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Simula8on	
  of	
  Cluster	
  Coun8ng	
  algorithms	
  
efficiency	
  using	
  Garfield	
  waveforms	
  



Outline


1.  Wire	
  current	
  signal	
  waveforms	
  at	
  0,	
  2,	
  4,	
  6	
  mm	
  impact	
  point	
  have	
  been	
  generated	
  using	
  Garfield	
  	
  
2.  Preamplifier	
  response	
  has	
  been	
  parameterized	
  	
  and	
  convolved	
  waveforms	
  have	
  been	
  generated	
  

using	
  the	
  Garfield	
  generated	
  current	
  signals	
  (waveform	
  frequencies	
  content	
  similar	
  to	
  the	
  Proto	
  
II	
  FE	
  output	
  signals)	
  

3.  Average	
  single	
  electron	
  peak	
  current	
  has	
  been	
  evaluated	
  over	
  the	
  full	
  data	
  set	
  
4.  White	
  gaussian	
  noise	
  has	
  been	
  added	
  both	
  to	
  the	
  “pure”	
  Garfield	
  waveforms	
  and	
  to	
  the	
  

convolved	
  ones	
  according	
  to	
  the	
  selected	
  SNR	
  
5.  Three	
  algorithms	
  have	
  been	
  used	
  in	
  our	
  simula8on:	
  

1.  SC	
  à	
  Simple	
  Comparison	
  
2.  SD	
  à	
  Slope	
  Detec8on	
  
3.  DL	
  à	
  Delay	
  Line	
  

6.  Algorithms	
  efficiency	
  has	
  been	
  separately	
  evaluated	
  for	
  the	
  	
  
a.  “pure”	
  Garfield	
  +	
  noise	
  
b.  convolved	
  	
  
c.  convolved	
  +	
  noise	
  

Goal:	
  evalua*on	
  of	
  CC	
  algorithms	
  efficiency	
  using	
  waveforms	
  similar	
  to	
  those	
  generated	
  
from	
  Proto	
  II	
  FE	
  and	
  different	
  SNRs	
  (that	
  is	
  different	
  DCH	
  gas	
  amplifica*on	
  assuming	
  
constant	
  FE	
  noise	
  contribu*on)	
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Background (I)




	
  

Table 3: Convolution and noise effects in cluster detection efficiency
IP Convolution Noise Convolution + Noise

Average - SD Average - SD Average - SD
0 mm 0.80 - 0.13 0.75 - 0.11 0.70 - 0.13
2 mm 0.78 - 0.12 0.75 - 0.11 0.68 - 0.13
4 mm 0.77 - 0.13 0.74 - 0.11 0.67 - 0.13
6 mm 0.76 - 0.13 0.74 - 0.11 0.65 - 0.13

Table 4: Efficiency: Simple Comparison (SC) method efficiency
SNR IP=0mm IP=2 mm IP=4mm IP=6mm

Average - SD Average - SD Average - SD Average - SD
10 0.77 - 0.14 0.67 - 0.13 0.67 - 0.13 0.66 - 0.13
9 0.68 - 0.13 0.66 - 0.13 0.65 - 0.13 0.65 - 0.13
8 0.67 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
7 0.64 - 0.13 0.62 - 0.12 0.61 - 0.13 0.60 - 0.13
6 0.60 - 0.13 0.59 - 0.13 0.59 - 0.13 0.57 - 0.13
5 0.56 - 0.13 0.54 - 0.13 0.55 - 0.13 0.54 - 0.13
4 0.50 - 0.13 0.48 - 0.13 0.48 - 0.13 0.47 - 0.13
3 0.41 - 0.13 0.38 - 0.12 0.38 - 0.12 0.38 - 0.12
2 0.25 - 0.12 0.27 - 0.11 0.26 - 0.11 0.26 - 0.11
1 0.09 0.07 0.08 - 0.07 0.07 - 0.07 0.07 - 0.06

been measured over the full data set. A value of about 3 µA has been obtained. Because
the used gas mixture has an average cluster size is about 1.66 electrons, then an aver-
age peak current of about 1.8 µA can be estimated for the single electron. Examples of
Garfield waveforms with different levels of added noise are shown in Fig. 9.

SNR =
Signal amplitude

RMS noise amplitude
(6)

Finally the combination of the two effects on the cluster detection efficiency has
been evaluated using the following procedure:

1. Convolution has been applied to Garfield data;

2. The average peak current has been calculated;

3. The single electron cluster peak current has been evaluated obtaining a value of
about 1.8 µA;

4. Noise corresponding to a SNR = 10 has been added to the convolved waveform;

7

Moving	
  Average	
  Filters	
  
	
  
Probably	
  the	
  most	
  common	
  filter	
  used	
  in	
  DSP.	
  Op8mal	
  for	
  reducing	
  random	
  noise	
  s8ll	
  
maintaining	
  a	
  sharp	
  response	
  for	
  8me	
  domain	
  encoded	
  signals	
  (very	
  poor	
  features	
  for	
  
frequency	
  domain	
  encoded	
  signals	
  i.e.	
  frequency	
  bands	
  separa8on)	
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EQUATION 15-1
Equation of the moving average filter.  In
this equation,  is the input signal,  isx[ ] y[ ]
the output signal, and M is the number of
points used in the moving average.  This
equation only uses points on one side of the
output sample being calculated.

y [i ] '
1

M j
M &1

j' 0
x [ i % j ]

y [80] '
x [80] % x [81] % x [82] % x [83] % x [84]
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Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use.  In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response.  This makes it the
premier filter for time domain encoded signals.  However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another.  Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average.  These have slightly better performance in the frequency domain, at the
expense of increased computation time. 

Implementation by Convolution
As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal.  In
equation form, this is written:

Where  is the input signal,  is the output signal, and M is the numberx [ ] y [ ]
of points in the average.  For example, in a 5 point moving average filter, point
80 in the output signal is given by:

Note:	
  the	
  equa8on	
  uses	
  points	
  on	
  one	
  side	
  of	
  the	
  output	
  
sample	
  (non	
  symmetric)	
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FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively.  As
the number of points in the filter increases, the
noise becomes lower; however,  the edges
becoming less sharp. The moving average filter
is the optimal  solution for this problem,
providing the lowest noise possible for a given
edge sharpness.  
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).
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Figure 15-1 shows an example of how this works.  The signal in (a) is a pulse
buried in random noise.  In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad).  Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness.  The amount of noise reduction is equal to the square-root of the
number of points in the average.  For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness.  For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response.  This requires that the filter kernel have eleven points.  The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal?  Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor.  Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel.  The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter.  (Later in this chapter we show that
other filters are essentially as good.  The point is, no filter is better than the
simple moving average).
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Background (II)


Moving	
  Average	
  Filters	
  
	
  
The	
  moving	
  average	
  filter	
  behaves	
  as	
  a	
  very	
  poor	
  low-­‐pass	
  filter	
  (slow	
  roll-­‐off	
  and	
  poor	
  stop-­‐band	
  aaenua8on)	
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EQUATION 15-2
Frequency response of an M point moving
average filter. The frequency, f, runs between
0 and 0.5. For , use: f ' 0 H [ f ] ' 1

H [ f ] '
sin(B f M )
M sin(B f )

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 point

11 point

31 point

FIGURE 15-2
Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curves are
generated by Eq. 15-2. A
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Frequency Response
Figure 15-2 shows the frequency response of the moving average filter.  It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11: 

The roll-off is very slow and the stopband attenuation is ghastly.  Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa.  In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

Relatives of the Moving Average Filter
In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal.  Unfortunately, there are some applications
where both domains are simultaneously important.  For instance, television
signals fall into this nasty category.  Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image.  However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc.  As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Nyquist frequency	
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Simula8on	
  of	
  electron	
  dric	
  in	
  SB	
  dric	
  chamber	
  using	
  
Garfield:	
  

l  Prototype	
  geometry	
  Vs=1850	
  V	
  
l  B=0	
  
l  He	
  90%	
  IsoC4H10	
  10%	
  
l  Ion	
  mobility	
  10.4	
  cm2/Vs	
  
l  Gas	
  amplifica8on	
  18x104	
  according	
  to	
  Polya	
  

distribu8on	
  with	
  q=0.6	
  



1:	
  Garfield	
  –	
  Gas	
  Proper8es	
  (C.	
  Gab)	
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Cluster	
  per	
  cm	
  

N.	
  clu/cm	
  

Longitudinal 

Transverse	
  

<clu/cm>~13	
  
<e/cluster>≈1.3	
  

λ~770	
  μm	
  
~	
  15-­‐20	
  ns	
  

≈5	
  ns	
  

≈40	
  μm/ns	
  

Cluster	
  Size	
  

Diffusion	
   DriF	
  Velocity	
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  Simula8on	
  Condi8ons	
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μ-­‐	
  (250	
  MeV)	
  

μs	
  

Signal	
  simulated	
  for	
  nega8ve	
  muons	
  with	
  250	
  MeV	
  momentum	
  and	
  impact	
  parameters	
  
0,	
  0.2,	
  0.4	
  and	
  0.6	
  cm	
  	
  	
  



1:	
  Garfield	
  -­‐	
  Sense	
  wire	
  current	
  current	
  signals	
  @	
  0/2/4/6	
  mm	
  IP	
  (C.	
  Gab)	
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Figure 6: Garfield current waveforms at 0, 2, 4, 6 mm impact parameter.

To evaluate the effects of preamplifier response and noise on detected clusters three dif-
ferent data sets have been generated. The first data set is made of the convolution of the
Garfield waveforms with the preamplifier response, in the second data set white gaussian
noise noise has been added to the Garfield waveform while the third data set is made of
a combination of the two effects. The simples and faster Peak Detecting algorithm has
been used for the comparison.
As an example of convolution effects is shown in Fig. 7. Because the preamplifier band-
width different clusters are merged in a single one then reducing the number of detected
clusters.
Electronic noise is another error source in clusters. Discarding the contribution of exter-
nally picked up noise, that can be hardly evaluated, the estimation of the noise effects can
be evaluated adding gaussian noise to the Garfield waveforms.
The amount of noise to add to the waveforms has been evaluated according to the Signal
to Noise Ratio (SNR) definition , Equation 6, and to the single electron cluster amplitude.
To estimate the single electron cluster peak current, the amplitude of isolated cluster has

6
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Collect	
  all	
  electrons	
  within	
  a	
  8me	
  window	
  Δt	
  in	
  a	
  single	
  cluster,	
  star8ng	
  from	
  the	
  first	
  
electron.	
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Increasing the “integration time” to 5 ns (comparable to diffusion effects) the 
number of reconstructed cluster is slightly less than the true one.	
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2:	
  Preamplifier	
  response	
  evalua8on	
  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1.8 pF injecting capacitance	
  

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 1: Preamplifier response (1.8 pF injecting capacitance).
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4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

1 Introduction

Cluster Counting (CC) technique for energy loss measurement was proposed in 1980 by
Piuz and Lapique [1]. To investigate the feasibility of the method we have generated four
sets of orthogonal tracks through a 17 mm square drift tube filled with with 90/10 He/Iso

gas mixture using Garfield.
The output waveforms have been convolved with the preamplifier impulse response and
different amount of white gaussian noise has been added to the convolved waveforms to
evaluate the noise sensitivity of the used algorithms.
Furthermore the influence of of electron diffusion has been investigated .... CLAUDIO

2 Garfield Simulations – Claudio

3 Preamplifier Input Response Evaluation

The preamplifier used in our simulation is based on a transresistance configuration and its
main features are shown in Table 1.
To investigate the preamplifier impulse response we have injected a δ-like pulse to the

Table 1: Preamplifier main specifications
Linearity < 1%(1− 100fC)
Gain ∼ 8.8 mV/fC
ZIN 60 Ω
ZOUT 50 Ω
Rise time ∼ 2.4 ns (CD = 24pF )
Fall time ∼ 2.4 ns (CD = 24pF )
Noise 3000 erms (CD = 24pF )
VSUPPLY ± 7V

preamplifier input and acquired the preamplifier output by means of a 4 GSamples/s dig-
ital scope; the results are shown in Fig. 1.

The acquired signal has been fitted with a double gaussian function, Eq 1, then
obtaining the parameters of Table 2. The result of the fitting is shown in Fig. 2.

h(t) = a1 e
−(

t−b1
c1

)2 + a2 e
−(

t−b2
c2

)2 (1)

2
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Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.
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Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.
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3:	
  Single	
  electron	
  cluster	
  average	
  amplitude	
  evalua8on	
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Figure 7: Example of the convolution effects on a single waveform.
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Figure 8: Example of clusters used for average amplitude calculation with a 20 ns dead
time.
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  peak	
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4:	
  Examples	
  of	
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Figure 9: Garfield waveforms with different levels of added noise.
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5:	
  Cluster	
  coun8ng	
  algorithms	
  

Slope	
  Detec8on	
  (SD)	
  
	
  
SD	
  algorithm	
  is	
  based	
  on	
  signal	
  slope	
  (rising	
  or	
  falling)	
  
detec8on	
  according	
  to	
  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Simple	
  Comparison	
  (SC)	
  
	
  
SC	
  is	
  the	
  simplest	
  and	
  faster	
  CC	
  algorithm.	
  Is	
  is	
  based	
  on	
  
neighboring	
  data	
  samples	
  comparison	
  according	
  to	
  	
  	
  

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

Figure 4: Slope detection working principle.
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Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.

5

Figure 1: Preamplifier response (1.8 pF injecting capacitance).

Table 2: Fitting function coefficients
a1 0.479
b1 24.367
c1 1.797
a2 0.691
b2 25.983
c2 2.305

4 The Cluster Counting Algorithm

Three different Cluster Counting algorithms have been evaluated: the Peak Detection, the
Slope Detector and the Delay Line.

4.1 The Peak Detection Algorithms

The Peak Detection (PD) algorithm is the simplest (and faster) CC algorithm. It is based
based on different time samples data comparison. The working principle of PD algorithm
is shown in Fig. 3, while Equation 2 shows the algorithm used in our simulation.

| An |> (| An−1 | +σ) && | An |> (| An+1 | +σ) (2)

where An−1, An and An+1 are three consecutive data samples while σd is the noise (rms)
evaluated when no signal is present.

3

Delay	
  Line	
  (DL)	
  
	
  
Delay	
  Line	
  approach	
  to	
  CC	
  is	
  a	
  middle	
  ground	
  between	
  SC	
  
and	
  SD	
  algorithms.	
  
Most	
  importantly,	
  while	
  SC	
  and	
  SD	
  algorithms	
  require	
  fast	
  
(1	
  GSPS	
  ??!!	
  FADC	
  and	
  the	
  state	
  of	
  art	
  FPGA)	
  digi8zers,	
  DL	
  
approach	
  can	
  be	
  easily	
  hardware	
  implemented	
  
"
 "

Figure 4: Slope detection working principle.
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Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.
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6:	
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6:	
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Figure 4: Slope detection working principle.
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Figure 5: Delay Line working principle.

(C1 < −Thr) AND (C2 < −Thr) AND (C3 < −3Thr) (5)

where Ai are the data samples and Thr is the threshold.

6 The Delay Line Algorithm

Both the previous algorithms require very fast digitizer (at least 1 GSPS FADC) and state
of art FPGA to be implemented in a measurement system. The working principle of the
Delay Line algorithm is similar to the Slope Detection one, but it can be easily hardware
implemented as shown in Fig. 5. Basically a delayed copy of a signal is compared with a
bandwidth limited copy of the signal itself.

7 Convolution and Noise Effects on Detected Clusters

Fig 6 shows some samples of the output current waveforms generated by Garfield at four
impact parameters. A drift velocity around 2/2.5 µs/cm can be easily inferred from the
pictures.
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Figure 2: Preamplifier impulse response (line) and fittings (dotted line).

Figure 3: Peak Detection working principle.

5 The Slope Detection Algorithm

The Slope Detection algorithm is based on the detection of signal rising (or falling) slope.
The slope is evaluated as difference between a sample and the average of the four preced-
ing samples (Fig. 3). A slope change occurs when the comparison implemented on three
consecutive sampled (with respect the four preceding ones) comes true with respect to a
fixed threshold value. Once a slope change is detected a dead time is asserted to avoid
extra counting.

Pi = Ai −
∑4

n=1 Ai−n

4
(3)

C1 = Pi − Pi−1 C2 = Pi−1 − Pi−2 C3 = Pi − Pi−2 (4)

4

tr	
  ≈	
  2	
  ns	
  à	
  ≈	
  180	
  MHz	
  BW	
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Convolved	
  Waveforms	
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§  We	
  have	
  evaluated	
  the	
  efficiency	
  of	
  3	
  CC	
  algorithms	
  using	
  Garfield	
  waveforms.	
  
•  SC	
  à	
  Simple	
  Comparison	
  
•  SD	
  à	
  Slope	
  Detec8on	
  
•  DL	
  à	
  Delay	
  Line	
  

	
  
§  For	
  each	
  algorithm	
  the	
  efficiency	
  has	
  been	
  evaluated	
  for	
  the	
  

•  “pure”	
  Garfield	
  waveform	
  +	
  noise	
  
•  Garfield	
  and	
  FE	
  response	
  convolved	
  waveform	
  	
  
•  Garfield	
  and	
  FE	
  convolved	
  waveform	
  +	
  noise	
  
	
  

§  Simula8ons	
  show	
  that	
  CC	
  efficiency	
  is	
  dominated	
  by	
  SNR	
  	
  
•  the	
  use	
  very	
  high	
  BW	
  preamplifiers	
  	
  (>	
  150	
  -­‐	
  200	
  MHz	
  BW)	
  and	
  GSPS	
  digi8zers	
  have	
  a	
  

negligible	
  effect	
  on	
  the	
  clusters	
  detec8on	
  efficiency	
  
	
  

§  No	
  safe	
  opera8on	
  region	
  (efficiency	
  ‘plateau’)	
  can	
  be	
  inferred	
  from	
  efficiency	
  plots	
  	
  	
  
•  How	
  could	
  we	
  monitor	
  system	
  stability	
  ?	
  

	
  
§  Achievable	
  SNR	
  is	
  bound	
  to	
  the	
  front-­‐end	
  (sense	
  wire	
  termina8on	
  resistor,	
  sense	
  wire	
  

resistance,	
  preamplifier)	
  and	
  picked-­‐up	
  noise	
  
•  ProtoII	
  (global)	
  readout	
  noise	
  ≈	
  4.5	
  mV	
  rms	
  ≈	
  0.6	
  fC	
  	
  rms	
  (Pre	
  gain	
  ≈	
  7	
  mV/fC)	
  	
  à	
  SNR	
  =	
  10	
  

corresponds	
  to	
  a	
  6	
  fC	
  single	
  electron	
  cluster	
  collected	
  charge	
  
•  6	
  fC	
  collected	
  charge	
  corresponds	
  to	
  a	
  full	
  delivered	
  charge	
  ≈	
  2	
  (wire	
  charge	
  division)	
  x	
  ≈	
  

3.3	
  (assuming	
  a	
  30%	
  of	
  charge	
  collec8on)	
  	
  à	
  6	
  x	
  6.6	
  ≈	
  40	
  fC	
  ≈	
  2.5	
  x	
  105	
  (moreover	
  you	
  
have	
  to	
  add	
  a	
  safety	
  factor	
  for	
  gas	
  gain	
  fluctua8ons	
  …	
  )	
  	
  


