Precision electroweak measurements at SuperTC with polarised beams

LNF SuperB Meeting 13 December 2012

SuperB -> SuperTC:

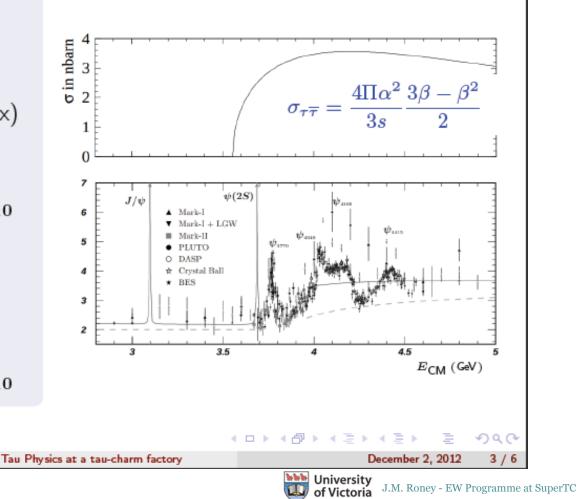
 $\mathcal{L}=10^{35}$ cm⁻²s⁻¹, E_{cm}~4GeV, asymmetric e⁺e⁻ collider

- A polarised beam enables an electroweak program: caveat –Super**T**C numbers are 'rough & new'
- Left-Right Asymmetries (A_{LR}) yield measurements of unprecedented precision of the neutral current vector couplings (g_v) to each of five fermion flavours, f:

■ beauty (D) ← not available at Tau-Charm

- charm (U)
- Recall: g_V^f gives θ_W in SM $\begin{cases} g_A^f = T_3^f \\ g_V^f = T_3^f Q_f \sin^2 \theta_W \end{cases}$ • tau
- muon
- electron

Number of tau pairs at au - c factory with $\mathcal{L} \simeq 10^{33}$ cm $^{-2}$ s $^{-1}$


$\sigma(e^+e^- \to \tau^+\tau^-)$ around the $\Psi(3770)$ peak

Super charm-tau factory

- $\sigma_{\tau\overline{\tau}}(m_{\tau\overline{\tau}}) \simeq 0.1 \text{ nb}$
- $\sigma_{\tau \overline{\tau}}(\Psi(3770)) = 2.5 \text{ nb}$
- $\sigma_{\tau \overline{\tau}}(4.25 \, \text{GeV}) = 3.5 \, \text{nb} \, (\text{max})$
- $\blacktriangleright \mathcal{L} \simeq 10^{35} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- integrated $\mathcal{L} = 7.5 \, \mathrm{ab}^{-1}$
- Number of $\tau \overline{\tau} \approx 2.3 \cdot 10^{10}$

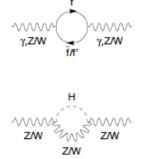
SuperB

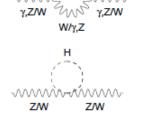
- $\sigma_{\tau\overline{\tau}}(\Upsilon(4S)) = 0.92 \,\mathrm{nb}$
- ▶ $\mathcal{L} \simeq 10^{36} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- integrated $\mathcal{L} = 75 \, \mathrm{ab}^{-1}$
- Number of $\tau \overline{\tau} = 6.9 \cdot 10^{10}$

- From Adrian Bevan's talk:
 - Use physics programme as a guide, starting from the following estimate (BES III Physics Book)
 - ~3ab⁻¹ at the ψ(3770)
 ~4ab⁻¹ at other energies

 (assume 4.03-4.17)
- CM mass σ (nb) Number of events/ab⁻¹ (×10⁹) J/ψ 3.097 3400 3400 $au^+ au^-$ 3.670 2.42.4 $\psi(2S)$ 3.686 640 640 $D^0 \overline{D}^0$ 3.7703.63.6 D^+D^- 3.7702.82.8 $\tau^+\tau^-$ 3.7702.52.5 $D_s D_s$ 4.0300.320.32 $D_{s}D_{s}$ 4.170 1.01.0 $au^+ au^-$ 4.25 3.6 3.6
- $\begin{tabular}{ll} & J/\psi \ and \ \psi(2S) \ listed \\ & only \ for \ completeness \end{tabular}$
- ^o Total number of tau pairs taken as: 2.2 x 10¹⁰
- Total number of open charm events taken as: 2.4×10^{10}

SuperTC:


For each of the four fermion flavours


(e, mu, tau, charm) Super**T**C provides:

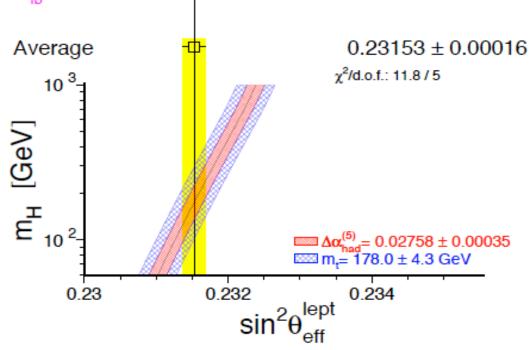
- 1. determination of the weak mixing angle, vector coupling and from that, $\sin^2\theta_W$
- 2. study of the running of $\sin^2\theta_W$
- 3. First-time precision parity violation measurements with $e^+e^-E_{cm} \sim 4$ GeV
 - unique probe of potential low energy "dark" (or "hidden") sector new gauge bosons

At lowest order, the electroweak Standard Model is extensively descriptive with only three input parameters

- □ G_F □ M_Z
- α
- Can interpret as precision constraints on M_W and the weak mixing angle, $sin^2\theta_W$
- Deviation from these constraints is a signal for new physics, but higher order corrections need
 - $\Delta \alpha_{h}^{(5)}$ (hadronic vacuum polarisation corrections)
 - $\ \ M_{TOP}$
 - $\ ^{\square } M_{HIGGS}$

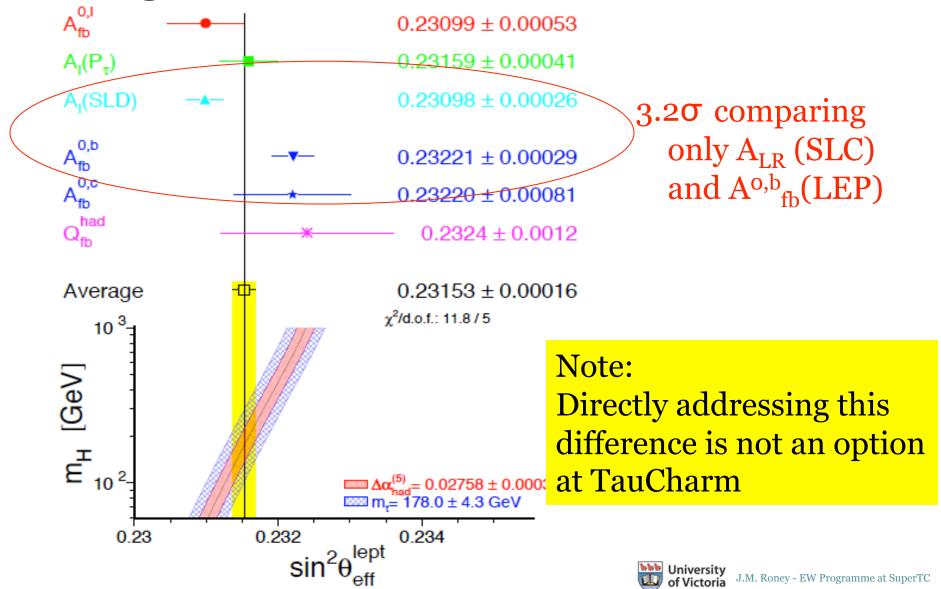
in particular for $\sin^2\theta_W$

$$\sin^2 \theta_{\overline{MS}}(M_Z) = 0.23101 + 0.00969 \left(\frac{\Delta \alpha_h^{(5)}}{0.02767} - 1\right) - 0.00277 \left[\left(\frac{m_t}{178 \text{ GeV}}\right)^2 - 1\right] + 0.0004908 \log\left(\frac{m_H}{100 \text{ GeV}}\right) + 0.0000343 \left(\log\left(\frac{m_H}{100 \text{ GeV}}\right)\right)^2$$


(using parameterization of hep-ph/0203224, hep-ph/0411179 for the MSbar renormalization scheme)

Note LEP/SLC use:
$$\sin^2 \theta_{eff}^{lept} = \sin^2 \theta_{\overline{MS}}(M_Z) + 0.00028$$

7


sin²0 measurements on the Z-Pole: A^{0,I} 0.23099 ± 0.00053 $A_{I}(P_{\tau})$ 0.23159 ± 0.00041 A_I(SLD) 0.23098 ± 0.00026 0,b A_{fb} 0.23221 ± 0.00029 0,c 0.23220 ± 0.00081 Ч_{fb} had $\boldsymbol{Q}_{\text{fb}}$ 0.2324 ± 0.0012

8

Existing tension in data on the Z-Pole:

Left-Right Asymmetries

•Measure difference between cross-sections with lefthanded beam electrons and right-handed beam electrons •At ~4GeV, polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle$$

$$\propto T_3^f - 2Q_f \sin^2 \theta_W$$

$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_R - \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_L \right\}$$

$$W^{\text{University}}_{\text{of Victors}} \text{ JM. Roney- EW Programme at Superformed Superformation of the set of$$

Left-Right Asymmetries

•Measure difference between cross-sections with lefthanded beam electrons and right-handed beam electrons •At ~4GeV, polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle$$

$$\propto T_3^f - 2Q_f \sin^2 \theta_W$$

$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_R - \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_L \right\}$$

$$W^{\text{Deriv}} M \text{ Reps. EW Programme at Superformation of Victorial Jack Representation of Victorial Jack$$

Left-Right Asymmetries

- •Same technique as A_{LR} measurement performed by SLD at the Z-pole used to get the single most precise measurement of $\sin^2\theta_{eff}^{lepton} = 0.23098 \pm 0.00026$ •SuperB would have had a $\sin^2\theta_{eff}^{lepton}$ error of ± 0.0002 with 70% electron beam polarisation and 75 ab⁻¹ of data assuming lepton universality and 0.5% uncertainty on *<Pol>*
- •Super**T**C: a $\sin^2\theta_{eff}^{lepton}$ error of ±0.0014 with 70% electron beam polarisation and 7 ab⁻¹ of data assuming lepton universality and 1% uncertainty on *<Pol>*

Estimates of Polarisation Systematic errors from Compton Polarimeter... arXiv:1009.6178

Table 16.4: Systematic errors expected for the polarization measurement.

Item	δP/P
Laser Polarization	<0.1%
Background uncertainty	<0.25%
Linearity of phototube response	<0.25%
Uncertainty in dP (Difference between the luminosity weighted polarization and the	
Compton IP polarization. Includes uncertainties due to beam energy and direction	
uncertainties.)	<0.4%
Uncertainty in asymmetry analyzing power	~0.5%
Total Systematic Error	< 1.0%

$$\begin{aligned} & \text{Tau Polarisation as Beam Polarimeter} \\ P_{z'}^{(\tau-)}(\theta, P_e) = -\frac{8G_F s}{4\sqrt{2}\pi\alpha} \text{Re} \bigg\{ \frac{g_V^l - Q_b g_V^b Y_{1s,2s,3s}(s)}{1 + Q_b^2 Y_{1s,2s,3s}(s)} \bigg\} \bigg(g_A^{\tau} \frac{|\vec{p}|}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \bigg) \\ & + P_e \frac{\cos\theta}{1 + \cos^2\theta} \end{aligned}$$

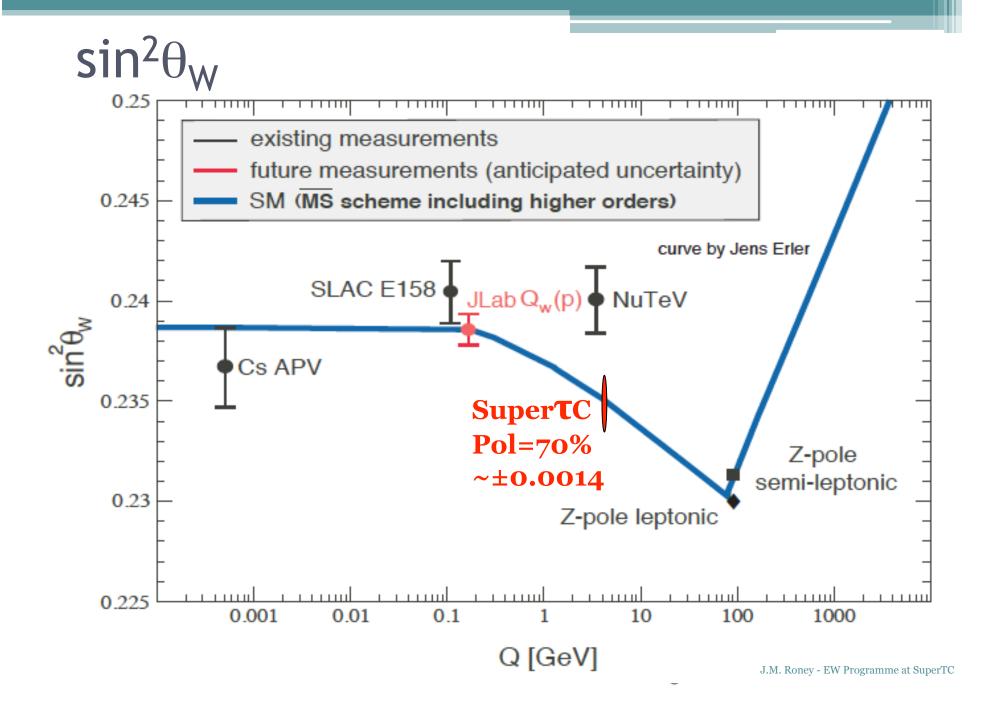
- Dominant term is the polarisation forwardbackward asymmetry (A^{pol}_{FB}) whose coefficient is the beam polarisation
- Measure tau polarisation as a function of θ for the separately tagged beam polarisation states
- Because it's a forward-backward asymmetry it doesn't use information we'd want to use for new physics studies & note EW contribution is small

Tau Polarisation as Beam Polarimeter

- Advantages:
 - Measures beam polarisation at the IP: biggest uncertainty in Compton polarimeter measurement is likely the uncertainty in the transport of the polarisation from the polarimeter to the IP.
 - It automatically incorporates a luminosity-weighted polarisation measurement
 - If positron beam has stray polarisation, it's effect is automatically included
- Experience from OPAL (at LEP) indicates a 0.2% on systematic error on the A^{pol}_{FB} is achievable, translates into 0.5% error on the beam polarisation
- Need to assess if statistical error on A^{pol}_{FB} still significantly smaller than this systematic error at SuperTC

Tau Polarisation as Beam Polarimeter

- Major Question:
 - At 3770MeV, the CM momentum of a tau is 630MeV
 - Is this sufficient for the tau's to still yield a sufficiently precise measurement of A^{pol}_{FB}?
 - This would have to be studied but a Compton
 Polarimeter is more important at SuperτC factory;
 - Could limit systematic error on A_{LR} to 1% (below expected statistical error)


SuperTC Left-Right Asymmetries

Fermion flavour	No. events (billions) (assumed eff %)	No. selected events (billions)	$\frac{SM}{g_V}^f$ (M _z)	A _{LR} 70% Pol	A _{LR} Rel. Stat error (%)	g v ^f Total Error	Sin²θ _W (M _z) Total Error (LEP/SLC values)
charm	24 (30%??)	7.2	+0.1920 ±.0002	-5x10 ⁻⁴	2.6%	0.005	±0.004 (0.2355±0.0059)
tau	22 (25%)	5.5	-0.0371 ±.0003	-6x10 ⁻⁵	28%	0.010	±0.005
muon	56 (54%)	30	-0.0371 ±.0003	-6 x10 ⁻⁵	12%	0.004	±0.002
electron		~30	-0.0371 ±.0003	-6 x10 ⁻⁵	12%	0.004	±0.002
leptons			-0.0371 ±.0003	-6x10 ⁻⁵	7%	0.003	±0.0016 (0.23128±0.00019)
all						S	±0.0014

Comparisons with present neutral current vector coupling uncertainties Physics Report Vol 427, Nos 5-6 (2006), ALEPH, OPAL, L3, DELPHI, SLD

charm:	$+0.1873 \pm 0.0070$	cf SuperTC ±0.005			
tau:	-0.0366±0.0010	cf SuperTC ±0.010			
muon:	-0.0367±0.0023	cf SuperTC: ±0.004			
electron: -0.03816±0.00047 cf Super T C: ±0.004					

LEP/SLC: Lepton $g_V = -0.03753 \pm 0.00037$ SuperTC error = ± 0.003 (SuperB: ± 0.00038)

Some comments...

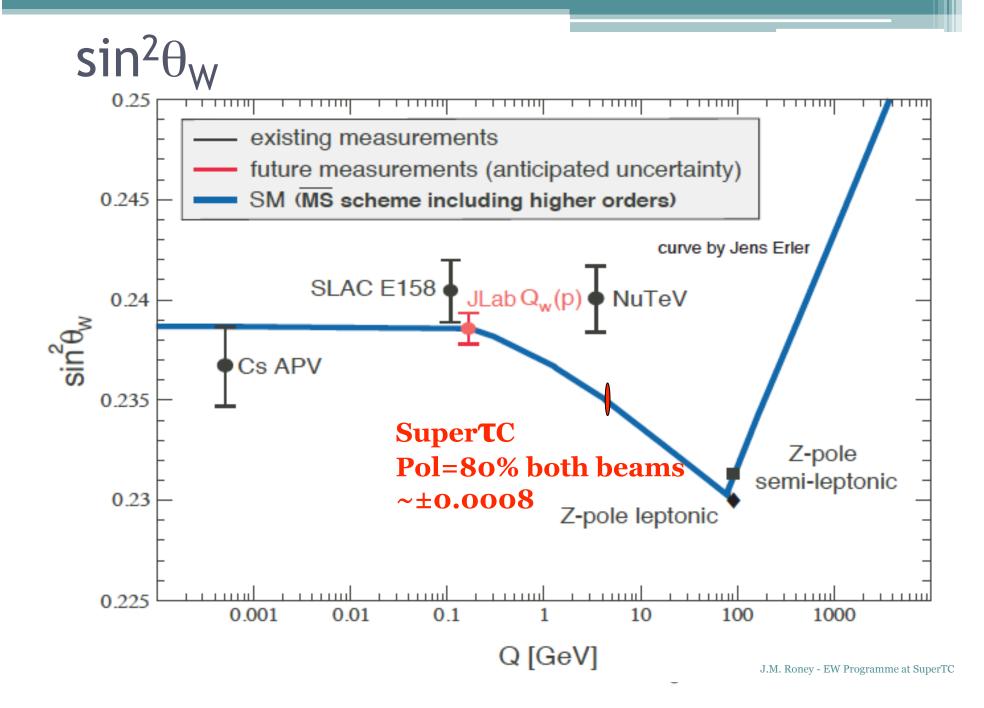
These estimates base on some assumptions on event selection efficiency that need to be evaluated with detailed studies (i.e. 30% efficiency for selecting charm events just an assumption)

Also, they have assumed a polarisation of 70%

 the relative errors on the couplings are linearly dependent on the polarisation – so 80% polarisation will decrease uncertainties by 7/8.

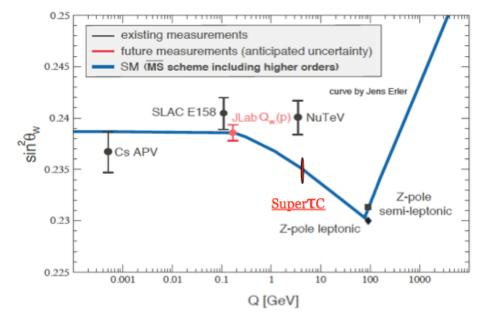
What if both beams are polarised ? (possibility suggested by Marica Biagini on Wednesday...)

- If both beams are polarised, the effective value for the polarisation (P_{eff}=P(e-)- P(e+)/(1-P(e-)*P(e+))) is higher
- Also, cross-section σ ~ (1-P(e-)*P(e+)) σ₀
 e.g. P(e-)=0.8; P(e+)=-0.8 increase σ by ~1.64
 Uncertainties on A_{LR} and therefore on couplings scale as:
 P(e-)/P_{eff}√((1-P(e-)*P(e+)) cf single polarised beam
 e.g. P(e-)=0.8; P(e+)=-0.8 -> uncertainties decrease by 0.56 cf to values for P(e-)=0.7; P(e+)=0



Comparisons with present neutral current vector coupling uncertainties with P(e-)=0.8; P(e+)=-0.8

Physics Report Vol 427, Nos 5-6 (2006), ALEPH, OPAL, L3, DELPHI, SLD


charm:	$+0.1873 \pm 0.0070$	cf SuperTC ±0.003				
tau:	-0.0366±0.0010	cf SuperTC ±0.006				
muon:	-0.0367±0.0023	cf SuperTC: ±0.002				
electron: -0.03816 ± 0.00047 cf SuperTC: ± 0.002 error on $\sin^2\theta_W$ using all channels: ± 0.0008						

2<u>3</u>

SuperTC probes both high and low energy scales

- Sensitivity to Dark Sector light neutral gauge bosons in 4GeV regime
 - Because couplings are small, this sector would have been hidden

Summary

- Super**T**C with $\mathcal{L}=10^{35}$ cm⁻²s⁻¹ , ~3ab⁻¹ at the $\psi(3770)$
- ~4ab⁻¹ at other energies and electron beams with 70% polarisation
- unique window on electroweak physics
 - SuperτC is the only place where the charm, tau, muon, and electron couplings will be measured at 4GeV
 - uncertainty on charm and perhaps muon vector coupling competitive with that from the Z-pole, but measured at 4GeV.
- Provides measurements complementary with those at the Z-pole but at 4GeV centre-of-mass:
 - will probe new physics at TeV scale complementary to LHC
 - will probe 'Dark Sector'

Summary

- Because $A_{LR} \propto s$ we lose ~10.58²/4² in relative precision of SuperB even if the number of events is the same
- Because relative errors are larger than SuperB's projected errors, the demands on the beam polarisation systematic uncertainties are relaxed cf SuperB
- Higher polarisation and/or polarisation of both beams will improve uncertainties on couplings
- Polarising both beams increases cross sections
- Still need to see if tau polarisation forwardbackward asymmetry determination of the beam polarisation is sufficient on its own; 1% Compton Polarimeter is sufficient.

Additional slides

27

SuperB Left-Right Asymmetries

Fermion flavour	o (nb) eff %	Number Selected events (billions)	$\frac{SM}{g_V}_{(M_z)}$	A _{LR} 70% Pol	g _v f Total Error (%)	Sin²θ _W (M _z) Total Error
beauty	1.1 (95%)	38	-0.3437 ± .0001	-0.013	0.5	0.0026
charm	1.3 (30%)	29	+0.1920 ±.0002	-0.003	0.5	0.00076
tau	0.92 (25%)	17	-0.0371 ±.0003	-3x10 ⁻⁴	2.2	0.00043
muon	1.15 (54%)	46	-0.0371 ±.0003	- 3x10 ⁻⁴	1.5	0.00027
electron	40 (1.5%)	40	-0.0371 ±.0003	- 3x10 ⁻⁴	1.5	0.00027
leptons			-0.0371 ±.0003	- 3x10 ⁻⁴	1.0	0.00019

