

Toward precision physics test with CEvNS cryogenic COHERENT Csl detectors

Riccardo Pavarani

MAYORANA School 2025

19-25 June 2025

Neutrino Sources

Neutrinos from Spallation Neutron Source (SNS)

VVV VVV V

Solar neutrinos

- Pulsed beam
- Time distribution
- Muon and electron flavors
- $E_{\nu} \sim 30 \text{ MeV} \text{ (up to 50 MeV)}$

- High Flux
- Only $\bar{\nu}_e$
- $E_{\nu} \sim 1 10 \text{ MeV}$

- All flavors
- $E_{\nu} \lesssim 10 \text{ MeV}$

The COHERENT experimental program

COHERENT, PRL 129, 081801 (2022)

COHERENT experimental program

- **CsI crystal:**
 - 14.6 kg scintillating crystal
 - 19.3 m away from the SNS target
 - 11.6 σ evidence

Future detectors

Cryo-I

- 10 kg undoped cryogenic CsI detector
- \sim 19 m away from the SNS ٠
- $E_{thr} \simeq 0.5 \ keV_{nr}$ (compared to 7 keV_{nr})
- Expected about **3000** events x 3 SNS yr
- SNS power up to 2 MW
- Systematic on flux about 3%
- Systematic on Quenching at low energies

Cryo-II

- 700 kg undoped cryogenic CsI detector
- \sim 19 m away from the SNS

35

50

- $E_{thr} \simeq 0.5 \ keV_{nr}$ (compared to 7 keV_{nr})
- Expected about **300 000** events x 3 SNS yr
- SNS power up to 2.8 MW
- Systematic on flux about 3%
- Systematic on Quenching at low energies

COHERENT, PhysRevD 109 (2024) 9, 092005

Weak mixing angle and neutron distribution

See poster for more details

CEvNS allows one to test the SM through the **weak mixing angle**, and to access to the **weak nuclear distributions**:

- Weak mixing angle agrees with SM, best precision achieved about 10%
- Tends to favor large nuclear radii, best precision achieved about 7%

Reducing the systematics to achieve the precision on weak mixing angle

Improving statistics to achieve the precision on the neutron distribution radius

From observation to precision

See poster for more details

We are entering in the "precision era" of the CEvNS thanks to:

- Several features of different neutrino sources
- Improvement of systematics and statistics in the new detectors

From observation to precision

We are entering in the "precision era" of the CEvNS thanks to:

- Several features of different neutrino sources
- Improvement of systematics and statistics in the new detectors

Weak mixing angle

Beyond standard Model

EvNS

Neutron distribution

