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Status of SuperB Computing 
Effort 



Computing Chapter of Detector TDR  

• Text is completed. 
– Reviewed by E. Luppi. 

 
• Many thanks to all the people who 

contributed text. 
 

• A special thank to S. Luitz for all is hard 
work in improving the content and the 
wording of this chapter.  
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Production System Upgrade (1) 
 
•Book-keeping database (sbk5) modified to implement new 
production system features on FullSim session: 
‣Request: new request and production request definition 
[TESTED] 

‣Jobs: new fields and constraints to implement 
functionalities to re-submit failed job in bulk mode (job 
re-submission) [ONGOING] 

 
•Job Wrapper (Severus): 
‣Submission: changes to implement job re-submission 
functionality [ONGOING] 

‣Stage-in: new fail-over mechanism for the stage-in phase 
implemented [TO BE TESTED] 

C. De Santis, A. Fella, E. Luppi, M. Manzali, L. Tomassetti 



Production System Upgrade (2) 
 
•Web-UI code (PHP, JavaScript, Smarty) modified to handle 
new features and sbk5 updates on FullSim session: 
‣Production: new production creation interface with a 
robust software version and parameters management 
[TESTED] 

‣Production Requests: possibility to create different 
production requests having the same physical parameters 
by changing the number of events per job [TESTED], new 
input mode for job re-submission [ONGOING] 

‣Expert Submission Interface: “Job Details” form section 
updated keeping previous functionality for production 
initialization [TESTED] 

‣Shift Submission Interface: minor changes [TESTED] 
‣Job Monitor: minor changes [TESTED] 
‣Submission Monitor: minor changes [TESTED] 



Data Access Library 
 R&D work for the development of a 

software library with an optimized data 
access management 

 Features: 
− intelligent pre-fetching and buffering 

algorithms 
− logical file name map with different physical 

storage URL 
− possibility of supporting storage protocols not 

supported by ROOT 
− read-head buffer and caching mechanism in 

order to solve the overhead problem 

D. Diacono, G.Donvito, A. Fella, P. Franchino, E. Manoni, S. Pardi 



Distributed HadoopFS 
• INFN-Bari has developed and tested a new policy in 

order to use Hadoop file-system for an automatic data 
replication among different site in a Wide Area 
Network environment 

• The test were performed successfully between Bari and 
Napoli 

• We want to go on testing and stressing this solution to 
understand if it fits the requirements of a production 
usage 

G. Donvito, G. Marzulli, S. Pardi  



Data access test 
 Test goals: 

− measure the latency period due to the increase number of parallel read 
stream 

− measure the latency period due to the increase of round trip time 
elapsed between source and destination 

− support the development of a general, experiment wide, data access 
software layer 

− start the characterization of a concrete WAN scenario, including 
traffic impact, typical latency, network resource overloading 

 Test layout definition: 
− 1, 5, 10, 50 and 100 parallel set of read streams 
− each stream reads a random files according to a trace file obtained 

from an analysis application 
− 250 compressed root files, 476 MB each 
− sources: INFN-T1 and INFN-Bari 
− destinations: INFN-T1, INFN-Napoli, GRIF and FNAL 
− measured the time of the cURL execution 

D. Diacono, G.Donvito, A. Fella, P. Franchino, E. Manoni, S. Pardi 
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DIRAC evaluation 

  
 DIRAC: framework to manage and use a distributed computing 

infrastructure 

− Grid, cloud, Boinc, local farm, desktop computing 
− User mangement, grid certifcate, VOMS, workload and data 

management, FTS transfer, 2 File Catalog (LFC and DFC), 
monitoring, accounting, workflow 

− Pilot job paradigm 
− Largely adopted (not only) in HEP community 

 LHCb, BelleII, BESIII, ILC, CTA, etc. 
• Supported and developed by  

• DIRAC developers team 
• DIRAC community 
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DIRAC for SuperB 

  
 Manage both EGI and OSG sites 
 Single administration point – minimize human effort 
 Mass data transfer successfully tested 
 Simulation Production successfully tested 

− Stagein, Stageout, Severus job wrapper 
 Job priority policy defined by VO manager 
 Web interface for every user type (physicist, shifter, 

manager, admin, etc.) 
 Possibility to use Cloud Resources (Amazon, OpenStack, 

occi-compatible cloud) 
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SuperB DIRAC 

  

 Extending DIRAC for SuperB needs 

 Interaction between DIRAC and bookkeeping database (SBK5) 

− Load, add and modify 
 Severus job wrapper porting in DIRAC 

− Use DIRAC capabilities where possibile to benefit of DIRAC 
advanced features 
 Stagein, stageout, software setup, SBK5 interactions 

 Simulation Production 

− Porting WebUI functionalities in DIRAC 
 Site management 
 Session management 
 Job submission 
 Output management 

 



13 

SuperB Dirac project credits 

  

 
 Marcin Chrzaszcz – Kracow 

 Giacinto Donvito - Bari 

 Armando Fella – Pisa 

 Rafał Grzymkowski – Kracow 

 Bruno Santeramo – Bari 

 Miłosz Zdybał - Kracow 

 

 

• Thanks to DIRAC developers, expecially to: Andrei Tsaregorodtsev, 
Federico Stagni, Matvey Sapunov, Krzysztof Daniel Ciba, Ricardo 
Graciani, Adrian Casajus 



Parallel Computing R&D Activities (1) 
 We implemented a prototype, based on the BaBar FastSim 

framework, to exploit parallelism inside current analysis 
  
 Using the Intel TBB flow-graph object we can realize 

parallelism not only at event but also at module level 
− This also give us the possibility for an algorithm level 

parallelism that can be explored in the future 
 

  Measurements done on the prototype demostrate that: 
− the model can be used to reduce the total memory 

footprint 
− the scheduling schema may be employed to efficiently 

use systems with large number of cores 

V. Ciaschini, M. Corvo, F. Giacomini, A. Gianelli, S. Longo, R. Stroili 



Parallel Computing R&D Activities (2) 

  Some limitations for parallelism have been found in the 
current framework code: 
− use of Common Blocks in Fortran code 
− widespread usage of static objects 
− some module are not really OOP-compliant, in particular 

for what concern encapsulation 
− auxiliary data structures (e.g. Event) don't allow 

concurrent data access 
 

 With the accumulated experience we are now ready: 
− to formalize specifications for analysis modules 
− to show an initial proposal design of a natively parallel 

architecture framework for experiment analysis 



Bruno Multi-Thread (1) 
• Full simulation software is not exploiting at all the many 

parallelization possibilities offered by modern computing 
– Not only SuperB, but the vast majority of existing HEP 

simulations run sequential single-thread programs 
 

• Main limitation in the past has been that the main 
simulation toolkit (Geant4) was not designed to be run in 
any non-sequential mode 
 

• Recently, things have changed, with the release of a 
prototype of G4 suitable for multi-thread applications 
– Result of several years of development, now ready for usage 

by “experts”, even though most likely not yet for official 
deployment 

 

• SuperB was in the very interesting situation of being a new 
project, with a brand new simulation software 
– The decision was taken to experiment with the new G4 

prototype and adapt Bruno to use it 
F. Bianchi 16 

A. Di Simone 



Bruno Multi-Thread (2) 
• Geant4 MT is a variant of the stock Geant4 distribution, whose 

general architecture has been modified to allow event-by-event 
parallelism 
 

• A master thread initializes the geometry and the “shareable” 
parts of the physics 
– Then it launches n worker threads 

• Within the same physical computing element 
 

• Generated events are dispatched to the worker threads for 
processing 
– Every event is fully simulated by one thread 
– Every thread simulates only one event at a time 

 

• Equivalent to splitting the generated events into subsamples and 
processing them through n independent processes 
 

• Multi-thread saves most of the initialization time, and vastly 
reduces the memory footprint, as threads share the same 
memory F. Bianchi 17 



Bruno Multi-Thread (3) 
• Migrating a simple application to Geant4-MT is just 

a matter of compiling against the new G4 and 
modifying the client code in a few well identified 
places 
– Procedure is well documented 

 
• Unfortunately, Bruno is not a simple application, and 

no existing migration how-to could be effectively 
used 
 

• Moreover, Bruno was not thought to be run in 
parallel, and some  parts of its code had to be 
adapted/rewritten 
 

F. Bianchi 18 



Bruno Multi-Thread (4) 

• Now we have a running, fully featured 
simulation, with the same functionalities as the 
existing Bruno release 
– This means that, as far as G4 is concerned, the 

migration is completed 
 

• What we still miss is the persistency, i.e. the 
ability to write to file hits and MC truth 
– This requires dealing with ROOT, not with G4 
– Some parts of ROOT's I/O are not (meant to be) 

thread safe 
 

F. Bianchi 19 



Towards a Computing Model 
for a tau-charm Factory 



A Possible Computing Model  
 
• “Raw data” from the detector will be permanently stored, and 

reconstructed in a two step process. 
 

• Monte Carlo data will be processed in the same way.  
 

• Selected subset of Detector and MC data, the “skims”, will be 
made available for different areas of physics analysis. 
– Very convenient for analysis. 
– Increase the storage requirement because the same events can be 

present in more than one skim.  
 

• Improvements in constants, reconstruction code, or simulation 
may require reprocessing of the data or generation of new 
simulated data. 
– Require the capability of reprocessing in a given year all the data 

collected in previous years. 
 

• An estimate of necessary resources can be made based upon a 
set of assumption (luminosity profile, event size, acquisition 
rate…). 
– Expect O(100 PB), O(5 MHEPSpec). 21 



Impact of Architecture Evolution 

22 

Moore’s law still live and well. 
But scaling of clock frequency replaced by scaling of cores/chip. 



Moore’s Law Reinterpreted 
• Number of cores/chip will double every two 

years. 
 

• Clock speed will not increase because of power. 
 

• Need to deal with systems with millions of 
concurrent threads. 
 

• Need to deal with inter-chip parallelism as well 
as intra-chip parallelism. 

23 



To Stay on Moore’s Law 
• We need to be able to exploit multi/many cores architecture with high 

efficiency. 
 

• Efficient software will require a design that highlights parallelism. 
– Novel problem decomposition. 
– High granularity task. 

 
• New programming paradigm. 

– Think local and parallel! 
– Decompose a problem vertically (parallel) first, then horizontally (sequentially) 
– Consider speculative computation in place of likely miss-predicted branches 
– Prefer deterministic algorithm to recursion, hit/miss 

 
• The Event Processing Framework will have to enable such an approach 

– Task scheduling. 
– Memory Model & Data transformation. 
– Library of optimized algorithms. 

24 



Data Access & Distributed Storage 

• Kryder’s law (“Moore for 
storage”): disk storage 
density doubles every 
[year, or 18 months]. 
 

• Good. However, even if 
the number of bytes on 
a disk that can be 
bought for unit cost 
follows Moore’s law, the 
speed of disk access 
does not. 
 

• Need a strategy to avoid 
I/O bottlenecks 

25 
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Storage Questions 
• How setup the storage in the sites and how share and 

replicate data between them? 
 

• File/Replica in different location? Investigate on storage 
systems able to do it natively.  
 

• Which data access services we want implement? 
 

• Which file system is optimal for our application? 
 

• Job Locality? Trying to understand if we can use a 
paradigm in which the job run as closer as possible to the 
data 
 

• Catalogue and metadata system? 
 
 

27 



Grid Computing 
 

• Wikipedia: Grid computing is a term referring to 
the combination of computer resources from 
multiple administrative domains to reach a common 
goal. 
 

• In practice this is implemented using Middleware 
(Condor Toolkit, gLite, UNICORE, ARC,…) tools that 
provide access to Grid infrastructures. 
 

• But it does not exclude that HPC or Cloud 
resources can be integrated when appropriated. 

28 



Evolution of Grids 
 

• Middleware is moving towards better 
interoperability. 
 

• Infrastructure is getting fragmented into multiple 
Grids. 
 

• Special use cases require specialized resources. 
 

• General purpose Grids will not solved all needs. 
 

• Scientific communities are getting global: 
– Computing will be distributed 

29 



Issues with Grid Computing 
• Dealing with heterogeneous resources 

– Various computing clusters, grids, etc 
 

• Dealing with the intra-community policies 
– User groups, quotas and priorities 

 
• Priorities of different activities 

– Dealing with a variety of applications 
– Massive data productions 
– Individual user applications, etc 

 
• Overcome deficiencies of the standard middleware 
• Inefficiencies, failures 

– Production managers can afford that, users can not 
• Lacking specific functionality 

 
•  Alleviate the excessive burden from sites – resource providers – in 

supporting multiple VOs 
– Avoid complex VO specific configuration on sites 
– Avoid VO specific services on sites 30 



Grid Resource Management 
Framework (1) 

• The complexity of managing the workload 
resulted in specific software layer on top 
of the standard Grid middleware: 
– AliEn (Alice), PanDA (Atlas), GlideIn WMS 

(CMS), DIRAC (LHCb) 
 

• Need a Distributed Resource Management 
Framework. 

31 



Grid Resource Management 
Framework (2) 

• Workload Management: 
– Handling of computing tasks 
– Locate optimal resource for execution 
– Ensure proper execution 
– Retrieval of results 

 
• Key aspects: 

– Global view of resources and needs (integration of 
all activities) 

– Provide interoperability by adding a common layer 
– Ready to integrate new domains 

32 



Grid Resource Management 
Framework (3) 

• Data Management: 
– Handing of data to make it available were needed 
– Efficient use of resources (storage, network,.. ) 
– Flexible access: local, remote 
– Metadata 

 
• Key issues: 

– Dynamic data placing (popularity) 
– Resource management 
– Data Integrity 

33 



Outlook 
• Computing for a tau-charm factory has many 

similarities with computing for SuperB. 
– And any experiment with similar data volumes and 

CPU requirements. 
 

• Tools developed for SuperB could be adapted 
to an experiment at a tau-charm factory. 
 

• The SuperB R&D program adresses some of the 
questions that need to be adressed by an 
experiment at a tau-charm factory. 

34 F. Bianchi 
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