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Simula8on	  of	  Cluster	  Coun8ng	  algorithms	  
efficiency	  using	  Garfield	  waveforms	  



Outline

1.  Wire	  current	  signal	  waveforms	  at	  0,	  2,	  4,	  6	  mm	  impact	  point	  have	  been	  generated	  using	  Garfield	  	  
2.  Preamplifier	  response	  has	  been	  parameterized	  	  and	  convolved	  waveforms	  have	  been	  generated	  

using	  the	  Garfield	  generated	  current	  signals	  (waveform	  frequencies	  content	  similar	  to	  the	  Proto	  
II	  FE	  output	  signals)	  

3.  Average	  single	  electron	  peak	  current	  has	  been	  evaluated	  over	  the	  full	  data	  set	  
4.  White	  gaussian	  noise	  has	  been	  added	  both	  to	  the	  “pure”	  Garfield	  waveforms	  and	  to	  the	  

convolved	  ones	  according	  to	  the	  selected	  SNR	  
5.  Three	  algorithms	  have	  been	  used	  in	  our	  simula8on:	  

1.  SC	  à	  Simple	  Comparison	  
2.  SD	  à	  Slope	  Detec8on	  
3.  DL	  à	  Delay	  Line	  

6.  Algorithms	  efficiency	  has	  been	  separately	  evaluated	  for	  the	  	  
a.  “pure”	  Garfield	  +	  noise	  
b.  convolved	  	  
c.  convolved	  +	  noise	  

Goal:	  evalua*on	  of	  CC	  algorithms	  efficiency	  using	  waveforms	  similar	  to	  those	  generated	  
from	  Proto	  II	  FE	  and	  different	  SNRs	  (that	  is	  different	  DCH	  gas	  amplifica*on	  assuming	  
constant	  FE	  noise	  contribu*on)	  
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Background (I)


	  

Table 3: Convolution and noise effects in cluster detection efficiency
IP Convolution Noise Convolution + Noise

Average - SD Average - SD Average - SD
0 mm 0.80 - 0.13 0.75 - 0.11 0.70 - 0.13
2 mm 0.78 - 0.12 0.75 - 0.11 0.68 - 0.13
4 mm 0.77 - 0.13 0.74 - 0.11 0.67 - 0.13
6 mm 0.76 - 0.13 0.74 - 0.11 0.65 - 0.13

Table 4: Efficiency: Simple Comparison (SC) method efficiency
SNR IP=0mm IP=2 mm IP=4mm IP=6mm

Average - SD Average - SD Average - SD Average - SD
10 0.77 - 0.14 0.67 - 0.13 0.67 - 0.13 0.66 - 0.13
9 0.68 - 0.13 0.66 - 0.13 0.65 - 0.13 0.65 - 0.13
8 0.67 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
7 0.64 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
6 0.60 - 0.13 0.59 - 0.13 0.59 - 0.13 0.57 - 0.13
5 0.56 - 0.13 0.54 - 0.13 0.55 - 0.13 0.54 - 0.13
4 0.50 - 0.13 0.48 - 0.13 0.48 - 0.13 0.47 - 0.13
3 0.41 - 0.13 0.38 - 0.12 0.38 - 0.12 0.38 - 0.12
2 0.25 - 0.12 0.27 - 0.11 0.26 - 0.11 0.26 - 0.11
1 0.09 0.07 0.08 - 0.07 0.07 - 0.07 0.07 - 0.06

been measured over the full data set. A value of about 3 µA has been obtained. Because
the used gas mixture has an average cluster size is about 1.66 electrons, then an aver-
age peak current of about 1.8 µA can be estimated for the single electron. Examples of
Garfield waveforms with different levels of added noise are shown in Fig. 9.

SNR =
Signal amplitude

RMS noise amplitude
(6)

Finally the combination of the two effects on the cluster detection efficiency has
been evaluated using the following procedure:

1. Convolution has been applied to Garfield data;

2. The average peak current has been calculated;

3. The single electron cluster peak current has been evaluated obtaining a value of
about 1.8 µA;

4. Noise corresponding to a SNR = 10 has been added to the convolved waveform;

7

Moving	  Average	  Filters	  
	  
Probably	  the	  most	  common	  filter	  used	  in	  DSP.	  Op8mal	  for	  reducing	  random	  noise	  s8ll	  
maintaining	  a	  sharp	  response	  for	  8me	  domain	  encoded	  signals	  (very	  poor	  features	  for	  
frequency	  domain	  encoded	  signals	  i.e.	  frequency	  bands	  separa8on)	  
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EQUATION 15-1
Equation of the moving average filter.  In
this equation,  is the input signal,  isx[ ] y[ ]
the output signal, and M is the number of
points used in the moving average.  This
equation only uses points on one side of the
output sample being calculated.

y [i ] '
1

M j
M &1

j' 0
x [ i % j ]

y [80] '
x [80] % x [81] % x [82] % x [83] % x [84]
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Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use.  In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response.  This makes it the
premier filter for time domain encoded signals.  However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another.  Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average.  These have slightly better performance in the frequency domain, at the
expense of increased computation time. 

Implementation by Convolution
As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal.  In
equation form, this is written:

Where  is the input signal,  is the output signal, and M is the numberx [ ] y [ ]
of points in the average.  For example, in a 5 point moving average filter, point
80 in the output signal is given by:

Note:	  the	  equa8on	  uses	  points	  on	  one	  side	  of	  the	  output	  
sample	  (non	  symmetric)	  
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FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively.  As
the number of points in the filter increases, the
noise becomes lower; however,  the edges
becoming less sharp. The moving average filter
is the optimal  solution for this problem,
providing the lowest noise possible for a given
edge sharpness.  
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).

Examples	  of	  moving	  average	  filters	  
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Single	  electron	  cluster	  amplitude	  



Background (II)

Moving	  Average	  Filters	  
	  
The	  moving	  average	  filter	  behaves	  as	  a	  very	  poor	  low-‐pass	  filter	  (slow	  roll-‐off	  and	  poor	  stop-‐band	  aaenua8on)	  
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EQUATION 15-2
Frequency response of an M point moving
average filter. The frequency, f, runs between
0 and 0.5. For , use: f ' 0 H [ f ] ' 1

H [ f ] '
sin(B f M )
M sin(B f )

Frequency
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FIGURE 15-2
Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curves are
generated by Eq. 15-2. A

m
pl

itu
de

Frequency Response
Figure 15-2 shows the frequency response of the moving average filter.  It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11: 

The roll-off is very slow and the stopband attenuation is ghastly.  Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa.  In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

Relatives of the Moving Average Filter
In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal.  Unfortunately, there are some applications
where both domains are simultaneously important.  For instance, television
signals fall into this nasty category.  Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image.  However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc.  As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Nyquist frequency	  
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1:	  Garfield	  -‐	  simula8on	  (C.	  Gab)	  	  
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Simula8on	  of	  electron	  dric	  in	  SB	  dric	  chamber	  using	  
Garfield:	  

l  Prototype	  geometry	  Vs=1850	  V	  
l  B=0	  
l  He	  90%	  IsoC4H10	  10%	  
l  Ion	  mobility	  10.4	  cm2/Vs	  
l  Gas	  amplifica8on	  18x104	  according	  to	  Polya	  

distribu8on	  with	  q=0.6	  



1:	  Garfield	  –	  Gas	  Proper8es	  (C.	  Gab)	  	  
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Cluster	  per	  cm	  

N.	  clu/cm	  

Longitudinal 

Transverse	  

<clu/cm>~13	  
<e/cluster>≈1.3	  

λ~770	  μm	  
~	  15-‐20	  ns	  

≈5	  ns	  

≈40	  μm/ns	  

Cluster	  Size	  

Diffusion	   DriF	  Velocity	  



1:	  Garfield	  –	  Simula8on	  Condi8ons	  (C.	  Gab)	  	  
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μ-‐	  (250	  MeV)	  

μs	  

Signal	  simulated	  for	  nega8ve	  muons	  with	  250	  MeV	  momentum	  and	  impact	  parameters	  
0,	  0.2,	  0.4	  and	  0.6	  cm	  	  	  



1:	  Garfield	  -‐	  Sense	  wire	  current	  current	  signals	  @	  0/2/4/6	  mm	  IP	  (C.	  Gab)	  
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Figure 6: Garfield current waveforms at 0, 2, 4, 6 mm impact parameter.

To evaluate the effects of preamplifier response and noise on detected clusters three dif-
ferent data sets have been generated. The first data set is made of the convolution of the
Garfield waveforms with the preamplifier response, in the second data set white gaussian
noise noise has been added to the Garfield waveform while the third data set is made of
a combination of the two effects. The simples and faster Peak Detecting algorithm has
been used for the comparison.
As an example of convolution effects is shown in Fig. 7. Because the preamplifier band-
width different clusters are merged in a single one then reducing the number of detected
clusters.
Electronic noise is another error source in clusters. Discarding the contribution of exter-
nally picked up noise, that can be hardly evaluated, the estimation of the noise effects can
be evaluated adding gaussian noise to the Garfield waveforms.
The amount of noise to add to the waveforms has been evaluated according to the Signal
to Noise Ratio (SNR) definition , Equation 6, and to the single electron cluster amplitude.
To estimate the single electron cluster peak current, the amplitude of isolated cluster has

6

0 mm 2 mm 

4 mm 6 mm 
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1:	  Garfield	  –	  CC	  Efficiency	  (C.	  Gab)	  	  
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Collect	  all	  electrons	  within	  a	  8me	  window	  Δt	  in	  a	  single	  cluster,	  star8ng	  from	  the	  first	  
electron.	  	  



1:	  Garfield	  –	  CC	  Efficiency	  (C.	  Gab)	  	  
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Increasing the “integration time” to 5 ns (comparable to diffusion effects) the 
number of reconstructed cluster is slightly less than the true one.	  	  



1:	  Garfield	  –	  CC	  Efficiency	  (C.	  Gab)	  	  
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Efficiency=NReco/NTruth	  

σdiffusion	  
λcluster	  

15	  

Inefficiency	  due	  to	  
cluster	  merging	  

Higher	  efficiency	  due	  to	  
cluster	  splibng	  



2:	  Preamplifier	  response	  evalua8on	  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1.8 pF injecting capacitance	  

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 1: Preamplifier response (1.8 pF injecting capacitance).
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a1 0.479
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4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1 Introduction

Cluster Counting (CC) technique for energy loss measurement was proposed in 1980 by
Piuz and Lapique [1]. To investigate the feasibility of the method we have generated four
sets of orthogonal tracks through a 17 mm square drift tube filled with with 90/10 He/Iso

gas mixture using Garfield.
The output waveforms have been convolved with the preamplifier impulse response and
different amount of white gaussian noise has been added to the convolved waveforms to
evaluate the noise sensitivity of the used algorithms.
Furthermore the influence of of electron diffusion has been investigated .... CLAUDIO

2 Garfield Simulations – Claudio

3 Preamplifier Input Response Evaluation

The preamplifier used in our simulation is based on a transresistance configuration and its
main features are shown in Table 1.
To investigate the preamplifier impulse response we have injected a δ-like pulse to the

Table 1: Preamplifier main specifications
Linearity < 1%(1− 100fC)
Gain ∼ 8.8 mV/fC
ZIN 60 Ω
ZOUT 50 Ω
Rise time ∼ 2.4 ns (CD = 24pF )
Fall time ∼ 2.4 ns (CD = 24pF )
Noise 3000 erms (CD = 24pF )
VSUPPLY ± 7V

preamplifier input and acquired the preamplifier output by means of a 4 GSamples/s dig-
ital scope; the results are shown in Fig. 1.

The acquired signal has been fitted with a double gaussian function, Eq 1, then
obtaining the parameters of Table 2. The result of the fitting is shown in Fig. 2.

h(t) = a1 e
−(

t−b1
c1

)2 + a2 e
−(

t−b2
c2

)2 (1)

2
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Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.
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Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.
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3:	  Single	  electron	  cluster	  average	  amplitude	  evalua8on	  

50 100 150 200 250
−10

−8

−6

−4

−2

0

50 100 150 200 250
−10

−8

−6

−4

−2

0

Garfield Waveform

Convolution Output

Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.

9

Cluster	  amplitude	  evaluaOon	  has	  been	  carried	  out	  looking	  for	  isolated	  clusters	  (20	  ns	  dead	  Ome)	  	  	  

Selected	  clusters	  

•  Average	  peak	  current	  amplitude	  ≈	  2.7	  μA	  
•  He/Iso	  (90/10)	  gas	  mixture	  average	  cluster	  

size	  ≈	  1.33	  e	  
•  Single	  electron	  average	  peak	  current	  ≈	  2	  μA	  
•  Noise	  =	  2	  μA/SNR	  
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4:	  Examples	  of	  Garfield	  +	  noise	  waveforms	  
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Figure 9: Garfield waveforms with different levels of added noise.
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5:	  Cluster	  coun8ng	  algorithms	  

Slope	  Detec8on	  (SD)	  
	  
SD	  algorithm	  is	  based	  on	  signal	  slope	  (rising	  or	  falling)	  
detec8on	  according	  to	  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Simple	  Comparison	  (SC)	  
	  
SC	  is	  the	  simplest	  and	  faster	  CC	  algorithm.	  Is	  is	  based	  on	  
neighboring	  data	  samples	  comparison	  according	  to	  	  	  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 4: Slope detection working principle.
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Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Delay	  Line	  (DL)	  
	  
Delay	  Line	  approach	  to	  CC	  is	  a	  middle	  ground	  between	  SC	  
and	  SD	  algorithms.	  
Most	  importantly,	  while	  SC	  and	  SD	  algorithms	  require	  fast	  
(1	  GSPS	  ??!!	  FADC	  and	  the	  state	  of	  art	  FPGA)	  digi8zers,	  DL	  
approach	  can	  be	  easily	  hardware	  implemented	  
"
 "

Figure 4: Slope detection working principle.
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VTH

Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.
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6:	  SC	  algorithm	  efficiency	  –	  Noise	  
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6:	  SC	  algorithm	  efficiency	  –	  Convolu8on	  
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6:	  SC	  algorithm	  efficiency	  –	  Convolu8on	  +	  Noise	  
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Threshold	  =	  	  4	  x	  rms	  
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6:	  SD	  algorithm	  efficiency	  –	  Noise	  

Threshold	  =	  	  4	  x	  rms	  
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6:	  SD	  algorithm	  efficiency	  –	  Convolu8on	  

6:	  SD	  algorithm	  efficiency	  –	  Convolu8on	  +	  Noise	  
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6:	  DL	  algorithm	  -‐	  Convolu8on	  +	  Noise	  -‐	  Delay	  Op8miza8on	  
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Figure 4: Slope detection working principle.
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Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.
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Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

tr	  ≈	  2	  ns	  à	  ≈	  180	  MHz	  BW	  	  



6:	  DL	  algorithm	  -‐	  Convolu8on	  effect	  on	  signal	  rise	  8me	  
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6:	  DL	  algorithm	  efficiency	  –	  Garfield	  +	  Noise	  

Threshold	  =	  	  4	  x	  rms	  
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6:	  DL	  algorithm	  efficiency	  –	  Convolu8on	  

6:	  DL	  algorithm	  efficiency	  –	  Convolu8on	  +	  Noise	  
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Threshold	  =	  	  4	  x	  rms	  
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SC,	  SD	  and	  DL	  algorithms	  efficiency	  
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SD:	  Efficiency	  vs	  Sampling	  Frequency	  
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Convolved	  Waveforms	  



Conclusions	  
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§  We	  have	  evaluated	  the	  efficiency	  of	  3	  CC	  algorithms	  using	  Garfield	  waveforms.	  
•  SC	  à	  Simple	  Comparison	  
•  SD	  à	  Slope	  Detec8on	  
•  DL	  à	  Delay	  Line	  

	  
§  For	  each	  algorithm	  the	  efficiency	  has	  been	  evaluated	  for	  the	  

•  “pure”	  Garfield	  waveform	  +	  noise	  
•  Garfield	  and	  FE	  response	  convolved	  waveform	  	  
•  Garfield	  and	  FE	  convolved	  waveform	  +	  noise	  
	  

§  Simula8ons	  show	  that	  CC	  efficiency	  is	  dominated	  by	  SNR	  	  
•  the	  use	  very	  high	  BW	  preamplifiers	  	  (>	  150	  -‐	  200	  MHz	  BW)	  and	  GSPS	  digi8zers	  have	  a	  

negligible	  effect	  on	  the	  clusters	  detec8on	  efficiency	  
	  

§  No	  safe	  opera8on	  region	  (efficiency	  ‘plateau’)	  can	  be	  inferred	  from	  efficiency	  plots	  	  	  
•  How	  could	  we	  monitor	  system	  stability	  ?	  

	  
§  Achievable	  SNR	  is	  bound	  to	  the	  front-‐end	  (sense	  wire	  termina8on	  resistor,	  sense	  wire	  

resistance,	  preamplifier)	  and	  picked-‐up	  noise	  
•  ProtoII	  (global)	  readout	  noise	  ≈	  4.5	  mV	  rms	  ≈	  0.6	  fC	  	  rms	  (Pre	  gain	  ≈	  7	  mV/fC)	  	  à	  SNR	  =	  10	  

corresponds	  to	  a	  6	  fC	  single	  electron	  cluster	  collected	  charge	  
•  6	  fC	  collected	  charge	  corresponds	  to	  a	  full	  delivered	  charge	  ≈	  2	  (wire	  charge	  division)	  x	  ≈	  

3.3	  (assuming	  a	  30%	  of	  charge	  collec8on)	  	  à	  6	  x	  6.6	  ≈	  40	  fC	  ≈	  2.5	  x	  105	  (moreover	  you	  
have	  to	  add	  a	  safety	  factor	  for	  gas	  gain	  fluctua8ons	  …	  )	  	  


