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Why Graph Neural Networks?
Challenges in Particle Physics Detectors:


Sparse Data: Most detector sensors are not read out in an event (because they are below 
threshold), leading to high sparsity in the data.


Irregular Sensor Layout: Sensors are often arranged non-uniformly, complicating efficient 
data aggregation for conventional neural network by requiring embedding or approximation 

Key GNN Concepts:

Message Passing: Nodes aggregate information from their neighbors through functions (min, 
max, average, learned custom, …), iterating across layers of the network.


Message passing restricts the local context that each node considers per layer


After several layers of message passing, nodes (or entire graphs) are represented by dense 
vector embeddings.
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Graph Neural Networks for Belle II reconstruction tasks
Drift chamber (+SVD) Calorimeter
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CGRA: coarse-grained reconfigurable architecture, e.g. AMD Versal AI cores or SiMa.ai MODALIX (configurable on word level)
FPGA: field programmable gate arrays, e.g. AMD UltraScale or UltraScale+ (configurable on bit level)

• Unseeded track finding of an 
unknown number of tracks of 
unknown origin followed by 
conventional track fitting


• ML task: Graph segmentation and 
node assignment

• Unseeded cluster finding and 
parameter estimation (incl. 
background classifier of an 
unknown number of clusters)


• ML task: Graph segmentation 
and node regression 

• Hit cleanup followed by unseeded 
track finding and parameter 
estimation of an unknown number 
of tracks of unknown origin


• ML task: Node classification, and 
graph segmentation and node 
regression 

• Seeded, fuzzy clustering (assign 
energy fraction of each crystal to 
one or two objects, and 
background)


• ML task: Node regression
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Graph Neural Networks for Belle II reconstruction tasks
Drift chamber (+SVD) Calorimeter
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Offline track finding GNN: Beam backgrounds

Beginning of 2021 
360 background CDC hits on 
average

End of 2022 
1280 background CDC hits on 
average

Expected 2030 
3000 background CDC hits on 
average

Backgrounds are getting higher, -hard problem for tracking-findingn2

plots by Lea REUTER
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Offline track finding GNN: CDC performance loss

Beginning of 2021 
50 wires off, 368 decreased efficiency 
Total of 3% of the CDC wires

End of 2022 
168 wires off, 809 decreased efficiency 
Total of 7% of the CDC wires

plots by Lea REUTER
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Offline track finding GNN: GNN architecture
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chargeAdjustable Parameters
• Dimension of Linear Layers 
• Number of GravNet Blocks  
• Number of k-nearest neighbours in GravNet 
• GravNet space dimensions 
• Dimension of Cluster Coordinates 
• Number of output layers

GNN details (unrelated to tracking): arXiv:2002.03605, arXiv:1902.07987 

• Number of track objects, for each object: 
• Momentum (starting direction and curvature) 
• Charge 
• All hits belonging to the track 
→ passed to conventional track fitting algorithm

Output

• X - position 
• Y - position 
• Signal height 
• Signal timing  
• Signal time over threshold 
• Superlayer ID, Layer ID within 

superlayer, total layer ID

Input per hit

Metaparameters
• Training kinematics, composition, and track multiplicity coverage 
• Background level 
• CDC wire inefficiencies 
• Working point tuning (efficiency, resolution, fake rates) 
• Track fitting algorithm optimization

this is the hardest part
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Offline track finding GNN: GNN inner workings (animation)

animation by Lea REUTER
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Offline track finding GNN performance for displaced tracks

“End-to-End Multi-Track Reconstruction using Graph Neural Networks at Belle II”  https://arxiv.org/abs/2411.13596 

averaged Efficiency Purity

Baseline 0.574+/-0.001 0.964+/-0.001

CAT Finder 0.892+/-0.001 0.978+/-0.001

Bertacchi et al., Track Finding at Belle II 
(arXiv:2003.12466)

distance from collision point to track starting position  (cm)
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https://arxiv.org/abs/2411.13596
https://arxiv.org/abs/2003.12466
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Graph Neural Networks for Belle II reconstruction tasks
Drift chamber (+SVD) Calorimeter
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• Unseeded track finding of an 
unknown number of tracks of 
unknown origin followed by 
conventional track fitting


• ML task: Graph segmentation and 
node assignment

• Unseeded cluster finding and 
parameter estimation (incl. 
background classifier of an 
unknown number of clusters)


• ML task: Graph segmentation 
and node regression 

• Hit cleanup followed by unseeded 
track finding and parameter 
estimation of an unknown number 
of tracks of unknown origin


• ML task: Node classification, and 
graph segmentation and node 
regression 

• Seeded, fuzzy clustering (assign 
energy fraction of each crystal to 
one or two objects, and 
background)


• ML task: Node regression
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Offline clustering in the calorimeter
Non-ML seed finder (local maximum 
and energy threshold)


9×9 crystals as nodes to a GNN with 
regression targets to predict the 
energy faction belonging to two 
(seed or background) or three (seed 
1, seed 2, or background) classes


GNN with dynamic graph-building to account 
for geometry and crystal shapes especially in 
the endcaps


Significant improvement for low 
energy photon energy resolution 
with (very) high beam backgrounds

“Photon Reconstruction in the Belle II Calorimeter Using Graph 
Neural Networks” https://arxiv.org/abs/2411.13596 

(a) Relative reconstruction error ⌘dep of the deposited
energy.

(b) Relative reconstruction error ⌘gen of the generated
energy.

Fig. 6: Distribution of relative reconstruction errors (a) ⌘dep and (b) ⌘gen for isolated clusters for low
beam backgrounds. The first bin contains all underflow entries; the last bin contains all overflow entries.

(a) Relative reconstruction error ⌘dep of the generated
energy.

(b) Relative reconstruction error ⌘gen of the generated
energy.

Fig. 7: Distributions of relative reconstruction errors (a) ⌘dep and (b) ⌘gen for isolated clusters for high
beam backgrounds. The first bin contains all underflow entries; the last bin contains all overflow entries.

7.1 Energy resolution and energy

tails

The three detector regions barrel, forward endcap,
and backward endcap described in Sec. 3 di↵er
in crystal geometry, levels of background, and
amount of passive material before and in between

crystals. The following section studies the vari-
ations in the energy reconstruction performance
that arise as a direct result of these di↵erences.

In order to access the energy dependence of
the resolution and tail parameters we simulate

9

(a) Low beam background.

(b) High beam background.

Fig. 8: Resolution FWHMgen/2.355 of the GNN and basf2 as function of the simulated photon energy
Egen for both endcaps and the barrel for (a) low and (b) high beam background. Each color is associated
with one detector region; the light color indicates basf2, the dark color the GNN. The bands indicate
the uncertainty of the fits, see text for details. The fit parameters are summarized in Tab. 2.

test data sets of photons at various fixed ener-
gies. The FWHM for each simulated data set is
then determined according to Sec. 6. Plotting the
resolutions FWHMgen/2.355 over the generated
photon energies Egen reveals a characteristic rela-
tionship that is parameterized by the function
a/Egen�b/

p
Egen�c, where � indicates addition

in quadrature.

Both the GNN as well as the baseline algo-
rithm perform di↵erently in regards to the energy
resolution in all three detector parts, as can be
seen in Fig. 8a for low beam background and as
Fig. 8b for high beam background. Table 2 reports
the parameters of the fitted parameterization of
the resolution. We attribute these di↵erence to the
large spread of both shape and size of crystals in
the endcaps, the asymmetric distribution of beam

10

30% better energy resolution 
at high beam background

New GNN algorithm
current algorithm

Table 1: Optimized hyperparameters of the isolated photon, and overlapping photon GravNet models.
The hyperparameters are the result of an optimization of the FWHMdep on the respective high background
validation data set.

Hyperparameter Isolated Photon Models Overlapping Photon Models

Width of the Dense Layers, FIN,FOUT 22 24
Feature Space Dimension FLR 16 16
Spatial Information Space Dimension S 6 6
Connected Nearest Neighbors k 14 16
Batch Norm Momentum 0.01 0.4
Stacked GravNet Blocks 4 4
Batch Size 1024 512

(a) Truth (b) GNN (c) basf2

Fig. 4: Comparison of (a) truth energy fractions , (b) reconstructed energy fraction by the GNN , and
(c) reconstructed energy fraction by basf2 for an example event with high beam background. Colors
indicate the fractions belonging to each photon or background. The marker centers indicate the crystal
centers, the marker area is proportional to the truth or reconstructed (GNN, basf2) energy deposition
respectively.

factor of 0.25 after every five epochs of stagnat-
ing validation loss. We did not observe significant
over-training and as a consequence, we do not
use dropout layers or other regularization methods
but rely on the large data set.

The GNN algorithm yields the weights wX

i per
crystal for all crystals in the ROI with an energy
deposition above 1 MeV. In order to reconstruct
the total cluster energy EGNN

rec
associated with

a certain particle, we then sum over all specific
weights multiplied by the reconstructed energies
per crystal, EGNN

rec
=

P
wiEcrystali

rec
.

Figure 4 shows how the GNN and the basf2

algorithms behave in clustering a typical case of
overlapping photons.

6 Metrics

For performance evaluation, the reconstructed
energy of a particle is compared with two di↵er-
ent truth targets: the total deposited truth energy
Edep per photon in the ROI, and the generated
truth energy Egen per photon. This results in
two variants of relative reconstruction errors. The
reconstruction error on the deposited energy

⌘basf2
dep

=
Ebasf2

rec, raw � Edep

Edep

and

⌘GNN

dep
=

EGNN
rec

� Edep

Edep

(2)

7

https://arxiv.org/abs/2411.13596
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Graph Neural Networks for Belle II reconstruction tasks
Drift chamber (+SVD) Calorimeter
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unknown number of tracks of 
unknown origin followed by 
conventional track fitting


• ML task: Graph segmentation and 
node assignment

• Unseeded cluster finding and 
parameter estimation (incl. 
background classifier of an 
unknown number of clusters)
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• Hit cleanup followed by unseeded 
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estimation of an unknown number 
of tracks of unknown origin


• ML task: Node classification, and 
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regression 
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energy fraction of each crystal to 
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• ML task: Node regression
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Online clustering in the calorimeter

Similar algorithm as for GNN tracking (slide 7) but with much smaller networks 
and without node assignment to graphs


Implemented on AMD UltraScale with 3μs latency (requirement for trigger is 
~1.5μs latency)


Input: up to 32 4x4 cell inputs (energy, time, position)


Dynamic graph-building with GravNet layers and Object Condensation loss 
function


Output: energy, position, background classifier
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schematics by Isabel HAIDE
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Online clustering in the calorimeter
Included in Belle II physics data 
taking on 25./26.12.2024


Fully implemented on FPGA, but 
operated with dummy weight-files


Post-processing with identical input 
TCs using functionally identical 
Python and C-simulation (right) show 
expected performance with 
improved spatial separation and 
better energy resolution at very high 
energies.

Offline

Trigger

plots by Isabel HAIDE
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Summary and plans
GNN based trackfinding (CATFinder) is maturing quickly and we aim to 
make it available in the official Belle II software in the coming months


CATFinder is very robust against wire efficiency losses and masked readout boards


Next: SVD standalone (much easier than CDC) and SVD+CDC combined tracking


GNN based clustering in the calorimeter outperforms conventional 
clustering for photons. 


Next: Hadron clustering and seed classifiers to optimise missing energy observables


First real-time GNN trigger operated for the first time five weeks ago.

Next: Improve latency (quantization and pruning optimization) and re-optimize for low energies


Next: Implement real-time CDC hit cleanup (not shown today)
“Real-time Graph Building on FPGAs for Machine Learning Trigger Applications in Particle Physics”https://arxiv.org/abs/2307.07289 

https://arxiv.org/abs/2307.07289

