
WAN data access
studies

Paolo Franchini

13 december 2012

2

Library	 state-‐of-‐art:	 libSbNet

l Grid community interest in WAN data access via http protocol
− “Towards an HTTP Ecosystem for HEP Data Access” https://

indico.cern.ch/conferenceDisplay.py?confId=218328
l The library takes as input a catalog file identifier (lfn://), and returns a

TURL identifier, after checking its actual availability.
l The supported protocols are file, gsiftp and http. It is possible to

select the protocols and their priority with the configuration file.
l The library first of all tries to use the default SE, with the selected

protocols. Then if the default is not defined, builds the list of all SRMs
that holds a file copy, in "ping time" order, and tries to obtain the TURL
from the "nearest" one. The search continues until a TURL is found or
the SRM list ends.

https://indico.cern.ch/conferenceDisplay.py?confId=218328
https://indico.cern.ch/conferenceDisplay.py?confId=218328
https://indico.cern.ch/conferenceDisplay.py?confId=218328
https://indico.cern.ch/conferenceDisplay.py?confId=218328

3

Data access test
l Test goals:

− measure the latency period due to the increase number of parallel
read stream

− measure the latency period due to the increase of round trip time
elapsed between source and destination

− support the development of a general, experiment wide, data access
software layer

− start the characterization of a concrete WAN scenario, including
traffic impact, typical latency, network resource overloading

4

Test bed validation
l Test layout definition of the preliminary tests:

− 1, 5, 10, 50 and 100 parallel set of read streams

− each stream reads a random files according to a trace file obtained from an analysis application

− 250 compressed root files, 476 MB each

− data sources: INFN-T1 and INFN-Bari

− jobs destinations: INFN-T1, INFN-Napoli, INFN-BARI, IN2P3 and FNAL

− measured the time of the cURL execution

5

Next test desing
l Use ROOT to perform the file accesess using the protocols

already implemented:
− class TFile for file protocol
− class TWebFile for http protocol
− class TNetFile for root protocol

l Measure the latency in a real analysis application provided by
Elisa Manoni

l More statistical relevance, running each job 10-50 times
l Control over the network (LHCONE infrastructure) using monitors

and network performances tools
l Results within February 2013

Test and development on
HadoopFS

6

Giacinto DONVITO
ReCaS-INFN

Giovanni MARZULLI
GARR-INFN

HDFS features

Hadoop Distributed File System
� Open source
� Large dataset
� Fault tolerance
� Scalability
� Commodity hardware
� Rack awareness

7

HDFS Architecture

8

Placement policies
� Default policy
◦ 1 replica on a node of local rack, 2 replicas on

different nodes in the same remote rack
� Developed policies
◦ One Replica per Rack
◦ Hierarchical

9

Default placement policy

10

HA namenode

11

Namenode test
� Metadata corrupted or lost
◦ Recovery from secondary namenode

� hadoop-daemon start namenode –importCheckpoint

� Namenode down
◦ Waiting of clients and datanodes
◦ Failover

� hdfs haadmin –failover nn1 nn2

12

Datanode test:
lost or corruption data

� Automatic recovery

13

Datanodes test
� Under-replicated blocks
◦ After datanode failure

� Over-replicated blocks
◦ After recovery and restart datanode

� Mis-replicated blocks
◦ Policy violation

� Datanode failure during writing/reading
◦ Switch to other live nodes

� Workload

14

One replica placement policy
� 1 replica per rack
� More reliability
◦ 2 racks fault tolerant (if replication factor is 3)

� More data distribution
� Less read cost
◦ Reading from nearest replica

� More write cost
◦ More data transmission

15

One replica placement policy

16

Hierarchical placement policy
� Awareness of hierarchical network

topology
� 2 replicas in local farm but in different

racks
� 1 replica on a rack of remote farm
� Tolerance of whole farm fault

17

Hierarchical placement policy

18

Development of custom policies
� BlockPlacementPolicy Java abstract class
◦ Default implementation
� BlockPlacementPolicyDefault

◦ Custom implementations
� BlockPlacementPolicyOneReplica
� BlockPlacementPolicyHierarchical

� The Policy is configurable in the
configuration file

19

Geographic cluster
� INFN Bari and INFN Napoli (ReCaS sites)

� Functionality test
� Custom policies test

20

INFN Bari (pre)production cluster

21

Ganglia monitoring

22

Custom monitoring
� We developed a monitoring system in

order to track:
◦ Locations of blocks placements
� Recent blocks history
� Corrupted or missing blocks

◦ Blocks operations
� Stored in a relational database

23

Automatic node installation and
configuration

� Script procedure to run on each node,
that provide
◦ Software installation
� Packages repository

◦ Configuration based on nodetype
� formatting, mounting and assigning unused disks/

partitions to the file system

◦ Process restart if node falls

24

Performance test

� Writing and reading mean rates on 3000
file operations

25

Parameters values

Datanode Active, passive

Block size (MB) 64, 128, 256

Client Hadoop, Fuse-dfs

Replication factor 1,2

File dimension (MB) 4096

Complete dataset 3K File operations

Test setting

Performance test:
statistical results

Block size
Replication Factor 1Replication Factor 1 Replication Factor 2Replication Factor 2

Block size
Passive datan. Active datan. Passive datan. Active datan.

64MB 58,48 85,23 46,00 56,98

128MB 64,31 87,86 50,72 55,34

256MB 91,98 83,98 46,61 55,68

26

Block size Replication
Factor 1

Replication
Factor 2

64MB 61,57 62,29

128MB 67,59 60,87

256MB 66,24 61,84

Writing mean rate (MB/s)

Reading mean rate (MB/s)

Performance test: real case
� 600 jobs of Pamela reading ROOT files

from HDFS via Fuse-dfs

27

Future works
� Infrastructure expansion
◦ Long-run test on cluster up to 300 nodes and

500TB of disk space
◦ Up to 4000 jobs simultaneously running
◦ Scalability test

� Geographic test of 3 sites-cluster
◦ Add another ReCaS site to the existing cluster

� Research of optimal configuration
◦ Block size
◦ Fuse-dfs

� Production of namenodes federation

28

Conclusions
� Strength of data reliability
� Strength of automatic recovery behavior
� Optimization in order to increase

reliability and performance
� Positive feedback by first real users

29

People involved
� Giacinto Donvito (ReCaS -- INFN)
� Giovanni Marzulli (GARR -- INFN)

