
Computing

F. Bianchi
Torino

VI SuperB Collaboration Meeting

Frascati, December 12th, 2012

Outline

• Status of SuperB computing effort.

• A computing model for a tau-charm
factory.

• Outlook.

2 F. Bianchi

Status of SuperB Computing
Effort

Computing Chapter of Detector TDR

• Text is completed.
– Reviewed by E. Luppi.

• Many thanks to all the people who

contributed text.

• A special thank to S. Luitz for all is hard
work in improving the content and the
wording of this chapter.

F. Bianchi 4

Production System Upgrade (1)

•Book-keeping database (sbk5) modified to implement new
production system features on FullSim session:
‣Request: new request and production request definition
[TESTED]

‣Jobs: new fields and constraints to implement
functionalities to re-submit failed job in bulk mode (job
re-submission) [ONGOING]

•Job Wrapper (Severus):
‣Submission: changes to implement job re-submission
functionality [ONGOING]

‣Stage-in: new fail-over mechanism for the stage-in phase
implemented [TO BE TESTED]

C. De Santis, A. Fella, E. Luppi, M. Manzali, L. Tomassetti

Production System Upgrade (2)

•Web-UI code (PHP, JavaScript, Smarty) modified to handle
new features and sbk5 updates on FullSim session:
‣Production: new production creation interface with a
robust software version and parameters management
[TESTED]

‣Production Requests: possibility to create different
production requests having the same physical parameters
by changing the number of events per job [TESTED], new
input mode for job re-submission [ONGOING]

‣Expert Submission Interface: “Job Details” form section
updated keeping previous functionality for production
initialization [TESTED]

‣Shift Submission Interface: minor changes [TESTED]
‣Job Monitor: minor changes [TESTED]
‣Submission Monitor: minor changes [TESTED]

Data Access Library
 R&D work for the development of a

software library with an optimized data
access management

 Features:
− intelligent pre-fetching and buffering

algorithms
− logical file name map with different physical

storage URL
− possibility of supporting storage protocols not

supported by ROOT
− read-head buffer and caching mechanism in

order to solve the overhead problem

D. Diacono, G.Donvito, A. Fella, P. Franchino, E. Manoni, S. Pardi

Distributed HadoopFS
• INFN-Bari has developed and tested a new policy in

order to use Hadoop file-system for an automatic data
replication among different site in a Wide Area
Network environment

• The test were performed successfully between Bari and
Napoli

• We want to go on testing and stressing this solution to
understand if it fits the requirements of a production
usage

G. Donvito, G. Marzulli, S. Pardi

Data access test
 Test goals:

− measure the latency period due to the increase number of parallel read
stream

− measure the latency period due to the increase of round trip time
elapsed between source and destination

− support the development of a general, experiment wide, data access
software layer

− start the characterization of a concrete WAN scenario, including
traffic impact, typical latency, network resource overloading

 Test layout definition:
− 1, 5, 10, 50 and 100 parallel set of read streams
− each stream reads a random files according to a trace file obtained

from an analysis application
− 250 compressed root files, 476 MB each
− sources: INFN-T1 and INFN-Bari
− destinations: INFN-T1, INFN-Napoli, GRIF and FNAL
− measured the time of the cURL execution

D. Diacono, G.Donvito, A. Fella, P. Franchino, E. Manoni, S. Pardi

10

DIRAC evaluation

 DIRAC: framework to manage and use a distributed computing

infrastructure

− Grid, cloud, Boinc, local farm, desktop computing
− User mangement, grid certifcate, VOMS, workload and data

management, FTS transfer, 2 File Catalog (LFC and DFC),
monitoring, accounting, workflow

− Pilot job paradigm
− Largely adopted (not only) in HEP community

 LHCb, BelleII, BESIII, ILC, CTA, etc.
• Supported and developed by

• DIRAC developers team
• DIRAC community

11

DIRAC for SuperB

 Manage both EGI and OSG sites
 Single administration point – minimize human effort
 Mass data transfer successfully tested
 Simulation Production successfully tested

− Stagein, Stageout, Severus job wrapper
 Job priority policy defined by VO manager
 Web interface for every user type (physicist, shifter,

manager, admin, etc.)
 Possibility to use Cloud Resources (Amazon, OpenStack,

occi-compatible cloud)

12

SuperB DIRAC

 Extending DIRAC for SuperB needs

 Interaction between DIRAC and bookkeeping database (SBK5)

− Load, add and modify
 Severus job wrapper porting in DIRAC

− Use DIRAC capabilities where possibile to benefit of DIRAC
advanced features
 Stagein, stageout, software setup, SBK5 interactions

 Simulation Production

− Porting WebUI functionalities in DIRAC
 Site management
 Session management
 Job submission
 Output management

13

SuperB Dirac project credits

 Marcin Chrzaszcz – Kracow

 Giacinto Donvito - Bari

 Armando Fella – Pisa

 Rafał Grzymkowski – Kracow

 Bruno Santeramo – Bari

 Miłosz Zdybał - Kracow

• Thanks to DIRAC developers, expecially to: Andrei Tsaregorodtsev,
Federico Stagni, Matvey Sapunov, Krzysztof Daniel Ciba, Ricardo
Graciani, Adrian Casajus

Parallel Computing R&D Activities (1)
 We implemented a prototype, based on the BaBar FastSim

framework, to exploit parallelism inside current analysis

 Using the Intel TBB flow-graph object we can realize

parallelism not only at event but also at module level
− This also give us the possibility for an algorithm level

parallelism that can be explored in the future

 Measurements done on the prototype demostrate that:
− the model can be used to reduce the total memory

footprint
− the scheduling schema may be employed to efficiently

use systems with large number of cores

V. Ciaschini, M. Corvo, F. Giacomini, A. Gianelli, S. Longo, R. Stroili

Parallel Computing R&D Activities (2)

 Some limitations for parallelism have been found in the
current framework code:
− use of Common Blocks in Fortran code
− widespread usage of static objects
− some module are not really OOP-compliant, in particular

for what concern encapsulation
− auxiliary data structures (e.g. Event) don't allow

concurrent data access

 With the accumulated experience we are now ready:
− to formalize specifications for analysis modules
− to show an initial proposal design of a natively parallel

architecture framework for experiment analysis

Bruno Multi-Thread (1)
• Full simulation software is not exploiting at all the many

parallelization possibilities offered by modern computing
– Not only SuperB, but the vast majority of existing HEP

simulations run sequential single-thread programs

• Main limitation in the past has been that the main
simulation toolkit (Geant4) was not designed to be run in
any non-sequential mode

• Recently, things have changed, with the release of a
prototype of G4 suitable for multi-thread applications
– Result of several years of development, now ready for usage

by “experts”, even though most likely not yet for official
deployment

• SuperB was in the very interesting situation of being a new
project, with a brand new simulation software
– The decision was taken to experiment with the new G4

prototype and adapt Bruno to use it
F. Bianchi 16

A. Di Simone

Bruno Multi-Thread (2)
• Geant4 MT is a variant of the stock Geant4 distribution, whose

general architecture has been modified to allow event-by-event
parallelism

• A master thread initializes the geometry and the “shareable”
parts of the physics
– Then it launches n worker threads

• Within the same physical computing element

• Generated events are dispatched to the worker threads for
processing
– Every event is fully simulated by one thread
– Every thread simulates only one event at a time

• Equivalent to splitting the generated events into subsamples and
processing them through n independent processes

• Multi-thread saves most of the initialization time, and vastly
reduces the memory footprint, as threads share the same
memory F. Bianchi 17

Bruno Multi-Thread (3)
• Migrating a simple application to Geant4-MT is just

a matter of compiling against the new G4 and
modifying the client code in a few well identified
places
– Procedure is well documented

• Unfortunately, Bruno is not a simple application, and

no existing migration how-to could be effectively
used

• Moreover, Bruno was not thought to be run in
parallel, and some parts of its code had to be
adapted/rewritten

F. Bianchi 18

Bruno Multi-Thread (4)

• Now we have a running, fully featured
simulation, with the same functionalities as the
existing Bruno release
– This means that, as far as G4 is concerned, the

migration is completed

• What we still miss is the persistency, i.e. the
ability to write to file hits and MC truth
– This requires dealing with ROOT, not with G4
– Some parts of ROOT's I/O are not (meant to be)

thread safe

F. Bianchi 19

Towards a Computing Model
for a tau-charm Factory

A Possible Computing Model

• “Raw data” from the detector will be permanently stored, and

reconstructed in a two step process.

• Monte Carlo data will be processed in the same way.

• Selected subset of Detector and MC data, the “skims”, will be
made available for different areas of physics analysis.
– Very convenient for analysis.
– Increase the storage requirement because the same events can be

present in more than one skim.

• Improvements in constants, reconstruction code, or simulation
may require reprocessing of the data or generation of new
simulated data.
– Require the capability of reprocessing in a given year all the data

collected in previous years.

• An estimate of necessary resources can be made based upon a
set of assumption (luminosity profile, event size, acquisition
rate…).
– Expect O(100 PB), O(5 MHEPSpec). 21

Impact of Architecture Evolution

22

Moore’s law still live and well.
But scaling of clock frequency replaced by scaling of cores/chip.

Moore’s Law Reinterpreted
• Number of cores/chip will double every two

years.

• Clock speed will not increase because of power.

• Need to deal with systems with millions of
concurrent threads.

• Need to deal with inter-chip parallelism as well
as intra-chip parallelism.

23

To Stay on Moore’s Law
• We need to be able to exploit multi/many cores architecture with high

efficiency.

• Efficient software will require a design that highlights parallelism.
– Novel problem decomposition.
– High granularity task.

• New programming paradigm.

– Think local and parallel!
– Decompose a problem vertically (parallel) first, then horizontally (sequentially)
– Consider speculative computation in place of likely miss-predicted branches
– Prefer deterministic algorithm to recursion, hit/miss

• The Event Processing Framework will have to enable such an approach

– Task scheduling.
– Memory Model & Data transformation.
– Library of optimized algorithms.

24

Data Access & Distributed Storage

• Kryder’s law (“Moore for
storage”): disk storage
density doubles every
[year, or 18 months].

• Good. However, even if
the number of bytes on
a disk that can be
bought for unit cost
follows Moore’s law, the
speed of disk access
does not.

• Need a strategy to avoid
I/O bottlenecks

25

26

Storage Questions
• How setup the storage in the sites and how share and

replicate data between them?

• File/Replica in different location? Investigate on storage
systems able to do it natively.

• Which data access services we want implement?

• Which file system is optimal for our application?

• Job Locality? Trying to understand if we can use a
paradigm in which the job run as closer as possible to the
data

• Catalogue and metadata system?

27

Grid Computing

• Wikipedia: Grid computing is a term referring to
the combination of computer resources from
multiple administrative domains to reach a common
goal.

• In practice this is implemented using Middleware
(Condor Toolkit, gLite, UNICORE, ARC,…) tools that
provide access to Grid infrastructures.

• But it does not exclude that HPC or Cloud
resources can be integrated when appropriated.

28

Evolution of Grids

• Middleware is moving towards better
interoperability.

• Infrastructure is getting fragmented into multiple
Grids.

• Special use cases require specialized resources.

• General purpose Grids will not solved all needs.

• Scientific communities are getting global:
– Computing will be distributed

29

Issues with Grid Computing
• Dealing with heterogeneous resources

– Various computing clusters, grids, etc

• Dealing with the intra-community policies
– User groups, quotas and priorities

• Priorities of different activities

– Dealing with a variety of applications
– Massive data productions
– Individual user applications, etc

• Overcome deficiencies of the standard middleware
• Inefficiencies, failures

– Production managers can afford that, users can not
• Lacking specific functionality

• Alleviate the excessive burden from sites – resource providers – in

supporting multiple VOs
– Avoid complex VO specific configuration on sites
– Avoid VO specific services on sites 30

Grid Resource Management
Framework (1)

• The complexity of managing the workload
resulted in specific software layer on top
of the standard Grid middleware:
– AliEn (Alice), PanDA (Atlas), GlideIn WMS

(CMS), DIRAC (LHCb)

• Need a Distributed Resource Management
Framework.

31

Grid Resource Management
Framework (2)

• Workload Management:
– Handling of computing tasks
– Locate optimal resource for execution
– Ensure proper execution
– Retrieval of results

• Key aspects:

– Global view of resources and needs (integration of
all activities)

– Provide interoperability by adding a common layer
– Ready to integrate new domains

32

Grid Resource Management
Framework (3)

• Data Management:
– Handing of data to make it available were needed
– Efficient use of resources (storage, network,..)
– Flexible access: local, remote
– Metadata

• Key issues:

– Dynamic data placing (popularity)
– Resource management
– Data Integrity

33

Outlook
• Computing for a tau-charm factory has many

similarities with computing for SuperB.
– And any experiment with similar data volumes and

CPU requirements.

• Tools developed for SuperB could be adapted
to an experiment at a tau-charm factory.

• The SuperB R&D program adresses some of the
questions that need to be adressed by an
experiment at a tau-charm factory.

34 F. Bianchi

	Computing �
	Outline
	Status of SuperB Computing Effort
	Computing Chapter of Detector TDR
	Production System Upgrade (1)
	Production System Upgrade (2)
	Data Access Library
	Distributed HadoopFS
	Data access test
	DIRAC evaluation
	DIRAC for SuperB
	SuperB DIRAC
	SuperB Dirac project credits
	Parallel Computing R&D Activities (1)
	Parallel Computing R&D Activities (2)
	Bruno Multi-Thread (1)
	Bruno Multi-Thread (2)
	Bruno Multi-Thread (3)
	Bruno Multi-Thread (4)
	Towards a Computing Model for a tau-charm Factory
	A Possible Computing Model
	Impact of Architecture Evolution
	Moore’s Law Reinterpreted
	To Stay on Moore’s Law
	Data Access & Distributed Storage
	Slide Number 26
	Storage Questions
	Grid Computing
	Evolution of Grids
	Issues with Grid Computing
	Grid Resource Management Framework (1)
	Grid Resource Management Framework (2)
	Grid Resource Management Framework (3)
	Outlook

