    | 338.65 |  |
| L/K                     | 353.45 |  |

#### Remaining Mystery: Is L3 (4.1 keV) somehow suppressed?

## Thank you!



This work is supported by the INFN, the US DOE Office of Nuclear Physics, the US NSF, and internal investments at all institutions.



#### **Backup Slides**



## Low Energy Analysis Methods Overview

#### 1. Optimized Detector Selection 2. Event Level Cuts

- Energy thresholds determined for each ٠ detector
- Threshold = energy at which detector ٠ has detection efficiency of ~90% for injected pulses



Pulse shape cut determined for each • detector



- 4. Calibration & Efficiencies
  - Thermal pulses at low energies •



Wright Laborat

### 4.7 keV Signal Rate - No Pile Up Cut

MAYORANA School June 2025



Wright Laboratory

- Took out NumPulses == 1 cut and then didn't weight by pile up efficiency
  - Signal rate is much more constant
- Likely due to change in timing window of pulsers
  - Before ds3813 the timing window was shorter which likely worsened the efficiency estimate

\* Error bars include statistical errors on all efficiencies and number of signal events

### Low Energy Calibration Checks

• Calibration checked at low energies on Te x-rays (~27/31 keV) and <sup>40</sup>K x-ray at 3.2 keV

Intensity [%]

47.1

25.3

8.19

0.00202

#### Te x-rays:

• Te x-rays are present in calibration data from excitation due to calibration sources

 $\frac{\text{Line}}{K\alpha 1}$ 

 $K\alpha 2$ 

 $K\alpha 3$ 

Energy [keV]

27.472

27.202

26.875

30.995







- In coincidence with the main gamma emission at 1460 keV, a low intensity, low energy x-ray can be emitted
- The existence of this 3.2 keV x-ray was confirmed in coincidence with the 1460 keV gamma peak with the 3 keV channels

