JENNIFER3 Kickoff Meeting

Study of $B^+ \to K^+ \nu \bar{\nu}$ with inclusive tag in Belle

A. Basith, G. Inguglia, N. Maslova

nadiia.maslova@oeaw.ac.at

27/01/2025

Introduction

- Flavour changing neutral current $b \to s \nu \bar{\nu}$ transitions offer powerful probe of
 - SM
 - Occur only at loop level → highly suppressed
 - O Absence of charged leptons in final state → clean theoretical predictions
- Highly sensitive to any possible new physics contributions
 - O Mediators in loops or new tree level diagrams
 - Sources of missing energy (i.e. s+DM)

SM: BR(B⁺ \rightarrow K⁺vv) = 5.58 ± 0.38x10⁻⁶ [2207.13371]

Introduction

Previous Belle searches:

- Hadronic tagged analysis BR(B⁺ \rightarrow K⁺ $\nu\nu$) = 3.0±1.6x10⁻⁵
- Semileptonic tagged analysis BR(B⁺→K⁺vv) = 1.0±0.6x10⁻⁵

Belle (**711 fb**⁻¹) uncertainty: 0.5x10⁻⁵

 $\sqrt{L} \begin{tabular}{l} \hline & & \\ &$

Belle II (**362 fb**⁻¹) Incl. uncertainty: 0.7x10⁻⁵

Analysis overview

- Selection of B⁺→K⁺vv is challenging due to small branching fractions and missing energy from neutrinos
- Use inclusive tagging signal Kaon + rest of event made of remaining tracks and clusters
- Main steps:
 - Selection of Kaon candidate and some basic event selection criteria
 - Background suppression with 2 BDT classifiers
 - Validation studies of signal efficiency and background modelling
 - o 2D binned maximum likelihood fit for extraction of signal strength:

$$\mu = \frac{\operatorname{Br}(B^+ \to K^+
u \bar{
u})}{\operatorname{Br}(B^+ \to K^+
u \bar{
u})_{\operatorname{SM}}}$$

- On-resonance and off-resonance channels used, fit to 1% eff. Quantile vs. 3 q^2 bins
- Similar general analysis outline as Belle II study -> independent MC samples and validation

Nadiia Maslova B→Kνν Belle 27/01/2025

Selection

BDT₁

- a. Trained on sampled 5% of available generic MC (continuum, BBbar, low-multiplicity samples) and dedicated signal sample
- b. 12 input variables main separation power from ROE ΔE , roe P and Fox-Wolfram H_{m 2}
- c. Cuts out large bulk of clear backgrounds (continuum processes)

BDT₂

- a. Same 12 variables + 18 more
- Much stronger signal selection ability highest purity region selected for fitting
- Trained on sampled 10% of generic MC after BDT1 (continuum, BBbar, low-multiplicity samples) and dedicated signal sample

Nadiia Maslova B→K**νν** Belle 27/01/2025

Background composition

- Large amount of continuum in less sensitive bins
- In $B\bar{B}$: $\mathbf{B} \rightarrow \mathbf{D^{(*)}lv}$ backgrounds most dominant in 5% signal efficiency region, affected by $\mathbf{D} \rightarrow \mathbf{K^0}_L$ mismodelling in MC
- B⁺ → K⁺K⁰K⁰ and B⁺ → K⁺nn modelled in generic MC according to phase-space assumptions, corrections for branching fractions are then applied

Decay	Fraction, %
1. $B^+ \to \overline{D}^0 \mu^+ \nu_\mu$	10.3914
2. $B^+ \to \overline{D}^0 e^+ \nu_e$	7.9187
3. $B^+ \to \overline{D}^* (2007)^0 \mu^+ \nu_{\mu}$	5.2443
4. $B^+ \to \overline{D}^* (2007)^0 e^+ \nu_e$	3.8254
5. $B^+ \to \overline{D}^0 K^+$	3.705
6. $B^+ \to \overline{D}^0 \pi^+$	3.1702
7. $B^+ \to \overline{D}^* (2007)^0 K^+$	2.34
8. $B^+ \to \overline{D}^* (2007)^0 \pi^+$	2.1714
9. $B^+ \to \rho(770)^+ \overline{D}^0$	1.7037
10. $B^+ \to \overline{D}^* (2007)^0 \rho (770)^+$	0.952

Validation studies

- Signal efficiency validation
 - O Embedded B⁺ → K⁺J/ ψ (μ ⁺ μ ⁻)
- Background modelling validation
 - Continuum
 - Off-resonance
 - On-resonance side-band
 - Away from signal region (BDT $_2$ < 0.9)
 - o $B \rightarrow D(*) \rightarrow K_{\perp}^{0} decays$
 - PID sidebands both pion and lepton
 - O Others modelling of BF
 - $B \rightarrow K^+ nn$
 - $\blacksquare B \to K^+K^0K^0$

- PID and neutral reconstruction validation
 - o pion \rightarrow kaon fakes
 - dedicated B \rightarrow hD(K π) sample
 - o Others
 - \bullet $\phi(K_s^0 K_L^0) \gamma K_L \text{ efficiency checks}$

Signal embedding: $B^+ \rightarrow K^+ J/\psi(\mu^+\mu^-)$

- $B^+ \to K^+ J/\psi(\mu^+ \mu^-)$ sample \to remove $J/\psi(\mu^+ \mu^-)$ \to add kaon from $B^+ \to K^+ \nu \bar{\nu}$ signal MC ("signal embedding")
- Good agreement between embedded MC and embedded data

Selection efficiency in the signal region for the embedded data and MC samples

Sample	Efficiency
Data	0.0622 +/- 0.0020
МС	0.0633 +/- 0.0020
Ratio	0.9833 +/- 0.0443

The data-MC comparison of BDT1 (left) and BDT2 (right) outputs

Nadiia Maslova B→Kγν Belle 27/01/2025

Off-resonance control sample

- Slight mismodelling of continuum data/MC after BDT1 is observed in offresonance control sample
- A dedicated BDT (called BDTc) is trained to correct for **shape** disagreement
- MC events are assigned weight according to the output of BDTc as:

$$w = \frac{p}{1 - p}$$

Improved data/MC agreement with the BDTc reweighting applied

Signal extraction

- Simultaneous binned maximum likelihood fit of 15 bins η(BDT₂) x q²_{rec}, with both on-resonance and off-resonance channels - template fit in pyhf
- Measure signal strength

$$\mu = \frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{SM}}$$

Systematic uncertainties included as nuisance parameters

 correlations between off-resonance channel and
 continuum samples in on-resonance channel

Nadiia Maslova B→κνν Belle 27/01/2025 10

Systematic uncertainties

Source	MC Correction	N _{nuis.param} .	Uncertainty Size
$B\overline{B}$ norm.	-	1 Global	70%
Leading $B\overline{B}$ backgrounds	-	10, Shape	$\mathcal{O}(1\%)$
$B \to D^{(**)}$ modelling	-	10, Shape	50%
$B^+ \to K^+ n\bar{n}$ modelling	bin-dependent	1, Shape	100%
$B \to (D \to K_L^0)$ modelling	+35%	1, Shape	10%
Signal FF	bin-dependent	1, Shape	6-18%
Continuum norm	-	1 Global	70%
Continuum shape	-	1, Shape	2%
Low-multi norm	-	1 Global	70%
Low-multi shape	-	1, Shape	2%
$B^+ \rightarrow K^+ K^0 K^0$ shape	bin-dependent	1, Shape	2%
K_L^0 efficiency	+10%	1 Global	10%
Luminosity	-	1 Global	TBD
particle ID	bin-dependent	1 Global	TBD
Tracking	-	1 Global	0.35%
MC statistics	-	90, Shape	_

Current total uncertainty estimation (preliminary): BF=0.504±0.47x10⁻⁵

Nadiia Maslova B→Kνν Belle 27/01/2025 11

^{*}off-resonance check

^{*}pionID and muonID sidebands checks

^{*}reweighting according to Babar studies

^{*}q2 distribution reweighted according to theory prediction

Summary

- Inclusive analysis of $B^+ \to K^+ \nu \bar{\nu}$ decays using full 711 fb⁻¹ Belle data:
 - Preliminary sensitivity comparable to Belle II inclusive tag
 - Selection and signal region optimisation completed
 - Background suppression using two consecutive BDTs
 - Extensive validations studies completed
 - Corrections determined from off-resonance sideband checks
 - Signal efficiency validated using embedded sample
 - Good agreement in on-resonance sideband (BDT $_2$ < 0.9)
 - $D \to K_L^0$ scaling determined from pion and muon sideband checks
 - O Simultaneous binned 2D maximum likelihood fit of on-resonance and offresonance samples for extraction of $B^+ \to K^+ \nu \bar{\nu}$ signal strength
 - Ongoing work to finalize all systematic sources in template fit
- Aiming for summer conferences 2025

Nadiia Maslova B→K♥♥ Belle 27/01/2025 1

Backup

On-resonance sideband

PionID sideband - on-resonance

PionID sideband - on-resonance

Fit to determine D->K0L scaling

In fit: variable used - q^2 mu - parameter of interest other B bkg normalisation - vary by 1% continuum normalisation - vary by 50%

