

Inelastic neutrino scattering on argon

Michela Sestu University of Cagliari & INFN Cagliari

Neutrino interactions on 40 Ar at low energies ($\lesssim 100 \text{ MeV}$)

Neutrino interactions on 40 Ar at low energies (≤ 100 MeV)

Neutral Current (NC)

$$\nu_e + {}^{40}_{18}\text{Ar} \rightarrow \nu_e + {}^{40}_{18}\text{Ar}^*$$

Neutrino interactions on 40 Ar at low energies ($\lesssim 100$ MeV)

Neutrino interactions on 40 Ar at low energies (≤ 100 MeV)

Inelastic cross sections recipe

Inelastic cross sections recipe

Inelastic cross sections recipe

Quantifies the Coulomb interaction between the outgoing electron and protons of the ${}^{40}K$ nucleus

 $F(Z, E_e^i)$

 $B_{(F)}$ $B^{(}$

 \boldsymbol{g}_A

Quantifies the Coulomb interaction between the outgoing electron and protons of the ${}^{40}K$ nucleus

HOW? Estimation of nuclear matrix elements

1 Theoretical approach

Transition probabilities are computed through BIGSTICK, a **nuclear shell model** code.

Data-driven approach

We consider **experimental measurements** of the magnetic dipole amplitudes B(M1) for the process:

$$\gamma + {}^{40}Ar \longrightarrow \gamma + {}^{40}Ar$$

At low energies:
$$B(GT)^{exp} = \frac{B(M1)}{g_A^2 (2.2993 \, \mu_N)^2}$$

HOW? Estimation of nuclear matrix elements

(p,n) scattering on ${}^{40}Ar: p + {}^{40}Ar \rightarrow n + {}^{40}K^*$

Bhattacharya et al., Phys. Rev. C 80, 055501 (2009).

- **β** decay of the mirror nucleus: 40 Ti $\rightarrow {}^{40}$ Sc* + e⁺ + ν_e
- Bhattacharya et al., Phys. Rev. C 58, 36773687 (1998) Liu et al., Phys. Rev. C 58, 26772688 (1998)
- Theoretical shell model prediction

W. E. Ormand et al., Phys. Lett. B345, 343 (1995)

HOW? Estimation of nuclear matrix elements + Fermi function

⁴⁰Ar(p,n) (Bhattacharya et al.)

Summary: preliminary results

7

Thanks for your attention!

Estimating B(GT): theoretical shell model prediction

- C. W. Johnson et al. (2018), arXiv:1801.08432v1 [physics.comp-ph]

B(GT) matrix elements are estimated through **BIGSTICK**, a nuclear shell model code used to compute transition probabilities.

Estimating B(GT): data-driven approach

We determine the B(GT) amplitudes from the experimental measurements of the magnetic dipole amplitudes **B(M1),** conducted at the Triangle Universities Nuclear Laboratory (TUNL) for the process:

$$\gamma + {}^{40}Ar \longrightarrow \gamma' + {}^{40}Ar$$

At low energies, these amplitudes are related to the BGT amplitudes through the relation:

K. Langanke et al., Phys.Rev.Lett. 93 (2004) $B(GT)^{exp} = \frac{B(M1)}{a_A^2 (2.2993 \, \mu_M)^2}$ $B(M1\uparrow) (10^{-3}\mu_N^2)$ ω (keV) I^{π} Γ_0 (meV) 1+ 9697.5 ± 1.4 233 ± 27 66 ± 8 9758.3 ± 1.1 1+ 692 ± 60 193 ± 17 1+ 9805.6 ± 1.3 272 ± 26 75 ± 7 $B(M1)_{tot} = 651(98) \times 10^{-3} \mu_N^2$ 9841.3 ± 1.3 566 ± 52 154 ± 14 1+ 9871.7 ± 1.2 1+ 223 ± 21 60 ± 6 9893.9 ± 1.4 1+ 116 ± 12 31 ± 3 10020.5 ± 1.7 71 ± 12 18 ± 3 1+ 10033.9 ± 1.4 1+ 210 ± 25 54 ± 6

W. Tornov et al., Phys. Lett. B 835 (2022)

Fermi function

Fermi function: quantifies the Coulomb interaction between the outgoing electron and a proton of the ${}^{40}K$ nucleus

Elastic and inelastic cross sections

