Tracking at BES-III

Wolfgang Gradl from the BES-III collaboration

Institut für Kernphysik

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

13th December 2012

BEPC-II and BES-III

BEPC-II: a τ -charm factory

BEPC-II

Upgrade of BEPC (started 2004) Beam energy 1...2.3 GeV Optimum energy 1.89 GeV Single beam current 0.91 A Design luminosity 10^{33} cm⁻²s⁻¹ Current record: 6.5×10^{32} cm⁻²s⁻¹ Crossing angle ± 11 mrad

Data samples

106 M + 400 M ψ' (Apr. 2009 + 2012) 225 M + 1,000 M J/ψ (Jul. 2009 + 2012) 3 fb⁻¹ ψ (3770) (2010–2011) 0.5 fb⁻¹ near 4.010 GeV (2012) Mass scan near $\tau\tau$ threshold Scan for R

BES-III detector

CsI(TI) calorimeter, 2.5% @ 1 GeV

э

JGU

Physics requirements

- τ -charm region, $\sqrt{s} = 2 \cdots 4.3 \,\text{GeV}$
- e⁺e⁻ CMS almost at rest in lab frame crossing angle of ±11 mrad creates small boost
- Typical hadronic final states: most probable momentum $\approx 0.3 \,\text{GeV}/c$, almost no tracks above $1 \,\text{GeV}/c$
- $\scriptstyle \blacksquare$ most probable photon energy $\approx 100\,{\rm MeV}$
- Need tracking ... for rather low energetic particles: minimise multiple scattering
 - typical $\beta \gamma c \tau$ for *D* mesons ~ 40 μ m: no vertex detector to minimise material

Multilayer Drift Chamber: Design goals

Spatial (single-hit) resolution

 $\sigma_x \approx 130 \,\mu \mathrm{m}$

Momentum resolution

$$rac{\sigma(p_t)}{p_t} pprox 0.5\%$$
 at $1\,{
m GeV}/c$

■ Cell efficiency > 98%

Energy loss

$$\frac{\sigma_{\rm d}E/{\rm d}x}{{\rm d}E/{\rm d}x}\approx 6\%$$

to provide π/K separation

- Reconstruct long-lived K_s^0 and Λ decaying in MDC, as well as short, low p_t tracks
- Contribute to L1 trigger

MDC design

- Design resembles CLEO-III drift chamber
- Outer chamber with stepped endplate to accommodate low-β SC quadrupole magnets
- Inner and outer chamber, sharing gas volume inner chamber can be replaced in case of radiation damage/ageing
- In 1 T axial field of superconducting solenoid

Mechanical parameters

 $\begin{array}{l} r_{\rm inner} = 63 \, {\rm mm}, \, 2 \, {\rm mm} \, \, {\rm away} \, {\rm from} \, \, {\rm Be} \, \, {\rm beam} \, {\rm pipe} \\ r_{\rm outer} = 810 \, {\rm mm} \\ {\rm Length} \, \, 2582 \, {\rm mm} \, \, ({\rm outer}) \\ {\rm Coverage:} \, \left| \, \cos \theta \right| \leq 0.93 \, ({\rm innermost} \, \, {\rm layer}), \, \leq 0.83 \, ({\rm outermost} \, \, {\rm layer}) \end{array}$

JG U

MDC: drift cells

- 6796 sense wires, $25\,\mu m$ gold-plated tungsten
- 21884 Field wires, 110 μm gold-plated Aluminium
- Small, almost square drift cells: inner chamber 6 mm, outer chamber 8.1 mm fast; good spatial resolution; but needs careful r - t calibration (known to work well: Belle, BABAR, CLEO-III)

MDC: gas mixture

Desired properties

- Low Z (low multiple scattering)
- Small Lorentz angle
- Large primary ionisation
- Small diffusion coefficient (large contribution to single-cell resolution)

Gas mixture: He:C₃H₈ 60:40

radiation length of gas mixture: 550 m He-based counting gases used in BABAR, Belle, KLOE, CLEO-III

Ageing tests Collected charge 70 mC/cm $\widehat{=}$ 5 a BES-III operation Drop in gas gain $\sim 10-13\%$ acceptable performance

Prototype Beam Test at KEK

Single cell efficiency

Results from prototype test at KEK

Plateau of $\epsilon > 98\%$ reached at operating voltages above 2200 V High efficiency in 1 T magnetic field!

Momentum resolution

In uniform axial field, with *n* equally spaced measurements:

$$\frac{\sigma_{p_t}}{p_t} = \sqrt{\left(\frac{\sigma_{p_t}^{\mathsf{wire}}}{p_t}\right)^2 + \left(\frac{\sigma_{p_t}^{\mathsf{MS}}}{p_t}\right)^2}$$

$$\frac{\sigma_{p_t}^{\text{wire}}}{\rho_t} = \frac{330\sigma_x}{B\,L^2}\,p_t\,\sqrt{\frac{720}{n+5}}$$

$$\frac{\sigma_{p_t}^{\text{MS}}}{p_t} = \frac{0.05}{B\,L} \sqrt{1.43 \frac{L}{X_0}} \left(1 + 0.038 \ln \frac{L}{X_0}\right)$$

For a 1 GeV/c track at 90°, with single-hit resolution as measured: expect $\sigma_{p_t}/p_t \approx 0.47\%$

W. Gradl — BES-III Tracking

MDC spatial resolution

43 sense wire layers, arranged in 11 "superlayers" 6 superlayers with stereo angles $\pm3^\circ,$ 5 axial superlayers

Layer No.	Superlayer No.	Tilted angle	
1-4 5-8 9-20 21-24 25-28 29-32 33-36 37-43	1 2 3-5 6 7 8 9 10-11	$\begin{array}{c} U: -(3.0^{\circ}{-}3.3^{\circ})\\ V: +(3.4^{\circ}{-}3.9^{\circ})\\ A: 0^{\circ}\\ U: -(2.4^{\circ}{-}2.8^{\circ})\\ V: +(2.8^{\circ}{-}3.1^{\circ})\\ U: -(3.1^{\circ}{-}3.4^{\circ})\\ V: +(3.4^{\circ}{-}3.6^{\circ})\\ A: 0^{\circ} \end{array}$	

Resulting spatial resolution:

$$\sigma_{r\phi} = 130 \, \mu {
m m}$$
 $\sigma_z pprox 2 \, {
m mm}$ at the interaction point

Track finding

Initally using two approaches:

MdcPatRec: BABAR, using template matching in each superlayer

TrkReco: Belle, conformal transformation to find segments

TrkReco in conjunction with a track fitter using Kalman filter

Simulated data, rather old study (2007)

W. Gradl — BES-III Tracking

Low p_t track reconstruction

Jia LK et al., Chin.Phys.C 34, 1866 (2010)

- Tracks need at least $p_t = 122 \text{ MeV}/c$ to traverse whole MDC
- Other tracks will loop in MDC
- Needs dedicated track finder algorithm for low-pt tracks

Simulated data: $\psi(2S) \rightarrow J/\psi \pi^+ \pi^ \pi^+$ tracking efficiency improved at very low p_t

Summary

- BES-III MDC provides reliable, efficient, and precise tracking for a high-luminosity experiment in the τ -charm region
- Low momentum of tracks requires specific design choices (materials, gas mixture, ...)
- Good performance close to design