

Update on 3D-related activities in Pavia/Bergamo

<u>A. Manazza^{a,c}</u>, L. Gaioni^c, M. Manghisoni^{b,c}, L. Ratti^{a,c} V. Re^{b,c}, G. Traversi^{b,c}, S. Bettarini^{d,e}, F. Morsani^e, G. Rizzo^{d,e}

> ^aUniversità degli Studi di Pavia ^bUniversità degli Studi di Bergamo ^cINFN Pavia ^dUniversità degli Studi di Pisa ^eINFN Pisa

Outline

- Status of the new 3D submission
 - The Superpix1 chip: FE for hybrid pixels
 - The ApselVI chip: 3D DNW MAPS
- Test of 3D Tezzaron/GlobalFoudries MAPS prototypes
 - Tests on SDR1 digital circuits
 - Characterization of the APSEL5T-TC analog front-end
 - Effects of ionizing radiation on APSEL5T-TC and single transistors
- Conclusions and plans for the future

2nd 3D Prototype Submission

- The VIPIX collaboration is at an advanced stage in the design work for a second MPW run with the 3D Tezzaron/Globalfoundries process
 - The Superpix1 chip
 - The ApselVI chip

Small test structures:

- Test chip for hybrid pixels
- DNW MAPS test chip

Superpix1 Analog Front-End $C_{\rm F}$ ANALOG High C_2 LAYER Discriminator resistivity V_{TH}/ Preamplifier sensor Shaper C_1 Polarity selector **Q**δ(†) \mathcal{C}_{D} AVDD AGND PS HIGH_GAIN \mathbf{I}_{F} AVDD INJ CK V_{FBK,PA,N} Pulser Digital Threshold INJ_ENABLE Correction HIT V_{FBK,PA,P} In-pixel MASK logic DATA_IN MASK INJ BO B1 B2 Β3 DIGITAL Shift register LAYER DATA_CK December 12th, 2012 A. Manazza 6th SuperB Collaboration Meeting

Superpix1 Analog Front-End

Main front-end design features	
Analog Power Dissipation $[\mu W/pixel]$	13.5
Peaking Time (Q _{inject} = 16000 e-) [ns]	250
Charge sensitivity [mV/fC] @ DAC outPUT	48
ENC @ C _D = 150 fF [e- rms]	180
Threshold dispersion (before/after correction) [e- rms]	560/65

6th SuperB Collaboration Meeting

A. Manazza

December 12th, 2012

ApselVI front-end architecture

- O DNW sensor
- \bigcirc Charge preamplifier with a $C_{\rm f,pa}$ countinously discharged by an NMOS biased in deep subthreshold region
- RC-CR shaper with a transconductor feedback network:
 - Vref chip-wide distributed by an external voltage reference (not affected by voltage drop issues)

ApselVI Main Analog Features

A. Manazza

Main front-end design features		
Charge sensitivity [mV/fC] @ DAC outPUT	720	
peaking time [ns]	300	
ENC @ C _D =300 fF [e- rms]	40	
Threshold dispersion pefore/after correction [e- rms]	106/15	
[NL (@ 0/2000 e-) [%]	1.8	
Power consumption [µW]	36	
Pixel pitch [µm]	50	
Matrix size	128×96	

1st 3D Tezzaron/Globalfoundries run

- In 2009, the Italian VIPIX collaboration submitted 3D active pixel devices in the first run of the 3DIC Consortium hosted by Fermilab
- In this run, we designed 3D MAPS with two layers ("tiers") of the 130 nm CMOS process by Chartered Semiconductor, vertically integrated with the Tezzaron interconnection technology
- Tests on structures belonging to the first run are ongoing

Tezzaron 3D Test Structures

- SDR1 prototype
 (Sparsified Digital Readout 1)
 - pitch = 20 µm
 - Application: ILC
 - FE: shaperless
 - DUTs: matrices with sparsified readout

- APSEL5T-TC prototype
 (Active Pixel Sensor ELectronics)
 - pitch = 40 µm
 - Application: SuperB
 - FE: shaperless
 - DUTs: 3x3 matrices

SDR1 chip (Sparsified Digital Readout 1)

Tests on SDR1 digital circuits show the full functionality of vertically integrated chips

APSEL5T-TC Analog Front-End Characterization

Ο

 Charge sensitivity in good agreement with values obtained by means of charge injection

12

M1 matrix - 3x3 cluster signal

Laser Measurements

M1 matrix: PA with standard layout input transistor

M2 matrix: PA with enclosed layout input transistor

Conclusions and plans for the future

- Two different approaches have been considered for the design of the readout chip in view of applications to the SVT LayerO of the SuberB factory
- ApselVI and SuperPIX1 will be fabricated in the Tezzaron-Globalfoundries
 130 nm 3D CMOS technology (to be submitted Q1 2013)
- Tests on the SDR1 digital circuits pointed out the full functionality of the prototypes designed in the Tezzaron/Globalfoundries 3D technology
- \bigcirc APSEL5T-TC charge collection properties have been characterized by means of radiation sources and IR laser. Radiation hardness tests (γ -rays) have been performed also on single transistors
 - Significant increase in equivalent noise charge
 - ELT are required to avoid excessive 1/f noise increase
- Measurements on 3D prototypes are still in progress

Superpix1 Analog Front-End features

Threshold Correction Scheme

 Development of a 3D front-end chip to be vertically integrated with fully depleted detectors through some more (bump bonding) or less (direct bonding) standard technique

From 2D to 3D DNW MAPS

- Cell functionalities are split onto two different CMOS layers \rightarrow higher functional density at the pixel level
- Sensor and analog front-end can be integrated in a Ο different layer from the digital blocks \rightarrow less digital to analog interference
- PMOS competitive n-wells can be placed on a Ο separate layer from the sensor \rightarrow improved collection efficiency

- The 2nd wafer thickness is about 12 µm
- More room for both analog Ο and digital power and signal routing

A. Manazza