6th SuperB Collaboration Meeting 11-14 December 2012 INFN - LNF

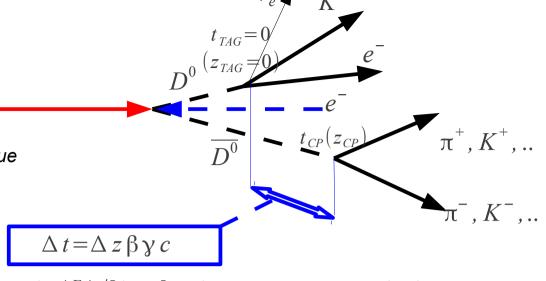
CP Violation at the Charm threshold: SuperB vs SuperD vs Others, preliminary studies

Based on Bevan-Inguglia SuperB Internal Note SB-PHY-2012-020 + recent update

13/12/2012
Gianluca Inguglia
Queen Mary, University of London
g.inguglia@qmul.ac.uk

A Bet On SuperB...

A Bet On SuperB...


Outline

- Short introduction on time-dependent analysis
- Reconstruction and vertexing: $D^0 \rightarrow \pi^+ \pi^-$
- 4-layers SVT performances
- Reconstruction and vertexing: $D^0 \rightarrow K_S^0 \pi^0$
- 4-layers SVT performances
- Considerations and Conclusions

TDCPV in Charm

A. Bevan- G. Inguglia- B. Meadows: *) *Phys. Rev.* **D** 84, 114009, arXiv:1106.5075

- *)"The Time-Dependent CP Violation in Charm"
- G. Inguglia, Proceedings of "Les Rencontres de physique de la vallee d'aoste" arXiv:1204.2303
- *) SuperB Internal Note SB-PHY-2012-020

$$A_{\mathit{CP}}^{\mathit{Phys}}(\Delta t) = \frac{\overline{\Gamma^{\mathit{Phys}}}(\Delta t) - \Gamma^{\mathit{Phys}}(\Delta t)}{\overline{\Gamma^{\mathit{Phys}}}(\Delta t) + \Gamma^{\mathit{Phys}}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma \Delta t/2}(|\lambda_f|^2 - 1)\cos \Delta M \, \Delta t + 2\, \Im(\lambda_f)\sin \Delta M \, \Delta t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)}$$

$$\lambda_f = \left| \frac{q}{p} \right| e^{i\phi_{MIX}} \left| \frac{\overline{A}}{A} \right| e^{i\phi_{CP}} = \left| \frac{q}{p} \right| e^{i\phi_{MIX}}$$
process
$$cu \ triangle$$

$$V_{ud}^* V_{cd}$$

$$V_{ub}^* V_{cb}$$

$$V_{us}^* V_{cs}$$

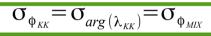
Remember from the mixing Part of this talk:

$$x = \frac{\Delta M}{\Gamma}$$
$$y = \frac{\Delta \Gamma}{2\Gamma}$$

$$\alpha_{c} = arg\left[\frac{-V_{ub}^{*}V_{cb}}{V_{us}^{*}V_{cs}}\right] = (111.5 \pm 4.2)^{\circ}$$

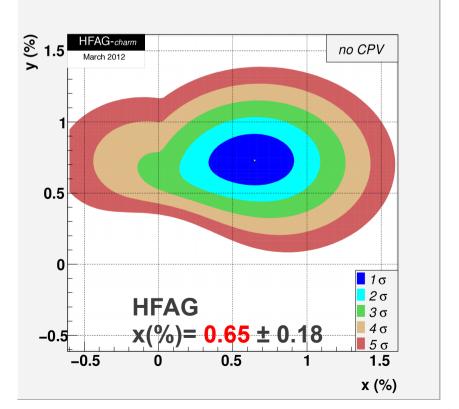
$$\beta_c = arg \left[\frac{-V_{ud}^* V_{cd}}{V_{us}^* V_{cs}} \right] = (0.0350 \pm 0.0001)^o$$

$$\gamma_c = arg \left[\frac{-V_{ub}^* V_{cb}}{V_{ud}^* V_{cd}} \right] = (68.4 \pm 0.1)^o$$
 5

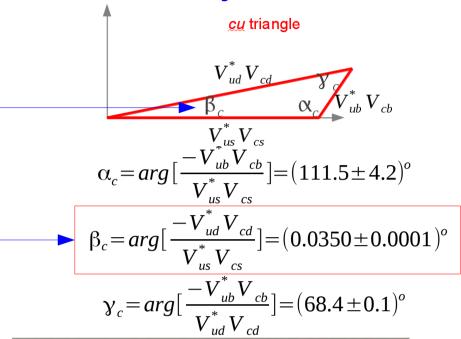

Numerical Results

 Φ_{MIX}

 $eta_{c,\mathit{eff}}$


 \mathcal{X}

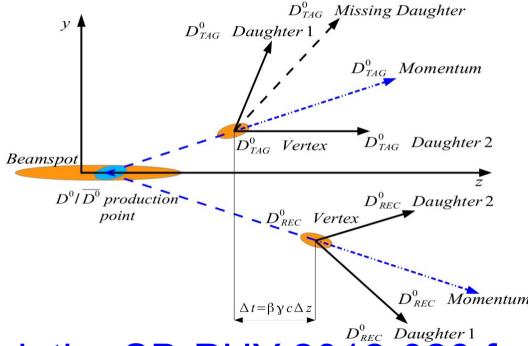
		Super B		LHCb	Belle II
Parameter	$\Psi(3770)$	$\Psi(3770)$	$\Upsilon(4S)$		
	SL	SL+K	$\hat{\pi}_s^{\pm}$	π_s^{\pm}	π_s^\pm
$\sigma_{\phi_{\pi\pi}} = \sigma_{arg(\lambda_{\pi\pi})}$	5.7°	2.4°	2.2°	3.0°	2.8°
$\sigma_{\phi_{KK}} = \sigma_{arg(\lambda_{KK})}$	3.5°	1.4°	1.6°	1.8°	1.8°
$\sigma_{eta_{c,eff}}$	3.3°	1.4°	1.4°	1.9°	1.7°



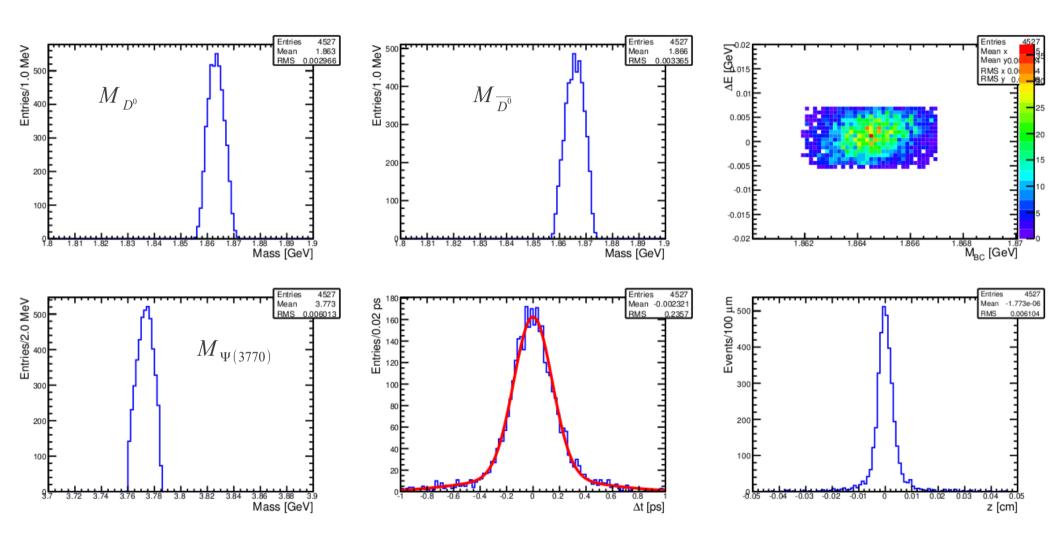
<i>cu</i> triangle
$V_{ud}^*V_{cd}$
$\beta_c \qquad \alpha_c V_{ub}^* V_{cb}$
$\overline{V}_{us}^*\overline{V}_{cs}$

Experiment/HFAG	$\sigma_x(\phi = \pm 10^o)$	$ \sigma_x(\phi=\pm 20^o) $	
Super $B[\Upsilon(4S)]$			
$D^0 \to \pi^+\pi^-$	0.12%	0.06%	
$D^0 \to K^+ K^-$	0.08%	0.04%	
Super $B \left[\Psi(3770) \right]$			
$D^0 \to \pi^+ \pi^-(SL)$	0.30%	0.15%	
$D^0 \to \pi^+ \pi^- (SL + K)$	0.13%	0.06%	
$D^0 \to K^+K^-(SL)$	ი 19%	0.10%	
$D^0 \to K^+ K^- (SL + K)$	0.08%	0.04%	
LHCb			
$D^0 \to \pi^+ \pi^- \ (1.1 \ \text{fb}^{-1})$	0.40%	0.20%	
$D^0 \to K^+ K^- (1.1 \text{ fb}^{-1})$	0.22%	0.11%	
$D^0 \to \pi^+ \pi^- (5.0 \text{ fb}^{-1})$	0.15%	0.08%	
$D^0 \to K^+ K^- (5.0 \text{ fb}^{-1})$	0.09%	0.04%	
Belle II			
$D^0 \to \pi^+\pi^-$	0.14%	0.07%	
$D^0 \to K^+ K^-$	0.10%	0.04%	
HFAG	0.20%		

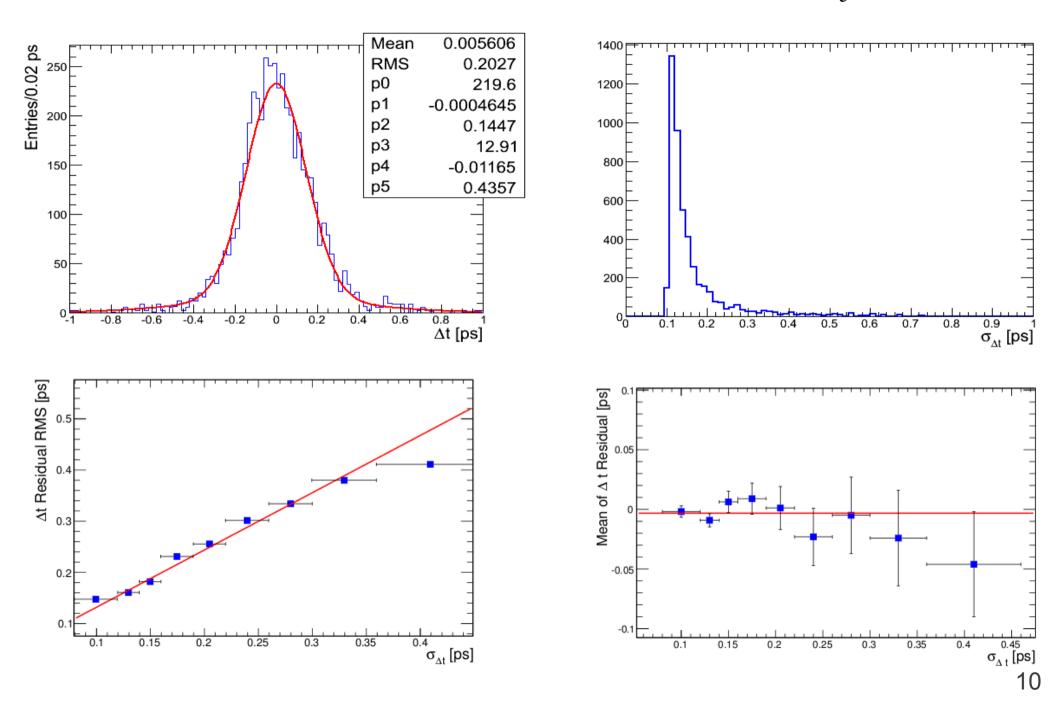
Just to stress you...



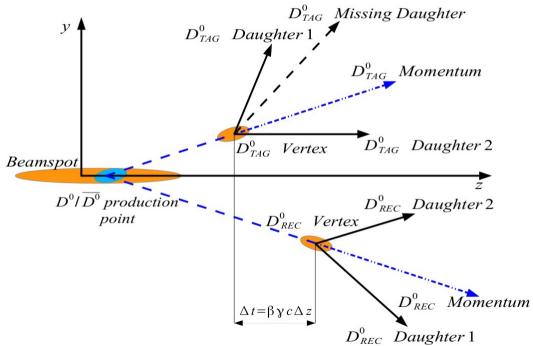
- -When looking for new physics, a measurement of the $\beta_{c,\text{eff}}$ angle in the charm triangle represents the best place to start with for a few reasons.
- No running or planned experiments can measure the exact value of this angle, since it is too small. Any measurement of this angle has to be consistent with zero. If a large value would be measured, then there is new physics.
- -LHCb measurements on timeintegrated CP violation may suggest a large value of this angle.
- -At charm threshold a first measurement of this angle would require only three months of data taking, while years for other experimental environments.
- -Few ab⁻¹ of data at charm threshold has not competitors in such a measurement.


FastSim at Charm Threshold: SuperB configuration with bg=0.56 and SVT Layers 0-1-2-3-4-5

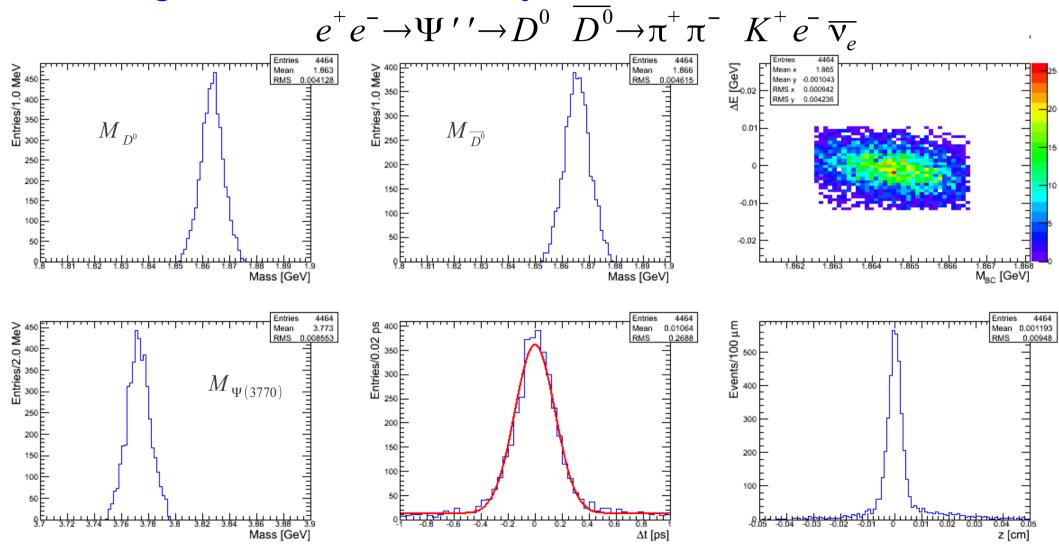
$$e^+e^- \rightarrow \Psi'' \rightarrow D^0 \overline{D}^0 \rightarrow \pi^+\pi^- K^+e^-\overline{\nu}_e$$


Please check the SB-PHY-2012-020 for all the details of the study and for comparison with bg=0.28, 0.9

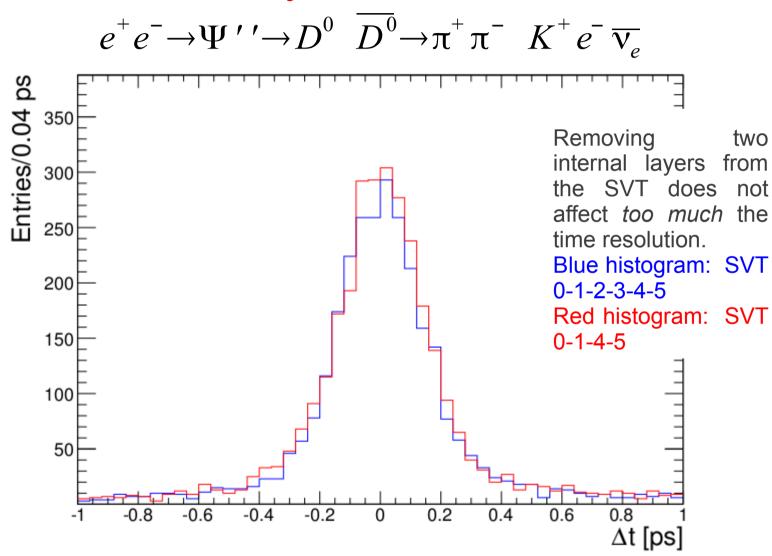
$$e^+e^- \rightarrow \Psi'' \rightarrow D^0 \overline{D^0} \rightarrow \pi^+\pi^- K^+e^-\overline{\nu_e}$$


Detailed results of the analysis are available in SB-PHY-2012-020

$$e^+e^- \rightarrow \Psi'' \rightarrow D^0 \overline{D^0} \rightarrow \pi^+\pi^- K^+e^-\overline{\nu_e}$$

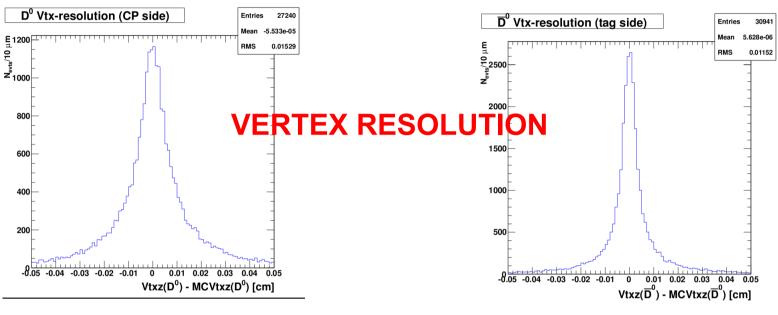

FastSim at Charm Threshold: New configuration with bg=0.56 and SVT Layers 0-1-4-5

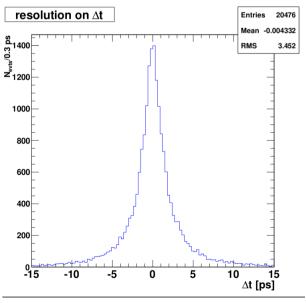
$$e^+e^- \rightarrow \Psi'' \rightarrow D^0 \overline{D^0} \rightarrow \pi^+\pi^- K^+e^-\overline{\nu}_e$$

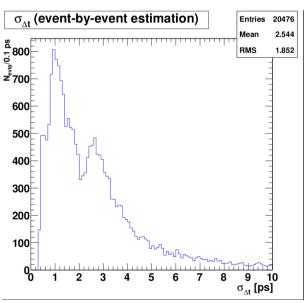

Preliminary study...

FastSim at Charm Threshold: New configuration with bg=0.56 and SVT Layers 0-1-4-5

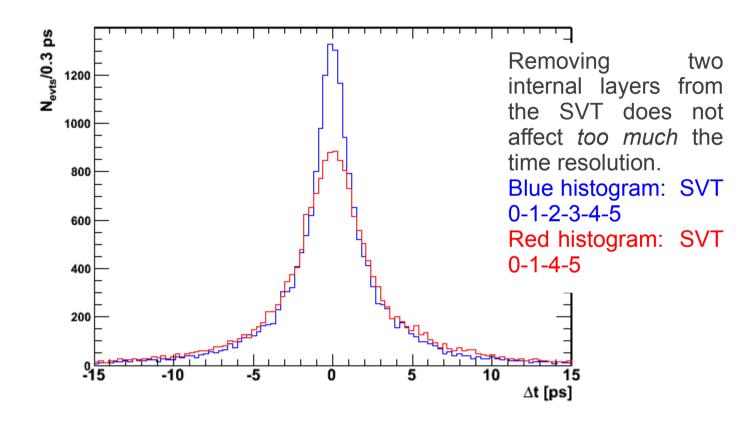
Detailed results of the analysis will be available soon..


FastSim at Charm Threshold, bg=0.56: 6-layers SVT vs 4-layers SVT




Detailed results of the analysis will be available soon..

From Alexander Hahn, QMUL


$$e^{+}e^{-} \rightarrow \Psi'' \rightarrow (D^{0}) (\overline{D^{0}}) \rightarrow (K_{S}^{0}\pi^{0}) (\pi^{+}\pi^{-}) \rightarrow (\pi^{+}\pi^{-}\gamma\gamma) (\pi^{+}\pi^{-})$$

FastSim at Charm Threshold, bg=0.28: 6-layers SVT vs 4-layers SVT

Detailed results of the analysis will be available soon..

Consideration and Conclusion

- Time-dependent studies at the charm threshold are moving forward.
- Results of this preliminary analysis show that a time-dependent analysis can be performed at the charm threshold with bg=0.56 obtaining a very good time resolution. This same study has shown that a time-dependent analysis for the decay channel of the D⁰ meson to K_s π^0 can be performed but it has a price, and the price is efficiency...we can do it, but loosing efficiency...What does it mean? It means that with a boost factor bg=0.56, in the worst case scenario, we can perform time-dependent measurements in ANY CHANNEL...but now we have bg=0.38, so get in touch and see what to do...
- The SuperB project has been cancelled, but we can still move forward and evaluate how realistic is the possibility to build a super charm/tau factory. We can do it...no, we have to do it...
- At charm threshold one may think to have a 4-layers SVT rather than a 6-layers SVT, reducing the cost and the material. We have shown that such a solution would not affect drastically the time and vertex resolution.
- One should also consider that with a few ab^{-1} of data collected at charm threshold (1.0 ab^{-1} ~six months) the measurement of time-dependent CP violation in charm, and the consequent measurement of the angle $\beta_{c,eff}$, there are not competitors.

We shouldn't go through this new experiment..we MUST do it..let's start...

...Many Thanks...