
G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

1	

Simula8on	
 of	
 Cluster	
 Coun8ng	
 algorithms	

efficiency	
 using	
 Garfield	
 waveforms	

Outline

1.  Wire	
 current	
 signal	
 waveforms	
 at	
 0,	
 2,	
 4,	
 6	
 mm	
 impact	
 point	
 have	
 been	
 generated	
 using	
 Garfield	
 	

2.  Preamplifier	
 response	
 has	
 been	
 parameterized	
 	
 and	
 convolved	
 waveforms	
 have	
 been	
 generated	

using	
 the	
 Garfield	
 generated	
 current	
 signals	
 (waveform	
 frequencies	
 content	
 similar	
 to	
 the	
 Proto	

II	
 FE	
 output	
 signals)	

3.  Average	
 single	
 electron	
 peak	
 current	
 has	
 been	
 evaluated	
 over	
 the	
 full	
 data	
 set	

4.  White	
 gaussian	
 noise	
 has	
 been	
 added	
 both	
 to	
 the	
 “pure”	
 Garfield	
 waveforms	
 and	
 to	
 the	

convolved	
 ones	
 according	
 to	
 the	
 selected	
 SNR	

5.  Three	
 algorithms	
 have	
 been	
 used	
 in	
 our	
 simula8on:	

1.  SC	
 à	
 Simple	
 Comparison	

2.  SD	
 à	
 Slope	
 Detec8on	

3.  DL	
 à	
 Delay	
 Line	

6.  Algorithms	
 efficiency	
 has	
 been	
 separately	
 evaluated	
 for	
 the	
 	

a.  “pure”	
 Garfield	
 +	
 noise	

b.  convolved	
 	

c.  convolved	
 +	
 noise	

Goal:	
 evalua*on	
 of	
 CC	
 algorithms	
 efficiency	
 using	
 waveforms	
 similar	
 to	
 those	
 generated	

from	
 Proto	
 II	
 FE	
 and	
 different	
 SNRs	
 (that	
 is	
 different	
 DCH	
 gas	
 amplifica*on	
 assuming	

constant	
 FE	
 noise	
 contribu*on)	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

2	

Background (I)

	

Table 3: Convolution and noise effects in cluster detection efficiency
IP Convolution Noise Convolution + Noise

Average - SD Average - SD Average - SD
0 mm 0.80 - 0.13 0.75 - 0.11 0.70 - 0.13
2 mm 0.78 - 0.12 0.75 - 0.11 0.68 - 0.13
4 mm 0.77 - 0.13 0.74 - 0.11 0.67 - 0.13
6 mm 0.76 - 0.13 0.74 - 0.11 0.65 - 0.13

Table 4: Efficiency: Simple Comparison (SC) method efficiency
SNR IP=0mm IP=2 mm IP=4mm IP=6mm

Average - SD Average - SD Average - SD Average - SD
10 0.77 - 0.14 0.67 - 0.13 0.67 - 0.13 0.66 - 0.13
9 0.68 - 0.13 0.66 - 0.13 0.65 - 0.13 0.65 - 0.13
8 0.67 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
7 0.64 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
6 0.60 - 0.13 0.59 - 0.13 0.59 - 0.13 0.57 - 0.13
5 0.56 - 0.13 0.54 - 0.13 0.55 - 0.13 0.54 - 0.13
4 0.50 - 0.13 0.48 - 0.13 0.48 - 0.13 0.47 - 0.13
3 0.41 - 0.13 0.38 - 0.12 0.38 - 0.12 0.38 - 0.12
2 0.25 - 0.12 0.27 - 0.11 0.26 - 0.11 0.26 - 0.11
1 0.09 0.07 0.08 - 0.07 0.07 - 0.07 0.07 - 0.06

been measured over the full data set. A value of about 3 µA has been obtained. Because
the used gas mixture has an average cluster size is about 1.66 electrons, then an aver-
age peak current of about 1.8 µA can be estimated for the single electron. Examples of
Garfield waveforms with different levels of added noise are shown in Fig. 9.

SNR =
Signal amplitude

RMS noise amplitude
(6)

Finally the combination of the two effects on the cluster detection efficiency has
been evaluated using the following procedure:

1. Convolution has been applied to Garfield data;

2. The average peak current has been calculated;

3. The single electron cluster peak current has been evaluated obtaining a value of
about 1.8 µA;

4. Noise corresponding to a SNR = 10 has been added to the convolved waveform;

7

Moving	
 Average	
 Filters	

	

Probably	
 the	
 most	
 common	
 filter	
 used	
 in	
 DSP.	
 Op8mal	
 for	
 reducing	
 random	
 noise	
 s8ll	

maintaining	
 a	
 sharp	
 response	
 for	
 8me	
 domain	
 encoded	
 signals	
 (very	
 poor	
 features	
 for	

frequency	
 domain	
 encoded	
 signals	
 i.e.	
 frequency	
 bands	
 separa8on)	

277

CHAPTER

15

EQUATION 15-1
Equation of the moving average filter. In
this equation, is the input signal, isx[] y[]
the output signal, and M is the number of
points used in the moving average. This
equation only uses points on one side of the
output sample being calculated.

y [i] '
1

M j
M &1

j' 0
x [i % j]

y [80] '
x [80] % x [81] % x [82] % x [83] % x [84]

5

Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use. In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response. This makes it the
premier filter for time domain encoded signals. However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average. These have slightly better performance in the frequency domain, at the
expense of increased computation time.

Implementation by Convolution
As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal. In
equation form, this is written:

Where is the input signal, is the output signal, and M is the numberx [] y []
of points in the average. For example, in a 5 point moving average filter, point
80 in the output signal is given by:

Note:	
 the	
 equa8on	
 uses	
 points	
 on	
 one	
 side	
 of	
 the	
 output	

sample	
 (non	
 symmetric)	

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Chapter 15- Moving Average Filters 279

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number
0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number
0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

Examples	
 of	
 moving	
 average	
 filters	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

3	

Single	
 electron	
 cluster	
 amplitude	

Background (II)

Moving	
 Average	
 Filters	

	

The	
 moving	
 average	
 filter	
 behaves	
 as	
 a	
 very	
 poor	
 low-­‐pass	
 filter	
 (slow	
 roll-­‐off	
 and	
 poor	
 stop-­‐band	
 aaenua8on)	

The Scientist and Engineer's Guide to Digital Signal Processing280

EQUATION 15-2
Frequency response of an M point moving
average filter. The frequency, f, runs between
0 and 0.5. For , use: f ' 0 H [f] ' 1

H [f] '
sin(B f M)
M sin(B f)

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 point

11 point

31 point

FIGURE 15-2
Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curves are
generated by Eq. 15-2. A

m
pl

itu
de

Frequency Response
Figure 15-2 shows the frequency response of the moving average filter. It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11:

The roll-off is very slow and the stopband attenuation is ghastly. Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa. In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

Relatives of the Moving Average Filter
In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal. Unfortunately, there are some applications
where both domains are simultaneously important. For instance, television
signals fall into this nasty category. Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image. However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc. As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Nyquist frequency	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

4	

1:	
 Garfield	
 -­‐	
 simula8on	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

5	

Simula8on	
 of	
 electron	
 dric	
 in	
 SB	
 dric	
 chamber	
 using	

Garfield:	

l  Prototype	
 geometry	
 Vs=1850	
 V	

l  B=0	

l  He	
 90%	
 IsoC4H10	
 10%	

l  Ion	
 mobility	
 10.4	
 cm2/Vs	

l  Gas	
 amplifica8on	
 18x104	
 according	
 to	
 Polya	

distribu8on	
 with	
 q=0.6	

1:	
 Garfield	
 –	
 Gas	
 Proper8es	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

6	

Cluster	
 per	
 cm	

N.	
 clu/cm	

Longitudinal

Transverse	

<clu/cm>~13	

<e/cluster>≈1.3	

λ~770	
 μm	

~	
 15-­‐20	
 ns	

≈5	
 ns	

≈40	
 μm/ns	

Cluster	
 Size	

Diffusion	
 DriF	
 Velocity	

1:	
 Garfield	
 –	
 Simula8on	
 Condi8ons	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

7	

μ-­‐	
 (250	
 MeV)	

μs	

Signal	
 simulated	
 for	
 nega8ve	
 muons	
 with	
 250	
 MeV	
 momentum	
 and	
 impact	
 parameters	

0,	
 0.2,	
 0.4	
 and	
 0.6	
 cm	
 	
 	

1:	
 Garfield	
 -­‐	
 Sense	
 wire	
 current	
 current	
 signals	
 @	
 0/2/4/6	
 mm	
 IP	
 (C.	
 Gab)	

0 200 400 600 800 1000
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−8

−7

−6

−5

−4

−3

−2

−1

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

0 200 400 600 800 1000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

time[ns]

C
ur

re
nt

 [µ
A]

0 mm
 0.2 mm

0.4 mm
 0.6 mm

Figure 6: Garfield current waveforms at 0, 2, 4, 6 mm impact parameter.

To evaluate the effects of preamplifier response and noise on detected clusters three dif-
ferent data sets have been generated. The first data set is made of the convolution of the
Garfield waveforms with the preamplifier response, in the second data set white gaussian
noise noise has been added to the Garfield waveform while the third data set is made of
a combination of the two effects. The simples and faster Peak Detecting algorithm has
been used for the comparison.
As an example of convolution effects is shown in Fig. 7. Because the preamplifier band-
width different clusters are merged in a single one then reducing the number of detected
clusters.
Electronic noise is another error source in clusters. Discarding the contribution of exter-
nally picked up noise, that can be hardly evaluated, the estimation of the noise effects can
be evaluated adding gaussian noise to the Garfield waveforms.
The amount of noise to add to the waveforms has been evaluated according to the Signal
to Noise Ratio (SNR) definition , Equation 6, and to the single electron cluster amplitude.
To estimate the single electron cluster peak current, the amplitude of isolated cluster has

6

0 mm 2 mm

4 mm 6 mm

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

8	

1:	
 Garfield	
 –	
 CC	
 Efficiency	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

9	

Collect	
 all	
 electrons	
 within	
 a	
 8me	
 window	
 Δt	
 in	
 a	
 single	
 cluster,	
 star8ng	
 from	
 the	
 first	

electron.	
 	

1:	
 Garfield	
 –	
 CC	
 Efficiency	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

10	

Increasing the “integration time” to 5 ns (comparable to diffusion effects) the
number of reconstructed cluster is slightly less than the true one.	
 	

1:	
 Garfield	
 –	
 CC	
 Efficiency	
 (C.	
 Gab)	
 	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

11	

Efficiency=NReco/NTruth	

σdiffusion	

λcluster	

15	

Inefficiency	
 due	
 to	

cluster	
 merging	

Higher	
 efficiency	
 due	
 to	

cluster	
 splibng	

2:	
 Preamplifier	
 response	
 evalua8on	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1.8 pF injecting capacitance	

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1 Introduction

Cluster Counting (CC) technique for energy loss measurement was proposed in 1980 by
Piuz and Lapique [1]. To investigate the feasibility of the method we have generated four
sets of orthogonal tracks through a 17 mm square drift tube filled with with 90/10 He/Iso

gas mixture using Garfield.
The output waveforms have been convolved with the preamplifier impulse response and
different amount of white gaussian noise has been added to the convolved waveforms to
evaluate the noise sensitivity of the used algorithms.
Furthermore the influence of of electron diffusion has been investigated CLAUDIO

2 Garfield Simulations – Claudio

3 Preamplifier Input Response Evaluation

The preamplifier used in our simulation is based on a transresistance configuration and its
main features are shown in Table 1.
To investigate the preamplifier impulse response we have injected a δ-like pulse to the

Table 1: Preamplifier main specifications
Linearity < 1%(1− 100fC)
Gain ∼ 8.8 mV/fC
ZIN 60 Ω
ZOUT 50 Ω
Rise time ∼ 2.4 ns (CD = 24pF)
Fall time ∼ 2.4 ns (CD = 24pF)
Noise 3000 erms (CD = 24pF)
VSUPPLY ± 7V

preamplifier input and acquired the preamplifier output by means of a 4 GSamples/s dig-
ital scope; the results are shown in Fig. 1.

The acquired signal has been fitted with a double gaussian function, Eq 1, then
obtaining the parameters of Table 2. The result of the fitting is shown in Fig. 2.

h(t) = a1 e
−(

t−b1
c1

)2 + a2 e
−(

t−b2
c2

)2 (1)

2

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

12	

3:	
 Single	
 electron	
 cluster	
 average	
 amplitude	
 evalua8on	

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.

0 100 200 300 400 500 600 700 800 900 1000
−14

−12

−10

−8

−6

−4

−2

0

time[ns]

C
ur

re
nt

 [µ
A]

Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

Cluster	
 amplitude	
 evaluaOon	
 has	
 been	
 carried	
 out	
 looking	
 for	
 isolated	
 clusters	
 (20	
 ns	
 dead	
 Ome)	
 	
 	

Selected	
 clusters	

•  Average	
 peak	
 current	
 amplitude	
 ≈	
 2.7	
 μA	

•  He/Iso	
 (90/10)	
 gas	
 mixture	
 average	
 cluster	

size	
 ≈	
 1.33	
 e	

•  Single	
 electron	
 average	
 peak	
 current	
 ≈	
 2	
 μA	

•  Noise	
 =	
 2	
 μA/SNR	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

13	

4:	
 Examples	
 of	
 Garfield	
 +	
 noise	
 waveforms	

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 8

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 10

200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 6

0 200 400 600 800 1000
−20

−15

−10

−5

0

5

time[ns]

C
ur

re
nt

 [µ
A]

SNR = 4

Figure 9: Garfield waveforms with different levels of added noise.

10

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

14	

5:	
 Cluster	
 coun8ng	
 algorithms	

Slope	
 Detec8on	
 (SD)	

	

SD	
 algorithm	
 is	
 based	
 on	
 signal	
 slope	
 (rising	
 or	
 falling)	

detec8on	
 according	
 to	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Simple	
 Comparison	
 (SC)	

	

SC	
 is	
 the	
 simplest	
 and	
 faster	
 CC	
 algorithm.	
 Is	
 is	
 based	
 on	

neighboring	
 data	
 samples	
 comparison	
 according	
 to	
 	
 	

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Delay	
 Line	
 (DL)	

	

Delay	
 Line	
 approach	
 to	
 CC	
 is	
 a	
 middle	
 ground	
 between	
 SC	

and	
 SD	
 algorithms.	

Most	
 importantly,	
 while	
 SC	
 and	
 SD	
 algorithms	
 require	
 fast	

(1	
 GSPS	
 ??!!	
 FADC	
 and	
 the	
 state	
 of	
 art	
 FPGA)	
 digi8zers,	
 DL	

approach	
 can	
 be	
 easily	
 hardware	
 implemented	

"
 "

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

15	

6:	
 SC	
 algorithm	
 efficiency	
 –	
 Noise	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

Threshold	
 =	
 	
 4	
 x	
 rms	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

16	

6:	
 SC	
 algorithm	
 efficiency	
 –	
 Convolu8on	

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

6:	
 SC	
 algorithm	
 efficiency	
 –	
 Convolu8on	
 +	
 Noise	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

17	

Threshold	
 =	
 	
 4	
 x	
 rms	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

6:	
 SD	
 algorithm	
 efficiency	
 –	
 Noise	

Threshold	
 =	
 	
 4	
 x	
 rms	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

18	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

6:	
 SD	
 algorithm	
 efficiency	
 –	
 Convolu8on	

6:	
 SD	
 algorithm	
 efficiency	
 –	
 Convolu8on	
 +	
 Noise	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

19	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

Threshold	
 =	
 	
 4	
 x	
 rms	

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

6:	
 DL	
 algorithm	
 -­‐	
 Convolu8on	
 +	
 Noise	
 -­‐	
 Delay	
 Op8miza8on	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

20	

Figure 4: Slope detection working principle.

Amplifier

Filter

Delay

Comparator

VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

0 1 2 3 4 5 6
50

55

60

65

70

75

80

Delay

Ef
fic

ie
nc

y

2p
3p
4p

Number	
 of	
 point	

used	
 in	
 the	
 filter	

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

tr	
 ≈	
 2	
 ns	
 à	
 ≈	
 180	
 MHz	
 BW	
 	

6:	
 DL	
 algorithm	
 -­‐	
 Convolu8on	
 effect	
 on	
 signal	
 rise	
 8me	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

21	

6:	
 DL	
 algorithm	
 efficiency	
 –	
 Garfield	
 +	
 Noise	

Threshold	
 =	
 	
 4	
 x	
 rms	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

22	

246810
0

20

40

60

80

100
Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

246810
0

20

40

60

80

100
Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

6:	
 DL	
 algorithm	
 efficiency	
 –	
 Convolu8on	

6:	
 DL	
 algorithm	
 efficiency	
 –	
 Convolu8on	
 +	
 Noise	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

23	

Threshold	
 =	
 	
 4	
 x	
 rms	

246810
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

−1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
Convolution

IP (mm)

Ef
fic

ie
nc

y

SC,	
 SD	
 and	
 DL	
 algorithms	
 efficiency	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

24	

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=0 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=2 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=4 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

34567891011
0

20

40

60

80

100
Convolution + Noise − IP=6 mm

SNR

Ef
fic

ie
nc

y

SC
SD
DL

SD:	
 Efficiency	
 vs	
 Sampling	
 Frequency	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

25	

Convolved	
 Waveforms	

Conclusions	

G.	
 Felici	
 LNF	
 SuperB	
 WS	
 –	
 Dec	
 2012	

26	

§  We	
 have	
 evaluated	
 the	
 efficiency	
 of	
 3	
 CC	
 algorithms	
 using	
 Garfield	
 waveforms.	

•  SC	
 à	
 Simple	
 Comparison	

•  SD	
 à	
 Slope	
 Detec8on	

•  DL	
 à	
 Delay	
 Line	

	

§  For	
 each	
 algorithm	
 the	
 efficiency	
 has	
 been	
 evaluated	
 for	
 the	

•  “pure”	
 Garfield	
 waveform	
 +	
 noise	

•  Garfield	
 and	
 FE	
 response	
 convolved	
 waveform	
 	

•  Garfield	
 and	
 FE	
 convolved	
 waveform	
 +	
 noise	

	

§  Simula8ons	
 show	
 that	
 CC	
 efficiency	
 is	
 dominated	
 by	
 SNR	
 	

•  the	
 use	
 very	
 high	
 BW	
 preamplifiers	
 	
 (>	
 150	
 -­‐	
 200	
 MHz	
 BW)	
 and	
 GSPS	
 digi8zers	
 have	
 a	

negligible	
 effect	
 on	
 the	
 clusters	
 detec8on	
 efficiency	

	

§  No	
 safe	
 opera8on	
 region	
 (efficiency	
 ‘plateau’)	
 can	
 be	
 inferred	
 from	
 efficiency	
 plots	
 	
 	

•  How	
 could	
 we	
 monitor	
 system	
 stability	
 ?	

	

§  Achievable	
 SNR	
 is	
 bound	
 to	
 the	
 front-­‐end	
 (sense	
 wire	
 termina8on	
 resistor,	
 sense	
 wire	

resistance,	
 preamplifier)	
 and	
 picked-­‐up	
 noise	

•  ProtoII	
 (global)	
 readout	
 noise	
 ≈	
 4.5	
 mV	
 rms	
 ≈	
 0.6	
 fC	
 	
 rms	
 (Pre	
 gain	
 ≈	
 7	
 mV/fC)	
 	
 à	
 SNR	
 =	
 10	

corresponds	
 to	
 a	
 6	
 fC	
 single	
 electron	
 cluster	
 collected	
 charge	

•  6	
 fC	
 collected	
 charge	
 corresponds	
 to	
 a	
 full	
 delivered	
 charge	
 ≈	
 2	
 (wire	
 charge	
 division)	
 x	
 ≈	

3.3	
 (assuming	
 a	
 30%	
 of	
 charge	
 collec8on)	
 	
 à	
 6	
 x	
 6.6	
 ≈	
 40	
 fC	
 ≈	
 2.5	
 x	
 105	
 (moreover	
 you	

have	
 to	
 add	
 a	
 safety	
 factor	
 for	
 gas	
 gain	
 fluctua8ons	
 …	
)	
 	

