
G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

1	

Simula8on	 of	 Cluster	 Coun8ng	 algorithms	
efficiency	 using	 Garfield	 waveforms	

Outline

1.  Wire	 current	 signal	 waveforms	 at	 0,	 2,	 4,	 6	 mm	 impact	 point	 have	 been	 generated	 using	 Garfield	 	
2.  Preamplifier	 response	 has	 been	 parameterized	 	 and	 convolved	 waveforms	 have	 been	 generated	

using	 the	 Garfield	 generated	 current	 signals	 (waveform	 frequencies	 content	 similar	 to	 the	 Proto	
II	 FE	 output	 signals)	

3.  Average	 single	 electron	 peak	 current	 has	 been	 evaluated	 over	 the	 full	 data	 set	
4.  White	 gaussian	 noise	 has	 been	 added	 both	 to	 the	 “pure”	 Garfield	 waveforms	 and	 to	 the	

convolved	 ones	 according	 to	 the	 selected	 SNR	
5.  Three	 algorithms	 have	 been	 used	 in	 our	 simula8on:	

1.  SC	 à	 Simple	 Comparison	
2.  SD	 à	 Slope	 Detec8on	
3.  DL	 à	 Delay	 Line	

6.  Algorithms	 efficiency	 has	 been	 separately	 evaluated	 for	 the	 	
a.  “pure”	 Garfield	 +	 noise	
b.  convolved	 	
c.  convolved	 +	 noise	

Goal:	 evalua*on	 of	 CC	 algorithms	 efficiency	 using	 waveforms	 similar	 to	 those	 generated	
from	 Proto	 II	 FE	 and	 different	 SNRs	 (that	 is	 different	 DCH	 gas	 amplifica*on	 assuming	
constant	 FE	 noise	 contribu*on)	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

2	

Background (I)

	

Table 3: Convolution and noise effects in cluster detection efficiency
IP Convolution Noise Convolution + Noise

Average - SD Average - SD Average - SD
0 mm 0.80 - 0.13 0.75 - 0.11 0.70 - 0.13
2 mm 0.78 - 0.12 0.75 - 0.11 0.68 - 0.13
4 mm 0.77 - 0.13 0.74 - 0.11 0.67 - 0.13
6 mm 0.76 - 0.13 0.74 - 0.11 0.65 - 0.13

Table 4: Efficiency: Simple Comparison (SC) method efficiency
SNR IP=0mm IP=2 mm IP=4mm IP=6mm

Average - SD Average - SD Average - SD Average - SD
10 0.77 - 0.14 0.67 - 0.13 0.67 - 0.13 0.66 - 0.13
9 0.68 - 0.13 0.66 - 0.13 0.65 - 0.13 0.65 - 0.13
8 0.67 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
7 0.64 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
6 0.60 - 0.13 0.59 - 0.13 0.59 - 0.13 0.57 - 0.13
5 0.56 - 0.13 0.54 - 0.13 0.55 - 0.13 0.54 - 0.13
4 0.50 - 0.13 0.48 - 0.13 0.48 - 0.13 0.47 - 0.13
3 0.41 - 0.13 0.38 - 0.12 0.38 - 0.12 0.38 - 0.12
2 0.25 - 0.12 0.27 - 0.11 0.26 - 0.11 0.26 - 0.11
1 0.09 0.07 0.08 - 0.07 0.07 - 0.07 0.07 - 0.06

been measured over the full data set. A value of about 3 µA has been obtained. Because
the used gas mixture has an average cluster size is about 1.66 electrons, then an aver-
age peak current of about 1.8 µA can be estimated for the single electron. Examples of
Garfield waveforms with different levels of added noise are shown in Fig. 9.

SNR =
Signal amplitude

RMS noise amplitude
(6)

Finally the combination of the two effects on the cluster detection efficiency has
been evaluated using the following procedure:

1. Convolution has been applied to Garfield data;

2. The average peak current has been calculated;

3. The single electron cluster peak current has been evaluated obtaining a value of
about 1.8 µA;

4. Noise corresponding to a SNR = 10 has been added to the convolved waveform;

7

Moving	 Average	 Filters	
	
Probably	 the	 most	 common	 filter	 used	 in	 DSP.	 Op8mal	 for	 reducing	 random	 noise	 s8ll	
maintaining	 a	 sharp	 response	 for	 8me	 domain	 encoded	 signals	 (very	 poor	 features	 for	
frequency	 domain	 encoded	 signals	 i.e.	 frequency	 bands	 separa8on)	

277

CHAPTER

15

EQUATION 15-1
Equation of the moving average filter. In
this equation, is the input signal, isx[] y[]
the output signal, and M is the number of
points used in the moving average. This
equation only uses points on one side of the
output sample being calculated.

y [i] '
1

M j
M &1

j' 0
x [i % j]

y [80] '
x [80] % x [81] % x [82] % x [83] % x [84]

5

Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use. In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response. This makes it the
premier filter for time domain encoded signals. However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average. These have slightly better performance in the frequency domain, at the
expense of increased computation time.

Implementation by Convolution
As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal. In
equation form, this is written:

Where is the input signal, is the output signal, and M is the numberx [] y []
of points in the average. For example, in a 5 point moving average filter, point
80 in the output signal is given by:

Note:	 the	 equa8on	 uses	 points	 on	 one	 side	 of	 the	 output	
sample	 (non	 symmetric)	

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Examples	 of	 moving	 average	 filters	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

3	

Single	 electron	 cluster	 amplitude	

Background (II)

Moving	 Average	 Filters	
	
The	 moving	 average	 filter	 behaves	 as	 a	 very	 poor	 low-‐pass	 filter	 (slow	 roll-‐off	 and	 poor	 stop-‐band	 aaenua8on)	

The Scientist and Engineer's Guide to Digital Signal Processing280

EQUATION 15-2
Frequency response of an M point moving
average filter. The frequency, f, runs between
0 and 0.5. For , use: f ' 0 H [f] ' 1

H [f] '
sin(B f M)
M sin(B f)

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 point

11 point

31 point

FIGURE 15-2
Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curves are
generated by Eq. 15-2. A

m
pl

itu
de

Frequency Response
Figure 15-2 shows the frequency response of the moving average filter. It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11:

The roll-off is very slow and the stopband attenuation is ghastly. Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa. In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

Relatives of the Moving Average Filter
In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal. Unfortunately, there are some applications
where both domains are simultaneously important. For instance, television
signals fall into this nasty category. Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image. However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc. As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Nyquist frequency	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

4	

1:	 Garfield	 -‐	 simula8on	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

5	

Simula8on	 of	 electron	 dric	 in	 SB	 dric	 chamber	 using	
Garfield:	

l  Prototype	 geometry	 Vs=1850	 V	
l  B=0	
l  He	 90%	 IsoC4H10	 10%	
l  Ion	 mobility	 10.4	 cm2/Vs	
l  Gas	 amplifica8on	 18x104	 according	 to	 Polya	

distribu8on	 with	 q=0.6	

1:	 Garfield	 –	 Gas	 Proper8es	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

6	

Cluster	 per	 cm	

N.	 clu/cm	

Longitudinal

Transverse	

<clu/cm>~13	
<e/cluster>≈1.3	

λ~770	 μm	
~	 15-‐20	 ns	

≈5	 ns	

≈40	 μm/ns	

Cluster	 Size	

Diffusion	 DriF	 Velocity	

1:	 Garfield	 –	 Simula8on	 Condi8ons	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

7	

μ-‐	 (250	 MeV)	

μs	

Signal	 simulated	 for	 nega8ve	 muons	 with	 250	 MeV	 momentum	 and	 impact	 parameters	
0,	 0.2,	 0.4	 and	 0.6	 cm	 	 	

1:	 Garfield	 -‐	 Sense	 wire	 current	 current	 signals	 @	 0/2/4/6	 mm	 IP	 (C.	 Gab)	

0 200 400 600 800 1000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−8

−7

−6

−5

−4

−3

−2

−1

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

time[ns]

C
ur

re
nt

 [µ
A]

0 mm 0.2 mm

0.4 mm 0.6 mm

Figure 6: Garfield current waveforms at 0, 2, 4, 6 mm impact parameter.

To evaluate the effects of preamplifier response and noise on detected clusters three dif-
ferent data sets have been generated. The first data set is made of the convolution of the
Garfield waveforms with the preamplifier response, in the second data set white gaussian
noise noise has been added to the Garfield waveform while the third data set is made of
a combination of the two effects. The simples and faster Peak Detecting algorithm has
been used for the comparison.
As an example of convolution effects is shown in Fig. 7. Because the preamplifier band-
width different clusters are merged in a single one then reducing the number of detected
clusters.
Electronic noise is another error source in clusters. Discarding the contribution of exter-
nally picked up noise, that can be hardly evaluated, the estimation of the noise effects can
be evaluated adding gaussian noise to the Garfield waveforms.
The amount of noise to add to the waveforms has been evaluated according to the Signal
to Noise Ratio (SNR) definition , Equation 6, and to the single electron cluster amplitude.
To estimate the single electron cluster peak current, the amplitude of isolated cluster has

6

0 mm 2 mm

4 mm 6 mm

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

8	

1:	 Garfield	 –	 CC	 Efficiency	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

9	

Collect	 all	 electrons	 within	 a	 8me	 window	 Δt	 in	 a	 single	 cluster,	 star8ng	 from	 the	 first	
electron.	 	

1:	 Garfield	 –	 CC	 Efficiency	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

10	

Increasing the “integration time” to 5 ns (comparable to diffusion effects) the
number of reconstructed cluster is slightly less than the true one.	 	

1:	 Garfield	 –	 CC	 Efficiency	 (C.	 Gab)	 	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

11	

Efficiency=NReco/NTruth	

σdiffusion	
λcluster	

15	

Inefficiency	 due	 to	
cluster	 merging	

Higher	 efficiency	 due	 to	
cluster	 splibng	

2:	 Preamplifier	 response	 evalua8on	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1.8 pF injecting capacitance	

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1 Introduction

Cluster Counting (CC) technique for energy loss measurement was proposed in 1980 by
Piuz and Lapique [1]. To investigate the feasibility of the method we have generated four
sets of orthogonal tracks through a 17 mm square drift tube filled with with 90/10 He/Iso

gas mixture using Garfield.
The output waveforms have been convolved with the preamplifier impulse response and
different amount of white gaussian noise has been added to the convolved waveforms to
evaluate the noise sensitivity of the used algorithms.
Furthermore the influence of of electron diffusion has been investigated CLAUDIO

2 Garfield Simulations – Claudio

3 Preamplifier Input Response Evaluation

The preamplifier used in our simulation is based on a transresistance configuration and its
main features are shown in Table 1.
To investigate the preamplifier impulse response we have injected a δ-like pulse to the

Table 1: Preamplifier main specifications
Linearity < 1%(1− 100fC)
Gain ∼ 8.8 mV/fC
ZIN 60 Ω
ZOUT 50 Ω
Rise time ∼ 2.4 ns (CD = 24pF)
Fall time ∼ 2.4 ns (CD = 24pF)
Noise 3000 erms (CD = 24pF)
VSUPPLY ± 7V

preamplifier input and acquired the preamplifier output by means of a 4 GSamples/s dig-
ital scope; the results are shown in Fig. 1.

The acquired signal has been fitted with a double gaussian function, Eq 1, then
obtaining the parameters of Table 2. The result of the fitting is shown in Fig. 2.

h(t) = a1 e
−(

t−b1
c1

)2 + a2 e
−(

t−b2
c2

)2 (1)

2

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

12	

3:	 Single	 electron	 cluster	 average	 amplitude	 evalua8on	

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

Cluster	 amplitude	 evaluaOon	 has	 been	 carried	 out	 looking	 for	 isolated	 clusters	 (20	 ns	 dead	 Ome)	 	 	

Selected	 clusters	

•  Average	 peak	 current	 amplitude	 ≈	 2.7	 μA	
•  He/Iso	 (90/10)	 gas	 mixture	 average	 cluster	

size	 ≈	 1.33	 e	
•  Single	 electron	 average	 peak	 current	 ≈	 2	 μA	
•  Noise	 =	 2	 μA/SNR	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

13	

4:	 Examples	 of	 Garfield	 +	 noise	 waveforms	

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 8

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 10

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 6

0 200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 4

Figure 9: Garfield waveforms with different levels of added noise.

10

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

14	

5:	 Cluster	 coun8ng	 algorithms	

Slope	 Detec8on	 (SD)	
	
SD	 algorithm	 is	 based	 on	 signal	 slope	 (rising	 or	 falling)	
detec8on	 according	 to	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Simple	 Comparison	 (SC)	
	
SC	 is	 the	 simplest	 and	 faster	 CC	 algorithm.	 Is	 is	 based	 on	
neighboring	 data	 samples	 comparison	 according	 to	 	 	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Delay	 Line	 (DL)	
	
Delay	 Line	 approach	 to	 CC	 is	 a	 middle	 ground	 between	 SC	
and	 SD	 algorithms.	
Most	 importantly,	 while	 SC	 and	 SD	 algorithms	 require	 fast	
(1	 GSPS	 ??!!	 FADC	 and	 the	 state	 of	 art	 FPGA)	 digi8zers,	 DL	
approach	 can	 be	 easily	 hardware	 implemented	
"
 "

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

15	

6:	 SC	 algorithm	 efficiency	 –	 Noise	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

Threshold	 =	 	 4	 x	 rms	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

16	

6:	 SC	 algorithm	 efficiency	 –	 Convolu8on	

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

6:	 SC	 algorithm	 efficiency	 –	 Convolu8on	 +	 Noise	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

17	

Threshold	 =	 	 4	 x	 rms	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

6:	 SD	 algorithm	 efficiency	 –	 Noise	

Threshold	 =	 	 4	 x	 rms	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

18	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

6:	 SD	 algorithm	 efficiency	 –	 Convolu8on	

6:	 SD	 algorithm	 efficiency	 –	 Convolu8on	 +	 Noise	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

19	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

Threshold	 =	 	 4	 x	 rms	

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

6:	 DL	 algorithm	 -‐	 Convolu8on	 +	 Noise	 -‐	 Delay	 Op8miza8on	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

20	

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

0 1 2 3 4 5 6
50

55

60

65

70

75

80

Delay

Ef
fic

ie
nc

y

2p
3p
4p

Number	 of	 point	
used	 in	 the	 filter	

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

tr	 ≈	 2	 ns	 à	 ≈	 180	 MHz	 BW	 	

6:	 DL	 algorithm	 -‐	 Convolu8on	 effect	 on	 signal	 rise	 8me	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

21	

6:	 DL	 algorithm	 efficiency	 –	 Garfield	 +	 Noise	

Threshold	 =	 	 4	 x	 rms	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

22	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

6:	 DL	 algorithm	 efficiency	 –	 Convolu8on	

6:	 DL	 algorithm	 efficiency	 –	 Convolu8on	 +	 Noise	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

23	

Threshold	 =	 	 4	 x	 rms	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

SC,	 SD	 and	 DL	 algorithms	 efficiency	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

24	

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

SD:	 Efficiency	 vs	 Sampling	 Frequency	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

25	

Convolved	 Waveforms	

Conclusions	

G.	 Felici	 LNF	 SuperB	 WS	 –	 Dec	 2012	

26	

§  We	 have	 evaluated	 the	 efficiency	 of	 3	 CC	 algorithms	 using	 Garfield	 waveforms.	
•  SC	 à	 Simple	 Comparison	
•  SD	 à	 Slope	 Detec8on	
•  DL	 à	 Delay	 Line	

	
§  For	 each	 algorithm	 the	 efficiency	 has	 been	 evaluated	 for	 the	

•  “pure”	 Garfield	 waveform	 +	 noise	
•  Garfield	 and	 FE	 response	 convolved	 waveform	 	
•  Garfield	 and	 FE	 convolved	 waveform	 +	 noise	
	

§  Simula8ons	 show	 that	 CC	 efficiency	 is	 dominated	 by	 SNR	 	
•  the	 use	 very	 high	 BW	 preamplifiers	 	 (>	 150	 -‐	 200	 MHz	 BW)	 and	 GSPS	 digi8zers	 have	 a	

negligible	 effect	 on	 the	 clusters	 detec8on	 efficiency	
	

§  No	 safe	 opera8on	 region	 (efficiency	 ‘plateau’)	 can	 be	 inferred	 from	 efficiency	 plots	 	 	
•  How	 could	 we	 monitor	 system	 stability	 ?	

	
§  Achievable	 SNR	 is	 bound	 to	 the	 front-‐end	 (sense	 wire	 termina8on	 resistor,	 sense	 wire	

resistance,	 preamplifier)	 and	 picked-‐up	 noise	
•  ProtoII	 (global)	 readout	 noise	 ≈	 4.5	 mV	 rms	 ≈	 0.6	 fC	 	 rms	 (Pre	 gain	 ≈	 7	 mV/fC)	 	 à	 SNR	 =	 10	

corresponds	 to	 a	 6	 fC	 single	 electron	 cluster	 collected	 charge	
•  6	 fC	 collected	 charge	 corresponds	 to	 a	 full	 delivered	 charge	 ≈	 2	 (wire	 charge	 division)	 x	 ≈	

3.3	 (assuming	 a	 30%	 of	 charge	 collec8on)	 	 à	 6	 x	 6.6	 ≈	 40	 fC	 ≈	 2.5	 x	 105	 (moreover	 you	
have	 to	 add	 a	 safety	 factor	 for	 gas	 gain	 fluctua8ons	 …)	 	

